Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses speci-fically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET. 1.  et al. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. PNAS 104:4718866–70 [Google Scholar]
  2. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK. 2.  et al. 2013. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK/New York, NY: Cambridge Univ. Press
  3. Metz BDO. 3.  2005. IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change Cambridge UK: Cambridge Univ. Press
  4. Di Felice L, Courson C, Foscolo PU, Kiennemann A. 4.  2011. Modified dolomite in biomass gasification with simultaneous tar reformation and CO2 capture: effect of metal loading. IOP Conf. Ser. Mater. Sci. Eng. 19:012009 [Google Scholar]
  5. Udomsirichakorn J, Basu P, Abdul Salam P, Acharya B. 5.  2014. CaO-based chemical looping gasification of biomass for hydrogen-enriched gas production with in situ CO2 capture and tar reduction. Fuel Process. Technol. 127:7–12 [Google Scholar]
  6. Corella J, Toledo J, Molina G. 6.  2007. A review on dual fluidized-bed biomass gasifiers. Ind. Eng. Chem. Res. 46:6831–39 [Google Scholar]
  7. Morris M, Waldheim L, Faaij APC, Stahl K. 7.  2005. Status of large-scale biomass gasification and prospects. Handbook Biomass Gasification HAM Knoef 76–114 Enschede, Neth.: BTG Biomass Technol. Group [Google Scholar]
  8. Basu P. 8.  2010. Biomass Gasification and Pyrolysis: Practical Design and Theory Burlington, MA: Elsevier
  9. Udomsirichakorn J, Salam PA. 9.  2014. Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification. Renew. Sustain. Energy Rev. 30:565–79 [Google Scholar]
  10. Siefert N, Shekhawat D, Litster S, Berry D. 10.  2013. Steam-coal gasification using CaO and KOH for in situ carbon and sulfur capture. Energy Fuels 27:4278–89 [Google Scholar]
  11. Puig-Arnavat M, Bruno JC, Coronas A. 11.  2010. Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev. 14:92841–51 [Google Scholar]
  12. Yoshioka T, Hirata S, Matsumura Y, Sakanishi K. 12.  2005. Woody biomass resources and conversion in Japan: the current situation and projections to 2010 and 2050. Biomass Bioenergy 29:5336–46 [Google Scholar]
  13. Faaij APC. 13.  2006. Bio-energy in Europe: changing technology choices. Energy Policy 34:3322–42 [Google Scholar]
  14. Li W, Li Q, Chen R, Wu Y, Zhang Y. 14.  2014. Investigation of hydrogen production using wood pellets gasification with steam at high temperature over 800°C to 1435°C. Int. J. Hydrogen Energy 39:115580–88 [Google Scholar]
  15. Li XT, Grace JR, Lim CJ, Watkinson AP, Chen HP, Kim JR. 15.  2004. Biomass gasification in a circulating fluidized bed. Biomass Bioenergy 26:2171–93 [Google Scholar]
  16. Pa A, Bi XT, Sokhansanj S. 16.  2011. A life cycle evaluation of wood pellet gasification for district heating in British Columbia. Bioresour. Technol. 102:106167–77 [Google Scholar]
  17. Saw WL, Pang S. 17.  2013. Co-gasification of blended lignite and wood pellets in a 100 kW dual fluidised bed steam gasifier: the influence of lignite ratio on producer gas composition and tar content. Fuel 112:117–24 [Google Scholar]
  18. Dai J, Sokhansanj S, Grace J. 18.  2008. Overview and some issues related to co-firing biomass and coal. Can. J. Chem. Eng. 86:367–86 [Google Scholar]
  19. Mangoyana RB, Smith TF. 19.  2011. Decentralised bioenergy systems: a review of opportunities and threats. Energy Policy 39:31286–95 [Google Scholar]
  20. Duch AD, Bermejo JH. 20.  2008. Biomass Gasification: The Characteristics of Technology Development and the Rate of Learning Gothenburg, Swed: Chalmers Univ. Technol.
  21. Kwant KW, Knoef H. 21.  2004. Status of gasification in countries participating in the IEA and GasNet activity August 2004 Rep. EU Gasif. Netw.
  22. Asadullah M. 22.  2014. Barriers of commercial power generation using biomass gasification gas: a review. Renew. Sustain. Energy Rev. 29:201–15 [Google Scholar]
  23. Florin NH, Harris AT. 23.  2008. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents. Chem. Eng. Sci. 63:2287–316 [Google Scholar]
  24. Dai J, Cui H, Grace JR. 24.  2012. Biomass feeding for thermochemical reactors. Prog. Energy Combust. Sci. 38:5716–36 [Google Scholar]
  25. de Lasa H, Salaices E, Mazumder J, Lucky R. 25.  2011. Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics. Chem. Rev. 111:95404–33 [Google Scholar]
  26. Espinal L, Poster DL, Wong-Ng W, Allen AJ, Green ML. 26.  2013. Measurement, standards, and data needs for CO2 capture materials: a critical review. Environ. Sci. Technol. 47:2111960–75 [Google Scholar]
  27. Emami-Taba L, Irfan MF, Wan Daud WMA, Chakrabarti MH. 27.  2013. Fuel blending effects on the co-gasification of coal and biomass—a review. Biomass Bioenergy 57:249–63 [Google Scholar]
  28. Fouilland T, Grace JR, Ellis N. 28.  2010. Recent advances in fluidized bed technology in biomass processes. Biofuels 1:3409–33 [Google Scholar]
  29. Ruiz JA, Juárez MC, Morales MP, Muñoz P, Mendívil MA. 29.  2013. Biomass gasification for electricity generation: review of current technology barriers. Renew. Sustain. Energy Rev. 18:174–83 [Google Scholar]
  30. Diblasi C. 30.  2008. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34:147–90 [Google Scholar]
  31. Kwiatkowski K, Bajer K, Celińska A, Dudyński M, Korotko J, Sosnowska M. 31.  2014. Pyrolysis and gasification of a thermally thick wood particle—effect of fragmentation. Fuel 132:125–34 [Google Scholar]
  32. Basu P. 32.  2013. Biomass Gasification, Pyrolysis and Torrefaction New York: Academic, 2nd ed..
  33. Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ. 33.  2012. An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33 [Google Scholar]
  34. Vassilev SV, Baxter D, Andersen LK, Vassileva CG. 34.  2010. An overview of the chemical composition of biomass. Fuel 89:5913–33 [Google Scholar]
  35. Acharya B, Sule I, Dutta A. 35.  2012. A review on advances of torrefaction technologies for biomass processing. Biomass Convers. Biorefinery 2:4349–69 [Google Scholar]
  36. Bridgeman TG, Jones JM, Williams A, Waldron DJ. 36.  2010. An investigation of the grindability of two torrefied energy crops. Fuel 89:123911–18 [Google Scholar]
  37. Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ. 37.  2008. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 89:2169–75 [Google Scholar]
  38. Tumuluru J, Sokhansanj S, Wright C, Boardman R. 38.  2010. Biomass torrefaction process review and moving bed torrefaction system model development Tech. Rep. 991885, US Dep. Energy, Washington, DC
  39. Englisch M. 39.  2008. Chemical methods for solid biofuels. Tech. Present., PHYDADES EACI, Neth. http://p29596.typo3server.info/fileadmin/Files/Documents/05_Workshops_Training_Events/3__Bukarest_chemical_Properties.pdf
  40. 40. ASTM Int 2006. ASTM E870–82(2013): Standard Test Methods for Analysis of Wood Fuels. West Conshohocken, PA: ASTM Int.
  41. Kofman PD. 41.  2010. Preview of European Standards for Solid Biofuels: Processing/Products 23 Dublin: COFORD
  42. Rabemanolontsoa H, Ayada S, Saka S. 42.  2011. Quantitative method applicable for various biomass species to determine their chemical composition. Biomass Bioenergy 35:114630–35 [Google Scholar]
  43. Kumar V. 43.  2009. Pyrolysis and gasification of lignin and effect of alkali addition PhD Diss., Georgia Inst. Technol.
  44. Sluiter A, Ruiz R, Scarlata C. 44.  2005. Determination of extractives in biomass: laboratory analytical procedure Tech. Rep. NREL/TP-510-42619, Natl. Renew. Energy Lab.
  45. Cole B. 45.  2006. Extractive Components of Wood: A Presentation Orono: Univ. Maine http://chemistry.umeche.maine.edu/Green/Afternoon/Cole.pdf
  46. Jones JM, Nawaz M, Darvell LI, Ross AB, Pourkashanian M, Williams A. 46.  2006. Towards biomass classification for energy applications. Science in Thermal and Chemical Biomass Conversion: Volume 1 AV Bridgwater, DGB Boocock 331–39 Berkshire, UK: CPL [Google Scholar]
  47. Gräbner M, Krahl J, Meyer B. 47.  2014. Evaluation of biomass gasification in a ternary diagram. Biomass Bioenergy 64:190–98 [Google Scholar]
  48. Sakaguchi M, Watkinson AP, Ellis N. 48.  2010. Steam gasification of bio-oil and bio-oil/char slurry in a fluidized bed reactor. Energy Fuels 24:95181–89 [Google Scholar]
  49. Ortiz-Toral PJ, Satrio J, Brown RC, Shanks BH. 49.  2011. Steam reforming of bio-oil fractions: effect of composition and stability. Energy Fuels 25:73289–97 [Google Scholar]
  50. Pang S, Mujumdar AS. 50.  2010. Drying of woody biomass for bioenergy: drying technologies and optimization for an integrated bioenergy plant. Dry. Technol. 28:5690–701 [Google Scholar]
  51. Xu Q, Pang S. 51.  2008. Mathematical modeling of rotary drying of woody biomass. Dry. Technol. 26:111344–50 [Google Scholar]
  52. Lauer M, Verhoeff F, Brammer J, Wile C, Fagernäs L, Wilén C. 52.  2010. Drying of biomass for second generation synfuel production. Biomass Bioenergy 34:91267–77 [Google Scholar]
  53. Isaksson J, Åsblad A, Berntsson T. 53.  2013. Influence of dryer type on the performance of a biomass gasification combined cycle co-located with an integrated pulp and paper mill. Biomass Bioenergy 59:336–47 [Google Scholar]
  54. Sarvaramini A, Larachi F. 54.  2014. Integrated biomass torrefaction—chemical looping combustion as a method to recover torrefaction volatiles energy. Fuel 116:158–67 [Google Scholar]
  55. Anderson J-O, Westerlund L. 55.  2014. Improved energy efficiency in sawmill drying system. Appl. Energy 113:891–901 [Google Scholar]
  56. Kobayashi J, Itaya Y, Tsukada S, Mizuno K, Ueda M. 56.  et al. 2007. Drying technology for woody biomass for fine grinding by vibration mills. Asia-Pac. J. Chem. Eng. 2:283–89 [Google Scholar]
  57. Li H, Chen Q, Zhang X, Finney KN, Sharifi VN, Swithenbank J. 57.  2012. Evaluation of a biomass drying process using waste heat from process industries: a case study. Appl. Therm. Eng. 35:71–80 [Google Scholar]
  58. Liu Y, Peng J, Kansha Y, Ishizuka M, Tsutsumi A. 58.  et al. 2014. Novel fluidized bed dryer for biomass drying. Fuel Process. Technol. 122:170–75 [Google Scholar]
  59. Ståhl M, Granström K, Berghel J, Renström R. 59.  2004. Industrial processes for biomass drying and their effects on the quality properties of wood pellets. Biomass Bioenergy 27:6621–28 [Google Scholar]
  60. Haque N, Somerville M. 60.  2013. Techno-economic and environmental evaluation of biomass dryer. Procedia Eng. 56:650–55 [Google Scholar]
  61. Gil M, Arauzo I. 61.  2014. Hammer mill operating and biomass physical conditions effects on particle size distribution of solid pulverized biofuels. Fuel Process. Technol. 127:80–87 [Google Scholar]
  62. Brown C. 62.  2012. Hammer mills: the ideal tool for grinding spices Tech. Rep., Schutte Buffalo Hammermill, Buffalo, NY
  63. Tamura M, Watanabe S, Kotake N, Hasegawa M. 63.  2014. Grinding and combustion characteristics of woody biomass for co-firing with coal in pulverised coal boilers. Fuel 134:544–53 [Google Scholar]
  64. Spinelli R, Hartsough B. 64.  2001. A survey of Italian chipping operations. Biomass Bioenergy 21:433–44 [Google Scholar]
  65. Cummer K, Brown R. 65.  2002. Ancillary equipment for biomass gasification. Biomass Bioenergy 23:113–28 [Google Scholar]
  66. Tumuluru JS, Wright CT, Kenny KL, Hess JR. 66.  2010. A review on biomass densification technologies for energy application Rep. INL/ext-10-18420, Ida. Natl. Lab.
  67. Duca D, Riva G, Foppa Pedretti E, Toscano G. 67.  2014. Wood pellet quality with respect to EN 14961-2 standard and certifications. Fuel 135:9–14 [Google Scholar]
  68. Mobini M, Meyer J-C, Trippe F, Sowlati T, Fröhling M, Schultmann F. 68.  2014. Assessing the integration of torrefaction into wood pellet production. J. Clean. Prod. 78:216–25 [Google Scholar]
  69. 69. Nunes LJR, Matias JCO, Catalão JPS 2014. A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew. Sustain. Energy Rev. 40:153–60 [Google Scholar]
  70. Peng JH, Bi HT, Sokhansanj S, Lim JC, Melin S. 70.  2010. An economical and market analysis of Canadian wood pellets. Int. J. Green Energy 7:2128–42 [Google Scholar]
  71. Peng JH. 71.  2012. A study of soft wood torrefaction and densification for the production of high quality wood pellets PhD Thesis, Univ. Br. Columbia
  72. Arnsfeld S, Senk D, Gudenau H-W. 72.  2014. The qualification of torrefied wooden biomass and agricultural wastes products for gasification processes. J. Anal. Appl. Pyrolysis 107:133–41 [Google Scholar]
  73. Bergman PCA. 73.  2005. Combined torrefaction and pelletisation: the top process. Rep. ECN-C-05–073, Energy Res. Cent. Neth.
  74. Eseltine D, Thanapal SS, Annamalai K, Ranjan D. 74.  2013. Torrefaction of woody biomass (juniper and mesquite) using inert and non-inert gases. Fuel 113:379–88 [Google Scholar]
  75. Ghiasi B, Kumar L, Furubayashi T, Lim CJ, Bi X. 75.  et al. 2014. Densified biocoal from woodchips: Is it better to do torrefaction before or after densification?. Appl. Energy 134:133–42 [Google Scholar]
  76. Keipi T, Tolvanen H, Kokko L, Raiko R. 76.  2014. The effect of torrefaction on the chlorine content and heating value of eight woody biomass samples. Biomass Bioenergy 66:232–39 [Google Scholar]
  77. Lasode OA, Balogun AO, McDonald AG. 77.  2014. Torrefaction of some Nigerian lignocellulosic resources and decomposition kinetics. J. Anal. Appl. Pyrolysis 109:47–55 [Google Scholar]
  78. Li H, Liu X, Legros R, Bi XT, Lim CJ, Sokhansanj S. 78.  2012. Torrefaction of sawdust in a fluidized bed reactor. Bioresour. Technol. 103:1453–58 [Google Scholar]
  79. Shang L, Ahrenfeldt J, Holm JK, Bach LS, Stelte W, Henriksen UB. 79.  2014. Kinetic model for torrefaction of wood chips in a pilot-scale continuous reactor. J. Anal. Appl. Pyrolysis 108:109–16 [Google Scholar]
  80. van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ. 80.  2011. Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35:93748–62 [Google Scholar]
  81. Weiland F, Nordwaeger M, Olofsson I, Wiinikka H, Nordin A. 81.  2014. Entrained flow gasification of torrefied wood residues. Fuel Process. Technol. 125:51–58 [Google Scholar]
  82. Shen Y, Yoshikawa K. 82.  2013. Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—a review. Renew. Sustain. Energy Rev. 21:371–92 [Google Scholar]
  83. Dai J, Grace JR. 83.  2008. Biomass screw feeding with tapered and extended sections. Powder Technol. 186:156–64 [Google Scholar]
  84. Dai J, Grace JR. 84.  2008. Biomass granular screw feeding: an experimental investigation. Biomass Bioenergy 35:2942–55 [Google Scholar]
  85. Dai J, Grace JR. 85.  2008. A model for biomass screw feeding. Powder Technol. 186:140–55 [Google Scholar]
  86. Shaaban A, Se S-M, Dimin MF, Juoi JM, Mohd Husin MH, Mitan NMM. 86.  2014. Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. J. Anal. Appl. Pyrolysis 107:31–39 [Google Scholar]
  87. Van der Drift A, Boerrigter H, Coda B, Cieplik MK, Hemmes K. 87.  2004. Entrained flow gasification of biomass: ash behavior, feeding issues, and system analyses Rep. ECN-C-04-039, Energy Res. Cent. Neth.
  88. Nellist ME. 88.  1991. Drying and storage of comminuted wood wastes—the UK project Res. Rep., Dan. For. Landsc. Res., Copenhagen, Den.
  89. González JF, Ledesma B, Alkassir A, Gonza J. 89.  2011. Study of the influence of the composition of several biomass pellets on the drying process. Biomass Bioenergy 35:104399–406 [Google Scholar]
  90. Sarvaramini A, Assima GP, Larachi F. 90.  2013. Dry torrefaction of biomass—torrefied products and torrefaction kinetics using the distributed activation energy model. Chem. Eng. J. 229:498–507 [Google Scholar]
  91. Batidzirai B, Mignot APR, Schakel WB, Junginger HM, Faaij APC. 91.  2013. Biomass torrefaction technology: techno-economic status and future prospects. Energy 62:196–214 [Google Scholar]
  92. Xue G, Kwapinska M, Kwapinski W, Czajka KM, Kennedy J, Leahy JJ. 92.  2014. Impact of torrefaction on properties of miscanthus×giganteus relevant to gasification. Fuel 121:189–97 [Google Scholar]
  93. Melkior T, Jacob S, Gerbaud G, Hediger S, Le Pape L. 93.  et al. 2012. NMR analysis of the transformation of wood constituents by torrefaction. Fuel 92:1271–80 [Google Scholar]
  94. Bach Q-V, Tran K-Q, Skreiberg Ø, Khalil RA, Phan AN. 94.  2014. Effects of wet torrefaction on reactivity and kinetics of wood under air combustion conditions. Fuel 137:375–83 [Google Scholar]
  95. Granados DA, Velásquez HI, Chejne F. 95.  2014. Energetic and exergetic evaluation of residual biomass in a torrefaction process. Energy 74:181–89 [Google Scholar]
  96. Couhert C, Salvador S, Commandré J-M. 96.  2009. Impact of torrefaction on syngas production from wood. Fuel 88:112286–90 [Google Scholar]
  97. Fisher EM, Dupont C, Darvell LI, Commandré J-M, Saddawi A. 97.  et al. 2012. Combustion and gasification characteristics of chars from raw and torrefied biomass. Bioresour. Technol. 119:157–65 [Google Scholar]
  98. Bates RB, Ghoniem AF. 98.  2014. Modeling kinetics-transport interactions during biomass torrefaction: the effects of temperature, particle size, and moisture content. Fuel 137:216–29 [Google Scholar]
  99. Peduzzi E, Boissonnet G, Haarlemmer G, Dupont C, Maréchal F. 99.  2014. Torrefaction modelling for lignocellulosic biomass conversion processes. Energy 70:58–67 [Google Scholar]
  100. Basu P, Sadhukhan AK, Gupta P, Rao S, Dhungana A, Acharya B. 100.  2014. An experimental and theoretical investigation on torrefaction of a large wet wood particle. Bioresour. Technol. 159:215–22 [Google Scholar]
  101. Prins MJ, Ptasinski KJ, Janssen FJJG. 101.  2006. More efficient biomass gasification via torrefaction. Energy 31:153458–70 [Google Scholar]
  102. Repellin V, Govin A, Rolland M, Guyonnet R. 102.  2010. Modelling anhydrous weight loss of wood chips during torrefaction in a pilot kiln. Biomass Bioenergy 34:5602–9 [Google Scholar]
  103. Doassans-Carrère N, Muller S, Mitzkat M. 103.  2014. Reve—a new industrial technology for biomass torrefaction: pilot studies. Fuel Process. Technol. 126:155–62 [Google Scholar]
  104. Xu F, Linnebur K, Wang D. 104.  2014. Torrefaction of conservation reserve program biomass: a techno-economic evaluation. Ind. Crops Prod. 61:382–87 [Google Scholar]
  105. Li Y, Liu H. 105.  2000. High-pressure densification of wood residues to form an upgraded fuel. Biomass Bioenergy 19:177–86 [Google Scholar]
  106. Liu H, Li Y. 106.  2002. Compacting biomass and municipal solid wastes to form an upgraded fuel Rep., Univ. Missouri-Columbia, MO
  107. Kaliyan N, Vance Morey R. 107.  2009. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 33:3337–59 [Google Scholar]
  108. 108. Biofuels Acad 2012. Gasification of Wood Pellets Tuskegee, AL: Biofuels Acad http://www.biofuelsacademy.org/index.php?p=3_21
  109. Gibson L. 109.  2010. Energy tablets. Biomass Mag. Oct. 26. http://biomassmagazine.com/articles/5086/energy-tablets
  110. Naimi LJ, Sokhansanj S, Mani S, Hoque M, Bi T. 110.  et al. 2006. Cost and performance of woody biomass size reduction for energy production Presented at CSBE/SCGAB 2006 Annu. Conf., Edmonton, Alberta
  111. 111. CWC 1997. Wood waste size reduction technology study Technol. Brief CDL-97-3, CWC, Seattle, WA
  112. 112. Re-Sour. Assoc., CPM Consult 1997. Wood waste recovery: size reduction technology study Rep. CDL-97-3, CWC, Seattle, WA
  113. Kern S, Pfeifer C, Hofbauer H. 113.  2013. Gasification of wood in a dual fluidized bed gasifier: influence of fuel feeding on process performance. Chem. Eng. Sci. 90:284–98 [Google Scholar]
  114. Babu SP. 114.  1995. Thermal gasification of biomass technology developments: end of task report for 1992 to 1994. Biomass Bioenergy 9:95271–85 [Google Scholar]
  115. Svoboda K, Pohořelý M, Hartman M, Martinec J. 115.  2009. Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Process. Technol. 90:5629–35 [Google Scholar]
  116. Luo S, Zhou Y, Yi C. 116.  2012. Hydrogen-rich gas production from biomass catalytic gasification using hot blast furnace slag as heat carrier and catalyst in moving-bed reactor. Int. J. Hydrogen Energy 37:2015081–85 [Google Scholar]
  117. Abu El-Rub Z, Bramer EA, Brem G. 117.  2008. Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel 87:10–112243–52 [Google Scholar]
  118. Sutton D, Kelleher B, Ross JRH. 118.  2001. Review of literature on catalysts for biomass gasification. Fuel Process. Technol. 73:3155–73 [Google Scholar]
  119. Mudge L, Sealock LJ, Weber S. 119.  1979. Catalyzed steam gasification of biomass. J. Anal. Appl. Pyrolysis 1:165–75 [Google Scholar]
  120. Devi L, Ptasinski KJ, Janssen FJJG. 120.  2003. A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 24:125–40 [Google Scholar]
  121. Hurley S, Xu C, Preto F, Shao Y, Li H. 121.  et al. 2012. Catalytic gasification of woody biomass in an air-blown fluidized-bed reactor using Canadian limonite iron ore as the bed material. Fuel 91:1170–76 [Google Scholar]
  122. Tao J, Lu Q, Dong CQ, Du XZ. 122.  2012. Recent progress in biomass tar catalytic cracking method research. Adv. Mater. Res. 608–9:448–52 [Google Scholar]
  123. Chan FL, Tanksale A. 123.  2014. Review of recent developments in Ni-based catalysts for biomass gasification. Renew. Sustain. Energy Rev. 38:428–38 [Google Scholar]
  124. Ni M, Leung DYC, Leung MKH, Sumathy K. 124.  2006. An overview of hydrogen production from biomass. Fuel Process. Technol. 87:5461–72 [Google Scholar]
  125. García G, Campos E, Fonts I, Sánchez JL, Herguido J. 125.  2013. Gas catalytic upgrading in a two-zone fluidized bed reactor coupled to a co-gasification plant. Energy Fuels 27:52835–45 [Google Scholar]
  126. Xu C, Donald J, Byambajav E, Ohtsuka Y. 126.  2010. Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification. Fuel 89:81784–95 [Google Scholar]
  127. Emami Taba L, Irfan MF, Wan Daud WAM, Chakrabarti MH. 127.  2012. The effect of temperature on various parameters in coal, biomass and co-gasification: a review. Renew. Sustain. Energy Rev. 16:85584–96 [Google Scholar]
  128. Brar JS, Singh K, Wang J, Kumar S. 128.  2012. Cogasification of coal and biomass: a review. Int. J. For. Res. 2012:1–10 [Google Scholar]
  129. Brown RC, Liu Q, Norton G. 129.  2000. Catalytic effects observed during the co-gasification of coal and switchgrass. Biomass Bioenergy 18:499–506 [Google Scholar]
  130. Masnadi-Shirazi MS. 130.  2014. Biomass/fossil fuel co-gasification with and without integrated CO2 capture PhD Thesis, Univ. Br. Columbia
  131. Masnadi MS, Habibi R, Kopyscinski J, Hill JM, Bi X. 131.  et al. 2013. Fuel characterization and co-pyrolysis kinetics of biomass and fossil fuels. Fuel 117:1204–14 [Google Scholar]
  132. Lobo LS. 132.  2014. Intrinsic kinetics in carbon gasification: understanding linearity, “nanoworms” and alloy catalysts. Appl. Catal. B Environ. 148–49:136–43 [Google Scholar]
  133. Smit B, Reimer J, Oldenburg C, Bourg I. 133.  2014. Introduction to Carbon Capture and Sequestration London: Imp. Coll. Press
  134. Steeneveldt R, Berger B, Torp TA. 134.  2006. CO2 capture and storage. Chem. Eng. Res. Des. 84:9739–63 [Google Scholar]
  135. Curran GP, Fink CE, Gorin E. 135.  1967. CO2 acceptor gasification process. Adv. Chem. 69:141–65 [Google Scholar]
  136. Fan L. 136.  2010. Chemical Looping Systems for Fossil Energy Conversions Hoboken, NJ: Wiley
  137. Mitchell D, Sageman D. 137.  1980. Carbon dioxide acceptor process using countercurrent plug flow. US Patent No. 4,191,540
  138. Sun P, Grace J, Lim C, Anthony E. 138.  2007. Co-capture of H2S and CO2 in a pressurized-gasifier-based process. Energy Fuels 21:836–44 [Google Scholar]
  139. Weimer T, Berger R, Hawthorne C, Abanades JC. 139.  2008. Lime enhanced gasification of solid fuels: examination of a process for simultaneous hydrogen production and CO2 capture. Fuel 87:8–91678–86 [Google Scholar]
  140. Sun P, Grace J, Lim C, Anthony E. 140.  2007. Removal of CO2 by calcium-based sorbents in the presence of SO2. Energy Fuels 21:163–70 [Google Scholar]
  141. Baker E. 141.  1962. The calcium oxide-carbon dioxide system in the pressure range 1–300 atmospheres. J. Chem. Soc. 1962:464–70 [Google Scholar]
  142. Butler JW, Lim CJ, Grace JR. 142.  2011. CO2 capture capacity of CaO in long series of pressure swing sorption cycles. Chem. Eng. Res. Des. 89:91794–804 [Google Scholar]
  143. Butler J. 143.  2013. Limestone as a sorbent for CO2 capture and its application in enhanced biomass gasification PhD Thesis, Univ. Br. Columbia
  144. Blamey J, Anthony EJ, Wang J, Fennell PS. 144.  2010. The calcium looping cycle for large-scale CO2 capture. Prog. Energy Combust. Sci. 36:2260–79 [Google Scholar]
  145. Knight A, Ellis N, Grace JR, Lim CJ. 145.  2014. CO2 sorbent attrition testing for fluidized bed systems. Powder Technol. 266:412–23 [Google Scholar]
  146. Knight A. 146.  2013. Sorbent Attrition in Fluidized Carbon Dioxide Capture Systems Master Thesis, Univ. Br. Columbia
  147. Trømborg E, Ranta T, Schweinle J, Solberg B, Skjevrak G, Tiffany DG. 147.  2013. Economic sustainability for wood pellets production—a comparative study between Finland, Germany, Norway, Sweden and the US. Biomass Bioenergy 57:68–77 [Google Scholar]
  148. Upadhyay PT, Shahi C, Leitch M, Pulkki R. 148.  2012. Economic feasibility of biomass gasification for power generation in three selected communities of northwestern Ontario, Canada. Energy Policy 44:235–44 [Google Scholar]
  149. Pang S, Li J. 149.  2006. BIGCC system for New Zealand: an overview and perspective. N. Z. J. For. 51:27–12 [Google Scholar]
  150. 150. US Energy Inf. Admin 2013. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants. Washington, DC: US Energy Inf. Admin.
  151. Wang J, Xu Z, Jin H, Shi G, Fu C, Yang K. 151.  2014. Design optimization and analysis of a biomass gasification based BCHP system: a case study in Harbin, China. Renew. Energy 71:572–83 [Google Scholar]
  152. Kumar A, Demirel Y, Jones DD, Hanna MA. 152.  2010. Optimization and economic evaluation of industrial gas production and combined heat and power generation from gasification of corn stover and distillers grains. Bioresour. Technol. 101:103696–701 [Google Scholar]
  153. Abdoulmoumine N, Kulkarni A, Adhikari S, Taylor S, Loewenstein E. 153.  2012. Economic analysis of municipal power generation from gasification of urban green wastes: case study of Fultondale, Alabama, USA. Biofuels Bioprod 6:5521–33 [Google Scholar]
  154. Corella J, Toledo J-M, Molina G. 154.  2008. Biomass gasification with pure steam in fluidised bed: 12 variables that affect the effectiveness of the biomass gasifier. Int. J. Oil Gas Coal Technol. 1:1/2194–207 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error