1932

Abstract

A description of fluid systems with molecular-based algebraic equations of state (EoSs) and by direct molecular simulation is common practice in chemical engineering and the physical sciences, but the two approaches are rarely closely coupled. The key for an integrated representation is through a well-defined force field and Hamiltonian at the molecular level. In developing coarse-grained intermolecular potential functions for the fluid state, one typically starts with a detailed, bottom-up quantum-mechanical or atomic-level description and then integrates out the unwanted degrees of freedom using a variety of techniques; an iterative heuristic simulation procedure is then used to refine the parameters of the model. By contrast, with a top-down technique, one can use an accurate EoS to link the macroscopic properties of the fluid and the force-field parameters. We discuss the latest developments in a top-down representation of fluids, with a particular focus on a group-contribution formulation of the statistical associating fluid theory (SAFT-γ). The accurate SAFT-γ EoS is used to estimate the parameters of the Mie force field, which can then be used with confidence in direct molecular simulations to obtain thermodynamic, structural, interfacial, and dynamical properties that are otherwise inaccessible from the EoS. This is exemplified for several prototypical fluids and mixtures, including carbon dioxide, hydrocarbons, perfluorohydrocarbons, and aqueous surfactants.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-061312-103314
2014-06-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/5/1/annurev-chembioeng-061312-103314.html?itemId=/content/journals/10.1146/annurev-chembioeng-061312-103314&mimeType=html&fmt=ahah

Literature Cited

  1. Rowlinson JS. 1.  2002. Cohesion: A Scientific History of Intermolecular Forces Cambridge: Cambridge Univ. Press
  2. Skylaris C-K, Haynes PD, Mostofi AA, Payne MC. 2.  2005. Introducing ONETEP: linear-scaling density functional simulations on parallel computers. J. Chem. Phys. 122:084119 [Google Scholar]
  3. Burke K. 3.  2012. Perspective on density functional theory. J. Chem. Phys. 136:150901 [Google Scholar]
  4. Klimeš J, Michaelides A. 4.  2012. Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory. J. Chem. Phys. 137:120901 [Google Scholar]
  5. Jones JE. 5.  1924. On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature. Proc. R. Soc. Lond. A 106:738441–62 [Google Scholar]
  6. Jones JE. 6.  1924. On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. Lond. A 106:738463–77 [Google Scholar]
  7. Voth GA. 7.  2009. Coarse-Graining of Condensed Phase and Biomolecular Systems Boca Raton, FL: CRC Press
  8. Faller R. 8.  2009. Coarse grained modeling of soft condensed matter. Phys. Chem. Chem. Phys. 11:1867–68 [Google Scholar]
  9. Visscher L, Bolhuis P, Bickelhaupt FM. 9.  2011. Multiscale modelling. Phys. Chem. Chem. Phys. 13:10399–400 [Google Scholar]
  10. Klein ML, Shinoda W. 10.  2008. Large-scale molecular simulations of self-assembling systems. Science 321:798–800 [Google Scholar]
  11. McCullagh M, Prytkova T, Tonzani S, Winter ND, Schatz GC. 11.  2008. Modeling self-assembly processes driven by nonbonded interactions in soft materials. J. Phys. Chem. B 112:10388–98 [Google Scholar]
  12. Brini E, Algaer EA, Ganguly P, Li C, Rodríguez-Ropero F, van der Vegt NFA. 12.  2013. Systematic coarse-graining methods for soft matter simulations—a review. Soft Matter 9:2108–19 [Google Scholar]
  13. Groot RD, Warren PB. 13.  1997. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107:4423–35 [Google Scholar]
  14. Groot RD, Madden TJ. 14.  1998. Dynamic simulation of diblock copolymer microphase separation. J. Chem. Phys. 108:8713–24 [Google Scholar]
  15. Yamamoto S, Maruyama Y, Hyodo S. 15.  2002. Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules. J. Chem. Phys. 116:5842–49 [Google Scholar]
  16. Flory PJ, Krigbaum WR. 16.  1950. Statistical mechanics of dilute polymer solutions. II. J. Chem. Phys. 18:1086–94 [Google Scholar]
  17. Dautenhahn J, Hall CK. 17.  1994. Monte Carlo simulation of off-lattice polymer chains: effective pair potentials in dilute solution. Macromolecules 27:5399–412 (and references therein) [Google Scholar]
  18. Louis AA, Bolhuis PG, Hansen JP, Meijer EJ. 18.  2000. Can polymer coils be modeled as “soft colloids”?. Phys. Rev. Lett. 85:2522 [Google Scholar]
  19. Wilson MR. 19.  2005. Progress in computer simulations of liquid crystals. Int. Rev. Phys. Chem. 24:421–55 [Google Scholar]
  20. McGrother SC, Gil-Villegas A, Jackson G. 20.  1996. The liquid-crystalline phase behaviour of hard spherocylinders with terminal point dipoles. J. Phys. Condens. Matter 8:9649–55 [Google Scholar]
  21. van Duijneveldt JS, Gil-Villegas A, Jackson G, Allen MP. 21.  2000. Simulation study of the phase behavior of a primitive model for thermotropic liquid crystals: rodlike molecules with terminal dipoles and flexible tails. J. Chem. Phys. 112:9092–104 [Google Scholar]
  22. Care CM, Cleaver DJ. 22.  2005. Computer simulation of liquid crystals. Rep. Prog. Phys. 68:2665–700 [Google Scholar]
  23. Avendaño C, Müller EA. 23.  2011. Liquid crystalline behavior of a coarse-grained model of shape-persistent macrocycles with flexible attractive chains. Soft Matter 7:1694–701 [Google Scholar]
  24. Glotzer SC, Solomon MJ. 24.  2007. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6:557–62 [Google Scholar]
  25. Crane AJ, Martínez-Veracoechea FJ, Escobedo FA, Müller EA. 25.  2008. Molecular dynamics simulation of the mesophase behaviour of a model bolaamphiphilic liquid crystal with a lateral flexible chain. Soft Matter 4:1820–29 [Google Scholar]
  26. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. 26.  2007. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111:7812–24 [Google Scholar]
  27. Tretyakov N, Müller M, Todorova D, Thiele U. 27.  2013. Parameter passing between molecular dynamics and continuum models for droplets on solid substrates: the static case. J. Chem. Phys. 138:064905 [Google Scholar]
  28. Marconi UMB, Tarazona P. 28.  2006. Nonequilibrium inertial dynamics of colloidal systems. J. Chem. Phys. 124:164901 [Google Scholar]
  29. Marconi UMB, Melchionna S. 29.  2007. Phase-space approach to dynamical density functional theory. J. Chem. Phys. 126:184109 [Google Scholar]
  30. Marconi UMB, Tarazona P, Cecconi F, Melchionna S. 30.  2008. Beyond dynamic density functional theory: the role of inertia. J. Phys. Condens. Matter 20:494233 [Google Scholar]
  31. Rex M, Löwen H. 31.  2009. Dynamical density functional theory for colloidal dispersions including hydrodynamic interactions. Eur. Phys. J. E 28:139–46 [Google Scholar]
  32. Archer AJ. 32.  2009. Dynamical density functional theory for molecular and colloidal fluids: a microscopic approach to fluid mechanics. J. Chem. Phys. 130:014509 [Google Scholar]
  33. Goddard BD, Nold A, Savva N, Pavliotis GA, Kalliadasis S. 33.  2012. General dynamical density functional theory for classical fluids. Phys. Rev. Lett. 109:120603 [Google Scholar]
  34. Goddard BD, Nold A, Savva N, Yatsyshin P, Kalliadasis S. 34.  2013. Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments. J. Phys. Condens. Matter 25:035101 [Google Scholar]
  35. Monaghan JJ. 35.  2012. Smoothed particle hydrodynamics and its diverse applications. Annu. Rev. Fluid Mech. 44:323–46 [Google Scholar]
  36. Avendaño C, Lafitte T, Galindo A, Adjiman CS, Jackson G, Müller EA. 36.  2011. SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide. J. Phys. Chem. B 115:11154–69 [Google Scholar]
  37. van der Waals JD. 37.  1873. Over de Continuiteit van den Gas- en Vloeistoftoestand PhD Thesis, University of Leiden [transl. JS Rowlinson. 1988 On the Continuity of the Gaseous and Liquid States Amsterdam: North-Holland Phys. Publ.]
  38. Müller EA, Gubbins KE. 38.  1995. An equation of state for water from a simplified intermolecular potential. Ind. Eng. Chem. Res. 34:3662–73 [Google Scholar]
  39. Lotfi A, Vrabec J, Fischer J. 39.  1992. Vapor-liquid-equilibria of the Lennard-Jones fluid from the NPT plus test particle method. Mol. Phys. 76:1319–33 [Google Scholar]
  40. Stoll J, Vrabec J, Hasse H, Fischer J. 40.  2001. Comprehensive study of the vapour-liquid equilibria of the pure two-centre Lennard-Jones plus point quadrupole fluid. Fluid Phase Equilib. 179:339–62 [Google Scholar]
  41. Stoll J, Vrabec J, Hasse H. 41.  2003. Comprehensive study of the vapour-liquid equilibria of the two-centre Lennard-Jones plus point dipole fluid. Fluid Phase Equilib. 209:29–53 [Google Scholar]
  42. Stoll J. 42.  2005. Molecular Models for the Prediction of Thermophysical Properties of Pure Fluids and Mixtures, Reihe 3. Düsseldorf: VDI-Verlag
  43. Vrabec J, Stoll J, Hasse H. 43.  2001. A set of molecular models for symmetric quadrupolar fluids. J. Phys. Chem. B 105:12126–33 [Google Scholar]
  44. Stoll J, Vrabec J, Hasse H. 44.  2003. A set of molecular models for carbon monoxide and halogenated hydrocarbons. J. Chem. Phys. 119:11396–407 [Google Scholar]
  45. Schnabel T, Vrabec J, Hasse H. 45.  2008. Molecular simulation study of hydrogen bonding mixtures and new molecular models for mono- and dimethylamine. Fluid Phase Equilib. 263:144–59 [Google Scholar]
  46. Huang Y-L, Miroshnichenko S, Hasse H, Vrabec J. 46.  2009. Henry's law constant from molecular simulation: a systematic study of 95 systems. Int. J. Thermophys. 30:1791–810 [Google Scholar]
  47. Vrabec J, Fischer J. 47.  1996. Vapor-liquid equilibria of binary mixtures containing methane, ethane, and carbon dioxide from molecular simulation. Int. J. Thermophys. 17:889–908 [Google Scholar]
  48. Vrabec J, Huang Y-L, Hasse H. 48.  2009. Molecular models for 267 binary mixtures validated by vapor-liquid equilibria: a systematic approach. Fluid Phase Equilib. 279:120–35 [Google Scholar]
  49. Vrabec J, Fischer J. 49.  1996. Vapor-liquid equilibria of the ternary mixture CH4+C2H6+CO2 from molecular simulation. AIChE J. 43:212–17 [Google Scholar]
  50. Huang Y-L, Vrabec J, Hasse J. 50.  2009. Prediction of ternary vapor-liquid equilibria for 33 systems by molecular simulation. Fluid Phase Equilib. 287:62–69 [Google Scholar]
  51. Vrabec J, Kumar A, Hasse H. 51.  2007. Joule-Thomson inversion curves of mixtures by molecular simulation in comparison to advanced equations of state: natural gas as an example. Fluid Phase Equilib. 258:34–40 [Google Scholar]
  52. Engin C, Vrabec J, Hasse H. 52.  2011. On the difference between a point multipole and an equivalent linear arrangement of point charges in force field models for vapor-liquid equilibria. Partial charge based models for 59 real fluids. Mol. Phys. 109:1975–82 [Google Scholar]
  53. Elliott JR, Cui J. 53.  2001. Multi-step potential modeling of methane by DMD/TPT. AIChE Symp. Ser. 325:159–62 [Google Scholar]
  54. Cui J, Elliott JR. 54.  2002. Phase diagrams for a multistep potential model of n-alkanes by discontinuous molecular dynamics and thermodynamic perturbation theory. J. Chem. Phys. 116:8625–31 [Google Scholar]
  55. Unlu O, Gray NH, Gerek ZN, Elliott JR. 55.  2004. Transferable step potentials for the straight-chain alkanes, alkenes, alkynes, ethers, and alcohols. Ind. Eng. Chem. Res. 43:1788–93 [Google Scholar]
  56. Baskaya FS, Gray NH, Gerek ZN, Elliott JR. 56.  2005. Transferable step potentials for amines, amides, acetates, and ketones. Fluid Phase Equilib. 236:42–52 [Google Scholar]
  57. Sans AD, Elliott JR. 57.  2008. Transferable step potentials for perfluorinated hydrocarbons. Fluid Phase Equilib. 263:182–89 [Google Scholar]
  58. Vahid A, Sans AD, Elliott JR. 58.  2008. Correlation of mixture vapor-liquid equilibria with the SPEADMD model. Ind. Eng. Chem. Res. 47:7955–64 [Google Scholar]
  59. Vahid A, Elliott JR. 59.  2010. Transferable intermolecular potentials for carboxylic acids and their phase behavior. AIChE J. 56:485–505 [Google Scholar]
  60. Ghobadi AF, Elliot JR. 60.  2013. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. I. Homogeneous fluids. J. Chem. Phys. 139:234104 [Google Scholar]
  61. van Westen T, Vlugt TJH, Gross J. 61.  2011. Determining force field parameters using a physically based equation of state. J. Phys. Chem. B 115:7872–80 [Google Scholar]
  62. Schacht CS, Vlugt TJH, Gross J. 62.  2011. Using an analytic equation of state to obtain quantitative solubilities of CO2 by molecular simulation. J. Phys. Chem. Lett. 2:393–96 [Google Scholar]
  63. Gross J, Sadowski G. 63.  2001. Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40:1244–60 [Google Scholar]
  64. Martin MG, Siepmann JI. 64.  1998. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B 102:2569–77 [Google Scholar]
  65. Lee MT, Vishnyakov A, Neimark AV. 65.  2013. Calculations of critical micelle concentration by dissipative particle dynamics simulations: the role of chain rigidity. J. Phys. Chem. B 117:10304–10 [Google Scholar]
  66. Vishnyakov A, Lee MT, Neimark AV. 66.  2013. Prediction of the critical micelle concentration of nonionic surfactants by dissipative particle dynamics simulations. J. Phys. Chem. Lett. 4:797–802 [Google Scholar]
  67. Chapman WG, Gubbins KE, Jackson G, Radosz M. 67.  1989. SAFT: equation of state model for associating fluids. Fluid Phase Equilib. 52:31–38 [Google Scholar]
  68. Chapman WG, Gubbins KE, Jackson G, Radosz M. 68.  1990. New reference equation of state for associating liquids. Ind. Eng. Chem. Res. 29:1709–21 [Google Scholar]
  69. Wertheim MS. 69.  1984. Fluids with highly directional attractive forces. 1. Statistical thermodynamics. J. Stat. Phys. 35:19–3469–74. The papers by Wertheim are the basis of the SAFT approach. They tend to be difficult to follow owing to the rigorous graphical analysis involved. In the subsequent Chapman-Jackson-Gubbins papers the theory is reformulated in a form that is more amenable for use in engineering applications. [Google Scholar]
  70. Wertheim MS. 70.  1984. Fluids with highly directional attractive forces. 2. Thermodynamic perturbation theory and integral equations. J. Stat. Phys. 35:35–4769–74. The papers by Wertheim are the basis of the SAFT approach. They tend to be difficult to follow owing to the rigorous graphical analysis involved. In the subsequent Chapman-Jackson-Gubbins papers the theory is reformulated in a form that is more amenable for use in engineering applications. [Google Scholar]
  71. Wertheim MS. 71.  1986. Fluids with highly directional attractive forces. 3. Multiple attraction sites. J. Stat. Phys. 42:459–7669–74. The papers by Wertheim are the basis of the SAFT approach. They tend to be difficult to follow owing to the rigorous graphical analysis involved. In the subsequent Chapman-Jackson-Gubbins papers the theory is reformulated in a form that is more amenable for use in engineering applications. [Google Scholar]
  72. Wertheim MS. 72.  1986. Fluids with highly directional attractive forces. 4. Equilibrium polymerization. J. Stat. Phys. 42:477–9269–74. The papers by Wertheim are the basis of the SAFT approach. They tend to be difficult to follow owing to the rigorous graphical analysis involved. In the subsequent Chapman-Jackson-Gubbins papers the theory is reformulated in a form that is more amenable for use in engineering applications. [Google Scholar]
  73. Wertheim MS. 73.  1986. Fluids of dimerizing hard-spheres, and fluid mixtures of hard-spheres and dispheres. J. Chem. Phys. 85:2929–3669–74. The papers by Wertheim are the basis of the SAFT approach. They tend to be difficult to follow owing to the rigorous graphical analysis involved. In the subsequent Chapman-Jackson-Gubbins papers the theory is reformulated in a form that is more amenable for use in engineering applications. [Google Scholar]
  74. Wertheim MS. 74.  1987. Thermodynamic perturbation theory of polymerization. J. Chem. Phys. 87:7323–3169–74. The papers by Wertheim are the basis of the SAFT approach. They tend to be difficult to follow owing to the rigorous graphical analysis involved. In the subsequent Chapman-Jackson-Gubbins papers the theory is reformulated in a form that is more amenable for use in engineering applications. [Google Scholar]
  75. Chapman WG, Jackson G, Gubbins KE. 75.  1988. Phase equilibria of associating fluids: chain molecules with multiple bonding sites. Mol. Phys. 65:1057–79 [Google Scholar]
  76. Jackson G, Chapman WG, Gubbins KE. 76.  1988. Phase equilibria of associating fluids: spherical molecules with multiple bonding sites. Mol. Phys. 65:1–31 [Google Scholar]
  77. Müller EA, Gubbins KE. 77.  2001. Molecular-based equations of state for associating fluids: a review of SAFT and related approaches. Ind. Eng. Chem. Res. 40:2193–211 [Google Scholar]
  78. Economou IG. 78.  2002. Statistical associating fluid theory: a successful model for the calculation of thermodynamic and phase equilibrium properties of complex fluid mixtures. Ind. Eng. Chem. Res. 41:953–62 [Google Scholar]
  79. Tan SP, Adidharma H, Radosz M. 79.  2008. Recent advances and applications of statistical associating fluid theory. Ind. Eng. Chem. Res. 47:8063–82 [Google Scholar]
  80. McCabe C, Galindo A. 80.  2010. SAFT associating fluids and fluid mixtures. Applied Thermodynamics of Fluids AR Goodwin, J Sengers, CJ Peters 215–79 London: R. Soc. Chem. [Google Scholar]
  81. Johnson JK, Müller EA, Gubbins KE. 81.  1994. Equation of state for Lennard-Jones chains. J. Phys. Chem. 98:6413–19 [Google Scholar]
  82. Kontogeorgis GM, Folas GK. 82.  2010. Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories Hoboken, NJ: Wiley
  83. Kleiner M, Sadowski G. 83.  2007. Modeling of polar systems using PCP-SAFT: an approach to account for induced-association interactions. J. Phys. Chem. C 111:15544–53 [Google Scholar]
  84. Gil-Villegas A, Galindo A, Jackson G, Burgess AN. 84.  1999. SAFT-VRE: phase behavior of electrolyte solutions with the statistical associating fluid theory for potentials of variable range. J. Phys. Chem. B 103:10272–81 [Google Scholar]
  85. Gil-Villegas A, Galindo A, Jackson G. 85.  2001. A statistical associating fluid theory for electrolyte solutions (SAFT-VRE). Mol. Phys. 99:531–46 [Google Scholar]
  86. Gil-Villegas A, Galindo A, Whitehead PJ, Mills SJ, Jackson G, Burgess AN. 86.  1997. Statistical associating fluid theory for chain molecules with attractive potentials of variable range. J. Chem. Phys. 106:4168–86 [Google Scholar]
  87. Galindo A, Davies LA, Gil-Villegas A, Jackson G. 87.  1998. The thermodynamics of mixtures and the corresponding mixing rules in the SAFT-VR approach for potentials of variable range. Mol. Phys. 93:241–52 [Google Scholar]
  88. Davies LA, Gil-Villegas A, Jackson G. 88.  1998. Describing the properties of chains of segments interacting via soft-core potentials of variable range with the SAFT-VR approach. Int. J. Thermophys. 19:675–86 [Google Scholar]
  89. Davies LA, Gil-Villegas A, Jackson G. 89.  1999. An analytical equation of state for chain molecules formed from Yukawa segments. J. Chem. Phys. 111:8659–65 [Google Scholar]
  90. Lafitte T, Bessières D, Piñeiro MM, Daridon JL. 90.  2006. Simultaneous estimation of phase behavior and second-derivative properties using the statistical associating fluid theory with variable range approach. J. Chem. Phys. 124:24509 [Google Scholar]
  91. Lafitte T, Piñeiro MM, Daridon JL, Bessières D. 91.  2007. A comprehensive description of chemical association effects on second derivative properties of alcohols through a SAFT-VR approach. J. Phys. Chem. B 111:3447–61 [Google Scholar]
  92. Lafitte T, Apostolakou A, Avendaño C, Galindo A, Adjiman CS. 92.  et al. 2013. Accurate statistical associating fluid theory for chains formed from Mie segments. J. Chem. Phys. 139:154504 [Google Scholar]
  93. Lymperiadis A, Adjiman CS, Galindo A, Jackson G. 93.  2007. A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-γ). J. Chem. Phys. 127:234903 [Google Scholar]
  94. Lymperiadis A, Adjiman CS, Jackson G, Galindo A. 94.  2008. A generalisation of the SAFT-γ group contribution method for groups comprising multiple spherical segments. Fluid Phase Equilib. 274:85–104 [Google Scholar]
  95. Papaioannou V, Adjiman CS, Jackson G, Galindo A. 95.  2011. Simultaneous prediction of vapour-liquid and liquid-liquid equilibria (VLE and LLE) of aqueous mixtures with the SAFT-γ group contribution approach. Fluid Phase Equilib. 306:82–96 [Google Scholar]
  96. Papaioannou V, Lafitte T, Avendaño C, Adjiman CS, Jackson G. 96.  et al. 2014. Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. J. Chem. Phys. 140:054107This paper lays out the basis of the third-generation SAFT-γ group-contribution equation of state for heteronuclear molecules formed from Mie groups. [Google Scholar]
  97. Papaioannou V. 97.  2013. A molecular-based group contribution equation of state for the description of fluid phase behaviour and thermodynamic derivative properties of mixtures (SAFT-γ Mie) PhD Thesis, Imp. Coll. London
  98. Mie G. 98.  1903. Zur kinetischen Theorie der einatomigen Körper. Ann. Phys. 316:657–97 [Google Scholar]
  99. Grüneisen EA. 99.  1912. Theorie des festen Zustandes einatomiger Elemente. Ann. Phys. 344:257–306 [Google Scholar]
  100. Lennard-Jones JE. 100.  1931. Cohesion. Proc. Phys. Soc. 43:461–82 [Google Scholar]
  101. Wang SC. 101.  1927. Die gegenseitige Einwirkung zweier Wasserstoffatome. Phys. Zeit. 28:663–66 [Google Scholar]
  102. Eisenschitz R, London F. 102.  1930. Über das Verhältnis der van der Waalsschen Kräfte zu den Homöopolaren Bindungskräften. Zeit. f. Phys. 60:491–527 [Google Scholar]
  103. London F. 103.  1930. Uber einige Eigenschaften und Anwendungen der Molekularkräfte. Zeit. Phys. Chem. B 11:222–51 [Google Scholar]
  104. Pitzer KS, Lippman DZ, Curl RF, Huggins CM, Petersen DE. 104.  1955. The volumetric and thermodynamic properties of fluids. II. Compressibility factor, vapor pressure and entropy of vaporization. J. Am. Chem. Soc. 77:3433–40 [Google Scholar]
  105. Prausnitz JM, Lichtenthaler RN, Gomes de Azevedo E. 105.  1998. Molecular Thermodynamics of Fluid-Phase Equilibria. Upper Saddle River, NJ: Prentice Hall, 3rd ed..
  106. Avendaño C, Lafitte T, Adjiman CS, Galindo A, Müller EA, Jackson G. 106.  2013. SAFT-γ force field for the simulation of molecular fluids: 2. Coarse-grained models of greenhouse gases, refrigerants, and long alkanes. J. Phys. Chem. B 117:2717–33The full set of expressions required to program the SAFT-VR Mie EoS is detailed in the appendix of this paper. These equations constitute a simplified version of SAFT-γ applicable to homonuclear tangent chain fluids. [Google Scholar]
  107. Ramrattan N. 107.  2013. Simulation and theoretical perspectives of the phase behaviour of solids, liquids and gases using the mie family of intermolecular potentials. PhD Thesis, Imp. Coll. London [Google Scholar]
  108. Lobanova O, Avendaño C, Lafitte T, Jackson G, Müller EA. 108.  2014. SAFT-γ force field for the simulation of molecular fluids. 4. A single-site coarse grained model of water for application over a wide temperature range. Mol. Phys. manuscript submitted
  109. Lafitte T, Avendaño C, Papaioannou V, Galindo A, Adjiman CS. 109.  et al. 2012. SAFT-γ force field for the simulation of molecular fluids: 3. Coarse-grained models of benzene and hetero-group models of n-decylbenzene. Mol. Phys. 110:1189–203 [Google Scholar]
  110. Rahman S, Lobanova O, Correia-Braga C, Raptis V, Müller EA. 110.  et al. 2014. SAFT-γ force field for the simulation of molecular fluids. 5. Hetero-group coarse-grained models of linear alkanes and the importance of intra-molecular interactions. J. Phys. Chem. B. manuscript submitted
  111. Nath SK, Escobedo FA, de Pablo JJ. 111.  1998. On the simulation of vapor-liquid equilibria for alkanes. J. Chem. Phys. 108:9905–11 [Google Scholar]
  112. Mejía A, Cartes M, Segura H, Müller EA. 112.  2014. A combined experimental and molecular approach for describing the interfacial properties of carbon dioxide + decane and carbon dioxide + eicosane mixtures. J. Chem. Eng. Data manuscript submitted
  113. Lobanova O, Herdes C, Müller EA, Jackson G. 113.  2014. SAFT-γ force field for the simulation of molecular fluids. 6. Coarse-grained models for aqueous solutions of alkyl polyoxyethylene nonionic surfactants. J. Phys. Chem. B. manuscript submitted
  114. Rosen MJ, Kunjappu JT. 114.  2012. Surfactants and Interfacial Phenomena. Hoboken, NJ: Wiley-Blackwell, 4th ed..
  115. Müller EA, Mejía A. 115.  2011. Comparison of united-atom potentials for the simulation of vapor–liquid equilibria and interfacial properties of long-chain n-alkanes up to n-C100. J. Phys. Chem. B 115:12822–34 [Google Scholar]
  116. Morgado P, Lewis JB, Laginhas CMC, Martins FLG, McCabe C. 116.  et al. 2011. Systems involving hydrogenated and fluorinated chains: volumetric properties of perfluoroalkanes and perfluoroalkylalkane surfactants J. Phys. Chem. B 115:15013–23 [Google Scholar]
  117. Morgado P. 117.  2011. Semifluorinated alkanes – structure – properties relations. PhD Thesis, Inst. Super. Téc., Lisboa, Portugal
  118. Takenouchi S, Kennedy J. 118.  1964. The binary system H2O-CO2 at high temperatures and pressures. Am. J. Sci. 262:1055–74 [Google Scholar]
  119. Nagarajan N, Robinson RL Jr. 119.  1986. Equilibrium phase compositions, phase densities, and interfacial-tensions for CO2 + hydrocarbon systems. 2. CO2 + n-decane. J. Chem. Eng. Data 31:168–71 [Google Scholar]
  120. Shaver RD, Robinson RL Jr, Gasem KAM. 120.  2001. An automated apparatus for equilibrium phase compositions, densities, and interfacial tensions: data for carbon dioxide plus decane. Fluid Phase Equilib. 179:43–66 [Google Scholar]
  121. Müller EA, Mejía A. 121.  2009. Interfacial properties of selected binary mixtures containing n-alkanes. Fluid Phase Equilib. 282:68–81 [Google Scholar]
  122. Stubenrauch C, Burauer S, Strey R, Schmidt C. 122.  2004. A new approach to lamellar phases (Lα) in water—non-ionic surfactant systems. Liq. Cryst. 31:39–53 [Google Scholar]
  123. Mejía A, Herdes C, Müller EA. 123.  2014. Force fields for coarse-grained molecular simulations from a corresponding states correlation. Ind. Eng. Chem. Res. 53:4131–41 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-061312-103314
Loading
/content/journals/10.1146/annurev-chembioeng-061312-103314
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error