1932

Abstract

After decades of research and development on fabrication of efficient light-emitting diodes (LEDs) throughout the visible spectrum, LED-based lighting has reached unparalleled performance with respect to energy efficiency and has become the light source for virtually all new lighting products being designed today. The development of the core light sources and their subsequent integration into lighting systems continue to present unique challenges and opportunities for product designers. We review these systems and the current development status, as well as provide context for the trends in solid state lighting that are leading to the development of value-added lighting solutions that extend the domain of lighting beyond light generation, into fields as diverse as communications, healthcare, and agricultural production.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-080615-034625
2016-06-07
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/7/1/annurev-chembioeng-080615-034625.html?itemId=/content/journals/10.1146/annurev-chembioeng-080615-034625&mimeType=html&fmt=ahah

Literature Cited

  1. Holonyak N Jr, Bevaqua SF. 1.  1962. Coherent (visible) light emission from Ga(As1−xPx) junctions. Appl. Phys. Lett. 1:82–83 [Google Scholar]
  2. Groves WO, Herzog AJ, Craford MG. 2.  1971. The effect of nitrogen doping on GaAs1−xPx electroluminescent diodes. Appl. Phys. Lett. 19:184–86 [Google Scholar]
  3. Craford MG, Shaw RW, Groves WO, Herzog AJ. 3.  1972. Radiative recombination mechanisms in GaAsP diodes with and without nitrogen doping. J. Appl. Phys. 43:4075–83 [Google Scholar]
  4. Amano H, Sawaki N, Akasaki I, Toyoda Y. 4.  1986. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48:353 [Google Scholar]
  5. Nakamura S. 5.  1991. GaN growth using GaN buffer layer. Jpn. J. Appl. Phys. 30:L1705 [Google Scholar]
  6. Amano H, Kito M, Hiramatsu K, Akasaki I. 6.  1989. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn. J. Appl. Phys. 28:L2112 [Google Scholar]
  7. Nakamura S, Mukai T, Senoh M, Iwasa N. 7.  1992. Thermal annealing effects on p-type Mg-doped GaN films. Jpn. J. Appl. Phys. 31:L139 [Google Scholar]
  8. Nakamura S, Senoh M, Mukai T. 8.  1993. High-power InGaN/GaN double-heterostructure violet light emitting diodes. Appl. Phys. Lett. 62:2390–92 [Google Scholar]
  9. Nakamura S, Senoh M, Iwasa N, Nagahama S-I. 9.  1995. High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes. Appl. Phys. Lett. 67:1868–70 [Google Scholar]
  10. 10. Nobelprize.org 2014. The Nobel Prize in Physics 2014 Nobelprize.org. Nobel Media AB 2014. Accessed Aug 6 2015. http://www.nobelprize.org/nobel_prizes/physics/laureates/2014/ [Google Scholar]
  11. Krames MR, Bhat J, Collins D, Gardner NF, Gotz W. 11.  et al. 2002. High-power III-nitride emitters for solid-state lighting. phys. stat. sol. a 192:2237–45 [Google Scholar]
  12. Fujii T, Gao Y, Sharma R, Hu EL, DenBaars SP, Nakamura S. 12.  2004. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett 84:855–57 [Google Scholar]
  13. Shchekin OB, Epler JE, Trottier TA, Margalith T, Steigerwald DA. 13.  et al. 2006. High performance thin-film flip-chip InGaN–GaN light-emitting diodes. Appl. Phys. Lett 89:071109 [Google Scholar]
  14. Krames MR, Ochiai-Holcomb M, Höfler GE, Carter-Coman C, Chen EI. 14.  et al. 1999. High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency. Appl. Phys. Lett. 75:2365–67 [Google Scholar]
  15. Cich MJ, Aldaz RI, Chakraborty A, David A, Grundmann MJ. 15.  et al. 2012. Bulk GaN based violet light-emitting diodes with high efficiency at very high current density. Appl. Phys. Lett. 101:223509 [Google Scholar]
  16. Nakamura S, Fasol G. 16.  1997. The Blue Laser Diode: The Complete Story Heidelberg: Springer-Verlag [Google Scholar]
  17. Bardsley N, Bland S, Pattison L, Pattison M, Strober K. 17.  et al. 2014. Solid-state lighting research and development multi-year program plan Rep. DOE/EE1089, April, Dep. Energy, Washington, DC [Google Scholar]
  18. David A, Hurni CA, Aldaz RI, Cich MJ, Ellis B. 18.  et al. 2014. High light extraction efficiency in bulk-GaN based volumetric violet light-emitting diodes. Appl. Phys. Lett. 105:231111 [Google Scholar]
  19. Hurni CA, David A, Cich MJ, Aldaz RI, Ellis B. 19.  et al. 2015. Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation. Appl. Phys. Lett. 106:031101 [Google Scholar]
  20. 20. US Dep. Energy 2015. DOE announces selections for SSL core technology research (round 10), product development (round 10), and U.S. manufacturing (round 6) funding opportunities. Accessed Aug. 17. http://energy.gov/eere/ssl/doe-announces-selections-ssl-core-technology-research-round-10-product-development-round-10 [Google Scholar]
  21. Pust P, Weiler V, Hecht C, Tücks A, Wochnik AS. 21.  et al. 2014. Narrow-band red-emitting Sr [LiAl3N4]: Eu2+ as a next-generation LED-phosphor material. Nat. Mater. 13:891–96 [Google Scholar]
  22. Brinkley SE, Pfaff N, Denault KA, Zhang Z, Hintzen HT. 22.  et al. 2011. Robust thermal performance of Sr2Si5N8:Eu2+: an efficient red emitting phosphor for light emitting diode based white lighting. Appl. Phys. Lett. 99:241106 [Google Scholar]
  23. 23. Pac. Light Technol 2014. Quantum dots in solid state lighting. Accessed Aug. 17, 2015. http://www.pacificlighttech.com/quantum-dots-in-ssl/ [Google Scholar]
  24. Shen YC, Mueller GO, Watanabe S, Gardner NF, Munkholm A, Krames MR. 24.  2007. Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91:141101 [Google Scholar]
  25. Kim MH, Schubert MF, Dai Q, Kim JK, Schubert EF. 25.  et al. 2007. Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91:183507 [Google Scholar]
  26. Feezell DF, Speck JS, DenBaars SP, Nakamura S. 26.  2013. Semipolar 2021 InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting. J. Disp. Technol. 9:4190–98 [Google Scholar]
  27. Nakamura S, Krames MR. 27.  2013. History of gallium-nitride-based light-emitting diodes for illumination. Proc. IEEE 101:102211–20 [Google Scholar]
  28. Piprek J. 28.  2010. Efficiency droop in nitride-based light-emitting diodes. phys. stat. sol. a 207:102217–25 [Google Scholar]
  29. Li Y, You S, Zhu M, Zhao L, Hou W. 29.  et al. 2011. Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire. Appl. Phys. Lett. 98:151102 [Google Scholar]
  30. Detchprohm T, Zhu M, Li Y, Zhao L, You S. 30.  et al. 2010. Wavelength-stable cyan and green light emitting diodes on nonpolar m-plane GaN bulk substrates. Appl. Phys. Lett. 96:051101 [Google Scholar]
  31. 31. Philips Corp 2015. Philips' fourth quarter and annual results 2014 Accessed Aug. 11, 2015. http://www.newscenter.philips.com/main/corpcomms/news/press/2015/philips-fourth-quarter-results-2014.wpd#.VcpkaflVhBc [Google Scholar]
  32. Yamada M, Stober K. 32.  2015. Adoption of light-emitting diodes in common lighting applications Rep. DOE/EE-1236, Dep. Energy, Washington, DC [Google Scholar]
  33. 33. Edison 2015. Exclusive: GE issues HID, incandescent, fluorescent & induction luminaire discontinuation notice—effective January 1, 2016 Accessed Aug. 21, 2015. http://www.edisonreport.net/lighting-industry-news/exclusive-ge-issues-hid-incandescent-fluorescent-induction-luminaire-discontinuation-notice-effective-january-1-2016/ [Google Scholar]
  34. 34. LEDs Magazine 2010. Philips unveils world's first LED replacement for most common household light bulb. LEDs Magazine May 14. http://www.ledsmagazine.com/ugc/2010/05/philips-unveils-world-s-first-led-replacement-for-most-common-household-light-bulb.html [Google Scholar]
  35. 35. Cree 2013. Cree introduces the biggest thing since the light bulb Press Release, March 5. http://www.cree.com/News-and-Events/Cree-News/Press-Releases/2013/March/Bulbs [Google Scholar]
  36. Janeway K. 36.  2014. New Philips LED is slimmer, lighter, and cheaper: Sleek Philips SlimStyle bulb shines bright in early tests. Consumer Reports March 18. http://www.consumerreports.org/cro/news/2014/03/new-philips-led-is-slimmer-lighter-and-cheaper/index.htm [Google Scholar]
  37. 37. Cree 2014. America's best-selling LED bulb just got better: new Cree LED bulb designed to deliver superior light at new low price Press Release, Oct. 28. http://www.cree.com/News-and-Events/Cree-News/Press-Releases/2014/October/New-Cree-LED-Bulb [Google Scholar]
  38. 38. Cree 2012. Cree aeroblades luminaires combine cutting-edge technology with high design Press Release, April 4. http://www.cree.com/News-and-Events/Cree-News/Press-Releases/2012/April/120404-Aeroblades [Google Scholar]
  39. 39. Cree 2013. Cree introduces industry's first $99 LED street light as a direct replacement for residential street lights. Press Release, Aug. 6. http://www.cree.com/News-and-Events/Cree-News/Press-Releases/2013/August/XSPR [Google Scholar]
  40. Crist R. 40.  2015. GE Bright Stick LED review cNet, June 2. http://www.cnet.com/products/ge-bright-stik-led-3-pack/ [Google Scholar]
  41. Mims C. 41.  2014. Why I'm not in a hurry for a ‘smart home’: the complexity added by automation outweighs the convenience. Wall Street Journal June 22. http://www.wsj.com/articles/why-im-not-in-a-hurry-for-a-smart-home-1403479741 [Google Scholar]
  42. Brown M. 42.  2014. The Zuli Smartplug shrinks geo-fencing to room-fencing, for precision control of your home lighting system. TechHive Oct. 8. http://www.techhive.com/article/2692429/the-zuli-smartplug-a-surprising-new-take-on-lighting-control-in-the-smart-home.html [Google Scholar]
  43. Offermans SAM, van Essen HA, Eggen JH. 43.  2013. Exploring a hybrid control approach for enhanced user experience of interactive lighting. Proc. 27th Int. BCS Human Comput. Interact. Conf. (HCl 2013), Sept. 9–13, Brunel Univ., UK [Google Scholar]
  44. 44. Philips Lighting 2015. BoldPlay: fearless innovation in architectural lighting L0378, Philips Lighting Langley, Can.: Accessed Aug 4, 2015. http://www.lightingproducts.philips.com/Documents/webdb2/Ledalite/pdf/BoldPlay.pdf [Google Scholar]
  45. Clark T. 45.  2011. Straight talk about sustainable practices for indoor, general purpose lighting Press Release, Finelight, Union City, CA. http://www.finelite.com/download_files/NEWS_AND_PRESS/SJSU_sustainability%20talk_021811.pdf [Google Scholar]
  46. Lenaghan N. 46.  2014. Bright idea saves energy. Financial Review Feb. 18 [Google Scholar]
  47. Bergman A. 47.  2015. e-Sense organic inspired by nature. Innovator 6:57 [Google Scholar]
  48. Hodges D. 48.  2014. The location-light revolution. WIRED Innovation Insights Dec. 18. http://insights.wired.com/profiles/blogs/the-location-light-revolution#axzz3Oq7loaYc [Google Scholar]
  49. Partyka J. 49.  2014. Who will win at indoor location. GPS World July 28. http://gpsworld.com/who-will-win-at-indoor-location/ [Google Scholar]
  50. OSRAM SYLVANIA. 50.  2015. Introducing OSRAM Omnipoint—a wireless, array-based LED lighting solution YouTube video, 3:14. Posted by OSRAM SYLVANIA, May 5. https://www.youtube.com/watch?v=ueQ-1OtQ80A [Google Scholar]
  51. Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G. 51.  et al. 2001. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J. Neurosci. 21:166405–12 [Google Scholar]
  52. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. 52.  1998. Melanopsin: an opsin in melanophores, brain, and eye. PNAS 95:340–45 [Google Scholar]
  53. Provencio I, Rodriguez IR, Jiang G, Par Hayes W, Moreira EF, Rollag MD. 53.  2000. A novel human opsin in the inner retina. J. Neurosci. 20:2600–5 [Google Scholar]
  54. Barinaga M. 54.  2002. How the brain's clock gets daily enlightenment. Science 295:5557955–57 [Google Scholar]
  55. Brainard GC, Hanifin JP, Greeson J, Byrne B, Glickman G. 55.  et al. 2001. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J. Neurosci. 21:166405–12 [Google Scholar]
  56. McArthur AJ, Lewy AJ, Sack RL. 56.  1996. Non-24-hour sleep-wake syndrome in a sighted man: circadian rhythm studies and efficacy of melatonin treatment. Sleep 19:7544–53 [Google Scholar]
  57. Wahnschaffe A, Haedel S, Rodenbeck A, Stoll C, Rudolph H. 57.  et al. 2013. Out of the lab and into the bathroom: evening short-term exposure to conventional light suppresses melatonin and increases alertness perception. Int. J. Mol. Sci. 14:2573–89 [Google Scholar]
  58. DiLaura DL. 58.  2011. Illuminating Engineering Society Lighting Handbook: Reference & Application New York: Illum. Eng. Soc. N. Am, 10th ed.. [Google Scholar]
  59. Zadeh RS, Shepley MM, Williams G, Chung SSE. 59.  2014. The impact of windows and daylight on acute-care nurses' physiological, psychological, and behavior health. Health Environ. Res. Des. J. 7:435–61 [Google Scholar]
  60. Beauchemin KM, Hays P. 60.  1998. Dying in the dark: sunshine, gender and outcomes in myocardial infarction. J. R. Soc. Med. 91:7352–54 [Google Scholar]
  61. Walch JM, Rabin BS, Day R, Williams JN, Choi K, Kang JD. 61.  2005. The effect of sunlight on postoperative analgesic medication use: a prospective study of patients undergoing spinal surgery. Psychosom. Med. 67:1156–63 [Google Scholar]
  62. Boubekri M, Cheung IN, Reid KJ, Wang CH, Zee PC. 62.  2014. Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study. J. Clin. Sleep Med. 10:6603–11 [Google Scholar]
  63. Li Q, Kubota C. 63.  2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 67:59–64 [Google Scholar]
  64. Johkan M, Shoji K, Goto F, Hahida S, Yoshihara T. 64.  2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809–14 [Google Scholar]
  65. Li H, Tang C, Xu Z, Liu X, Han X. 65.  2012. Effects of different light sources on the growth of non-heading Chinese cabbage. J. Agric. Sci. 4:262–73 [Google Scholar]
  66. Samuoliene G, Brazaityte A, Sirtautas R, Novickovas A, Duchovskis P. 66.  2012. The effect of supplementary LED lighting on the antioxidant and nutritional properties of lettuce. Acta Hortic. 952:835–41 [Google Scholar]
  67. Samuoliene G, Sirtautas R, Brazaityte A, Duchovskis P. 67.  2012. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 134:1494–99 [Google Scholar]
  68. Stutte GW, Edney S, Skerritt T. 68.  2009. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience 44:79–82 [Google Scholar]
  69. Samuoliene G, Urbonaviciute A, Duchovskis P, Bliznikas Z, Vitta P, Zukauskas A. 69.  2009. Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator. HortScience 44:1857–60 [Google Scholar]
  70. Lu N, Maruo T, Johkan M, Hohjo M, Tsukakoshi S. 70.  et al. 2012. Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density. Environ. Control Biol. 50:63–74 [Google Scholar]
  71. Spivock R. 71.  2015. Horticultural lighting Presented at DOE Solid State Lighting R&D Workshop, Jan. 27–29, San Francisco, CA [Google Scholar]
  72. Jokinen K, Sarkka LE, Nakkila J. 72.  2012. Improving sweet pepper productivity by LED interlighting. Acta Hortic. 956:59–66 [Google Scholar]
  73. Lewis PD, Morris TR. 73.  2000. Poultry and colored light. Worlds Poult. Sci. J. 56:3189–207 [Google Scholar]
  74. Blatchford RA, Klasing KC, Shivaprasad HL, Wakenell PS, Archer GS, Mench JA. 74.  2008. The effect of light intensity on the behavior, eye and leg health, and immune function of broiler chickens. Poult. Sci. 88:120–28 [Google Scholar]
  75. Long H, Zhao Y, Wang T, Ning Z, Xin H. 75.  2016. Effect of light-emitting diode versus fluorescent lighting on laying hens in aviary hen houses: part 1—operational characteristics of lights and production traits of hens. Poult. Sci. 95:11–11 [Google Scholar]
  76. Rich C, Longcore T. 76.  2006. Ecological Consequences of Artificial Night Lighting Washington, DC: Island [Google Scholar]
  77. Lorne JK, Salmon M. 77.  2007. Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean. Endanger. Species Res. 3:23–30 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-080615-034625
Loading
/content/journals/10.1146/annurev-chembioeng-080615-034625
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error