1932

Abstract

Irreversible electroporation (IRE) is a nonthermally mediated tissue ablation modality that makes use of short pulsed electric fields to destroy cancerous lesions in situ. In the past two decades, IRE has established itself not only as an effective means to ablate small, unresectable tumor masses but also as a tool particularly qualified to modulate the tumor microenvironment in a way that dismantles pathways of cancer immunosuppression and permits the development of a systemic antitumor immune response. However, despite its immune-stimulating tendencies, for most cancers conventional IRE alone is insufficient to establish an immune response robust enough to fully eliminate disseminated disease and prevent recurrence. Here, we describe the current understanding of the histological and immunological effects of IRE, as well as recent efforts to optimize IRE parameters and develop rational combination therapies to increase the efficacy of the resulting immune response.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-082223-054259
2025-06-09
2025-06-17
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/16/1/annurev-chembioeng-082223-054259.html?itemId=/content/journals/10.1146/annurev-chembioeng-082223-054259&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Justesen TF, Orhan A, Raskov H, Nolsoe C, Gögenur I. 2022.. Electroporation and immunotherapy—unleashing the abscopal effect. . Cancers 14:(12):2876
    [Crossref] [Google Scholar]
  2. 2.
    He C, Wang J, Zhang Y, Lin X, Li S. 2020.. Irreversible electroporation after induction chemotherapy versus chemotherapy alone for patients with locally advanced pancreatic cancer: a propensity score matching analysis. . Pancreatology 20:(3):47784
    [Crossref] [Google Scholar]
  3. 3.
    Leen E, Picard J, Stebbing J, Abel M, Dhillon T, Wasan H. 2018.. Percutaneous irreversible electroporation with systemic treatment for locally advanced pancreatic adenocarcinoma. . J. Gastrointest. Oncol. 9:(2):27581
    [Crossref] [Google Scholar]
  4. 4.
    Ruarus AH, Vroomen LGPH, Geboers B, van Veldhuisen E, Puijk RS, et al. 2020.. Percutaneous irreversible electroporation in locally advanced and recurrent pancreatic cancer (PANFIRE-2): a multicenter, prospective, single-arm, phase II study. . Radiology 294:(1):21220
    [Crossref] [Google Scholar]
  5. 5.
    Sugimoto K, Kakimi K, Takeuchi H, Fujieda N, Saito K, et al. 2019.. Irreversible electroporation versus radiofrequency ablation: comparison of systemic immune responses in patients with hepatocellular carcinoma. . J. Vasc. Interv. Radiol. 30:(6):84553.e6
    [Crossref] [Google Scholar]
  6. 6.
    Timmer FEF, Geboers B, Ruarus AH, Vroomen LGPH, Schouten EAC, et al. 2024.. MRI-guided stereotactic ablative body radiotherapy versus CT-guided percutaneous irreversible electroporation for locally advanced pancreatic cancer (CROSSFIRE): a single-centre, open-label, randomised phase 2 trial. . Lancet Gastroenterol. Hepatol. 9:(5):44859
    [Crossref] [Google Scholar]
  7. 7.
    Wada T, Sugimoto K, Sakamaki K, Takahashi H, Kakegawa T, et al. 2023.. Comparisons of radiofrequency ablation, microwave ablation, and irreversible electroporation by using propensity score analysis for early stage hepatocellular carcinoma. . Cancers 15:(3):732
    [Crossref] [Google Scholar]
  8. 8.
    Geboers B, Scheltema MJ, Jung J, Bakker J, Timmer FEF, et al. 2025.. Irreversible electroporation of localised prostate cancer downregulates immune suppression and induces systemic anti-tumour T-cell activation—IRE-IMMUNO study. . BJU Int. 135:(2):31928
    [Crossref] [Google Scholar]
  9. 9.
    Rems L, Tang X, Zhao F, Pérez-Conesa S, Testa I, Delemotte L. 2022.. Identification of electroporation sites in the complex lipid organization of the plasma membrane. . eLife 11::e74773
    [Crossref] [Google Scholar]
  10. 10.
    Kotnik T, Kramar P, Pucihar G, Miklavcic D, Tarek M. 2012.. Cell membrane electroporation—part 1: the phenomenon. . IEEE Electr. Insul. Mag. 28:(5):1423
    [Crossref] [Google Scholar]
  11. 11.
    Brock RM, Beitel-White N, Davalos RV, Allen IC. 2020.. Starting a fire without flame: the induction of cell death and inflammation in electroporation-based tumor ablation strategies. . Front. Oncol. 10::1235
    [Crossref] [Google Scholar]
  12. 12.
    Miller L, Leor J, Rubinsky B. 2005.. Cancer cells ablation with irreversible electroporation. . Technol. Cancer Res. Treat. 4:(6):699705
    [Crossref] [Google Scholar]
  13. 13.
    Rubinsky B, Onik G, Mikus P. 2007.. Irreversible electroporation: a new ablation modality—clinical implications. . Technol. Cancer Res. Treat. 6:(1):3748
    [Crossref] [Google Scholar]
  14. 14.
    Bulvik BE, Rozenblum N, Gourevich S, Ahmed M, Andriyanov AV, et al. 2016.. Irreversible electroporation versus radiofrequency ablation: a comparison of local and systemic effects in a small-animal model. . Radiology 280:(2):41324
    [Crossref] [Google Scholar]
  15. 15.
    Arena CB, Sano MB, Rossmeisl JH, Caldwell JL, Garcia PA. 2011.. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. . Biomed. Eng. Online 10::102
    [Crossref] [Google Scholar]
  16. 16.
    Ruiz-Fernández AR, Campos L, Gutierrez-Maldonado SE, Núñez G, Villanelo F, Perez-Acle T. 2022.. Nanosecond pulsed electric field (nsPEF): opening the biotechnological Pandora's box. . Int. J. Mol. Sci. 23:(11):6158
    [Crossref] [Google Scholar]
  17. 17.
    Graybill PM, Jana A, Kapania RK, Nain AS, Davalos RV. 2021.. Single cell forces after electroporation. . ACS Nano 15:(2):255468
    [Crossref] [Google Scholar]
  18. 18.
    Szlasa W, Kiełbik A, Szewczy A, Rembiałkowska N, Novickij V, et al. 2021.. Oxidative effects during irreversible electroporation of melanoma cells—in vitro study. . Molecules 26:(1):154
    [Crossref] [Google Scholar]
  19. 19.
    Szlasa W, Sauer N, Baczyńska D, Ziętek M, Haczkiewicz-Leśniak K, et al. 2024.. Pulsed electric field induces exocytosis and overexpression of MAGE antigens in melanoma. . Sci. Rep. 14::12546
    [Crossref] [Google Scholar]
  20. 20.
    Graybill PM, Davalos RV. 2020.. Cytoskeletal disruption after electroporation and its significance to pulsed electric field therapies. . Cancers 12:(5):1132
    [Crossref] [Google Scholar]
  21. 21.
    Imran KM, Brock RM, Beitel-White N, Powar M, Orr K, et al. 2024.. Irreversible electroporation promotes a pro-inflammatory tumor microenvironment and anti-tumor immunity in a mouse pancreatic cancer model. . Front. Immunol. 15::1352821
    [Crossref] [Google Scholar]
  22. 22.
    Brock RM, Beitel-White N, Coutermarsh-Ott S, Grider DJ, Lorenzo MF, et al. 2020.. Patient derived xenografts expand human primary pancreatic tumor tissue availability for ex vivo irreversible electroporation testing. . Front. Oncol. 10::843
    [Crossref] [Google Scholar]
  23. 23.
    Wang Y, Jiang T, Xie L, Wang H, Zhao J, et al. 2022.. Effect of pulsed field ablation on solid tumor cells and microenvironment. . Front. Oncol. 12::899722
    [Crossref] [Google Scholar]
  24. 24.
    Li Q, Ren F, Zhang Y, Chang P, Wang Y, et al. 2020.. Acute and subacute effects of irreversible electroporation on normal common bile ducts in a rabbit model. . J. Hepato-Biliary-Pancreat. Sci. 27:(10):77684
    [Crossref] [Google Scholar]
  25. 25.
    Mercadal B, Beitel-White N, Aycock KN, Castellví Q, Davalos RV, Ivorra A. 2020.. Dynamics of cell death after conventional IRE and H-FIRE treatments. . Ann. Biomed. Eng. 48:(5):145162
    [Crossref] [Google Scholar]
  26. 26.
    Ben-David E, Appelbaum L, Sosna J, Nissenbaum I, Goldberg SN. 2012.. Characterization of irreversible electroporation ablation in in vivo porcine liver. . Am. J. Roentgenol. 198:(1):W62W68
    [Crossref] [Google Scholar]
  27. 27.
    Rubinsky L, Guenther E, Mikus P, Stehling M, Rubinsky B. 2016.. Electrolytic effects during tissue ablation by electroporation. . Technol. Cancer Res. Treat. 15:(5):NP95NP103
    [Crossref] [Google Scholar]
  28. 28.
    Dai Z, Wang Z, Lei K, Liao J, Peng Z, et al. 2021.. Irreversible electroporation induces CD8+ T cell immune response against post-ablation hepatocellular carcinoma growth. . Cancer Lett. 503::110
    [Crossref] [Google Scholar]
  29. 29.
    Prevc A, Bedina Zavec A, Cemazar M, Kloboves-Prevodnik V, Stimac M, et al. 2016.. Bystander effect induced by electroporation is possibly mediated by microvesicles and dependent on pulse amplitude, repetition frequency and cell type. . J. Membr. Biol. 249:(5):70311
    [Crossref] [Google Scholar]
  30. 30.
    Zhang Y, Lyu C, Liu Y, Lv Y, Chang TT, Rubinsky B. 2018.. Molecular and histological study on the effects of non-thermal irreversible electroporation on the liver. . Biochem. Biophys. Res. Commun. 500:(3):66570
    [Crossref] [Google Scholar]
  31. 31.
    Razakamanantso L, Rajagopalan NR, Kimura Y, Sabbah M, Thomassin-Naggara I, et al. 2023.. Acute ATP loss during irreversible electroporation mediates caspase independent cell death. . Bioelectrochemistry 150::108355
    [Crossref] [Google Scholar]
  32. 32.
    Ringel-Scaia VM, Beitel-White N, Lorenzo MF, Brock RM, Huie KE, et al. 2019.. High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity. . eBioMedicine 44::11225
    [Crossref] [Google Scholar]
  33. 33.
    Yu S, Chen L, Song K, Shu T, Fang Z, et al. 2022.. Irreversible electroporation mediates glioma apoptosis via upregulation of AP-1 and Bim: transcriptome evidence. . Brain Sci. 12:(11):1465
    [Crossref] [Google Scholar]
  34. 34.
    López-Alonso B, Hernáez A, Sarnago H, Naval A, Güemes A, et al. 2019.. Histopathological and ultrastructural changes after electroporation in pig liver using parallel-plate electrodes and high-performance generator. . Sci. Rep. 9::2647
    [Crossref] [Google Scholar]
  35. 35.
    Beitel-White N, Martin RCG, Li Y, Brock RM, Allen IC, Davalos RV. 2019.. Real-time prediction of patient immune cell modulation during irreversible electroporation therapy. . Sci. Rep. 9::17739
    [Crossref] [Google Scholar]
  36. 36.
    Buijs M, de Bruin DM, Wagstaff PG, Zondervan P, Scheltema MJ, et al. 2021.. MRI and CT in the follow-up after irreversible electroporation of small renal masses. . Diagn. Interv. Radiol. 27:(5):65463
    [Crossref] [Google Scholar]
  37. 37.
    Timmer FEF, Geboers B, Scheffer HJ, Bakker J, Ruarus AH, et al. 2023.. Tissue resistance decrease during irreversible electroporation of pancreatic cancer as a biomarker for the adaptive immune response and survival. . J. Vasc. Interv. Radiol. 34:(10):177784.e4
    [Crossref] [Google Scholar]
  38. 38.
    Pandit H, Hong YK, Li Y, Rostas J, Pulliam Z, et al. 2019.. Evaluating the regulatory immunomodulation effect of irreversible electroporation (IRE) in pancreatic adenocarcinoma. . Ann. Surg. Oncol. 26:(3):8006
    [Crossref] [Google Scholar]
  39. 39.
    Jeon SM, Davaa E, Jiang Y, Jenjob R, Truong NT, et al. 2023.. Assessment of hepatic lesions after non-thermal tumor ablation by irreversible electroporation in a pig model. . Technol. Cancer Res. Treat. 22::15330338221147122
    [Crossref] [Google Scholar]
  40. 40.
    Li X, Xu K, Li W, Qiu X, Ma B, et al. 2012.. Immunologic response to tumor ablation with irreversible electroporation. . PLOS ONE 7:(11):e48749
    [Crossref] [Google Scholar]
  41. 41.
    Fujimori M, Kimura Y, Ueshima E, Dupuy DE, Adusumilli PS, et al. 2021.. Lung ablation with irreversible electroporation promotes immune cell infiltration by sparing extracellular matrix proteins and vasculature: implications for immunotherapy. . Bioelectricity 3:(3):20414
    [Crossref] [Google Scholar]
  42. 42.
    Chai W, Xie L, Zhao Q, Cheng C, Tian G, et al. 2020.. Ultrasound and contrast-enhanced ultrasound findings after percutaneous irreversible electroporation of hepatic malignant tumors. . Ultrasound Med. Biol. 46:(3):62029
    [Crossref] [Google Scholar]
  43. 43.
    Golberg A, Bruinsma BG, Uygun BE, Yarmush ML. 2015.. Tissue heterogeneity in structure and conductivity contribute to cell survival during irreversible electroporation ablation by “electric field sinks. .” Sci. Rep. 5::8485
    [Crossref] [Google Scholar]
  44. 44.
    Al-Sakere B, Bernat C, André F, Connault E, Opolon P, et al. 2007.. Study of the immunological response to tumor ablation with irreversible electroporation. . Technol. Cancer Res. Treat. 6:(4):3015
    [Crossref] [Google Scholar]
  45. 45.
    Alinezhadbalalami N, Graybill PM, Imran KM, Verbridge SS, Allen IC, Davalos RV. 2021.. Generation of tumor-activated T cells using electroporation. . Bioelectrochemistry 142::107886
    [Crossref] [Google Scholar]
  46. 46.
    Shao Q, O'Flanagan S, Lam T, Roy P, Pelaez F, et al. 2019.. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions. . Int. J. Hyperth. 36:(1):13038
    [Crossref] [Google Scholar]
  47. 47.
    He C, Huang X, Zhang Y, Lin X, Li S. 2020.. T-cell activation and immune memory enhancement induced by irreversible electroporation in pancreatic cancer. . Clin. Transl. Med. 10:(2):e39
    [Crossref] [Google Scholar]
  48. 48.
    O'Neill CH, Tan M, Yan J, Li Y, Martin RCG. 2022.. Perioperative systemic immunophenotype following irreversible electroporation (IRE) predicts recurrence. . Am. J. Cancer Res. 12:(1):16575
    [Google Scholar]
  49. 49.
    Guo X, Du F, Liu Q, Guo Y, Wang Q, et al. 2021.. Immunological effect of irreversible electroporation on hepatocellular carcinoma. . BMC Cancer 21::433
    [Crossref] [Google Scholar]
  50. 50.
    Lopez-Ichikawa M, Vu NK, Nijagal A, Rubinsky B, Chang TT. 2021.. Neutrophils are important for the development of pro-reparative macrophages after irreversible electroporation of the liver in mice. . Sci. Rep. 11::14986
    [Crossref] [Google Scholar]
  51. 51.
    Kimura Y, Fujimori M, Rajagopalan NR, Poudel K, Kim K, et al. 2023.. Macrophage activity at the site of tumor ablation can promote murine urothelial cancer via transforming growth factor-Β1. . Front. Immunol. 14::1070196
    [Crossref] [Google Scholar]
  52. 52.
    He C, Sun S, Zhang Y, Xie F, Li S. 2021.. The role of irreversible electroporation in promoting M1 macrophage polarization via regulating the HMGB1-RAGE-MAPK axis in pancreatic cancer. . Oncoimmunology 10:(1):1897295
    [Crossref] [Google Scholar]
  53. 53.
    Campelo SN, Lorenzo MF, Partridge B, Alinezhadbalalami N, Kani Y, et al. 2023.. High-frequency irreversible electroporation improves survival and immune cell infiltration in rodents with malignant gliomas. . Front. Oncol. 13::1171278
    [Crossref] [Google Scholar]
  54. 54.
    Guo S, Burcus NI, Hornef J, Jing Y, Jiang C, et al. 2018.. Nano-pulse stimulation for the treatment of pancreatic cancer and the changes in immune profile. . Cancers 10:(7):217
    [Crossref] [Google Scholar]
  55. 54.
    Qian J, Ding L, Wu Q, Yu X, Li Q, et al. 2024.. Nanosecond pulsed electric field stimulates CD103+ DC accumulation in tumor microenvironment via NK-CD103+ DC crosstalk. . Cancer Lett. 593::216514
    [Crossref] [Google Scholar]
  56. 56.
    White SB, Zhang Z, Chen J, Gogineni VR, Larson AC. 2018.. Early immunologic response of irreversible electroporation versus cryoablation in a rodent model of pancreatic cancer. . J. Vasc. Interv. Radiol. 29:(12):176469
    [Crossref] [Google Scholar]
  57. 57.
    Zhang QW, Guo XX, Zhou Y, Wang QB, Liu Q, et al. 2021.. OX40 agonist combined with irreversible electroporation synergistically eradicates established tumors and drives systemic antitumor immune response in a syngeneic pancreatic cancer model. . Am. J. Cancer Res. 11:(6):2782801
    [Google Scholar]
  58. 58.
    Liu X, Zhuang Y, Huang W, Wu Z, Chen Y, et al. 2023.. Interventional hydrogel microsphere vaccine as an immune amplifier for activated antitumour immunity after ablation therapy. . Nat. Commun. 14::4106
    [Crossref] [Google Scholar]
  59. 59.
    Goswami I, Coutermarsh-Ott S, Morrison RG, Allen IC, Davalos RV, et al. 2017.. Irreversible electroporation inhibits pro-cancer inflammatory signaling in triple negative breast cancer cells. . Bioelectrochemistry 113::4250
    [Crossref] [Google Scholar]
  60. 60.
    Zhao J, Wen X, Tian L, Li T, Xu C, et al. 2019.. Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer. . Nat. Commun. 10::899
    [Crossref] [Google Scholar]
  61. 61.
    Scheffer HJ, Stam AGM, Geboers B, Vroomen LGPH, Ruarus A, et al. 2019.. Irreversible electroporation of locally advanced pancreatic cancer transiently alleviates immune suppression and creates a window for antitumor T cell activation. . OncoImmunology 8:(11):1652532
    [Crossref] [Google Scholar]
  62. 62.
    Polajzer T, Jarm T, Miklavcic D. 2020.. Analysis of damage-associated molecular pattern molecules due to electroporation of cells in vitro. . Radiol. Oncol. 54:(3):31728
    [Crossref] [Google Scholar]
  63. 63.
    Polajžer T, Miklavčič D. 2023.. Immunogenic cell death in electroporation-based therapies depends on pulse waveform characteristics. . Vaccines 11:(6):1036
    [Crossref] [Google Scholar]
  64. 64.
    Kim SH, Kang JM, Park Y, Kim Y, Lim B, Park JH. 2024.. Effects of bipolar irreversible electroporation with different pulse durations in a prostate cancer mouse model. . Sci. Rep. 14::9902
    [Crossref] [Google Scholar]
  65. 65.
    Yun JH, Fang A, Khorshidi F, Habibollahi P, Kutsenko O, et al. 2023.. New developments in image-guided percutaneous irreversible electroporation of solid tumors. . Curr. Oncol. Rep. 25:(11):121326
    [Crossref] [Google Scholar]
  66. 66.
    Sano MB, Arena CB, DeWitt MR, Saur D, Davalos RV. 2014.. In-vitro bipolar nano- and microsecond electro-pulse bursts for irreversible electroporation therapies. . Bioelectrochemistry 100::6979
    [Crossref] [Google Scholar]
  67. 67.
    Kaufman JD, Fesmire CC, Petrella RA, Fogle CA, Xing L, et al. 2020.. High-frequency irreversible electroporation using 5,000-V waveforms to create reproducible 2- and 4-Cm ablation zones—a laboratory investigation using mechanically perfused liver. . J. Vasc. Interv. Radiol. 31:(1):16268.e7
    [Crossref] [Google Scholar]
  68. 68.
    Murphy KR, Aycock KN, Hay AN, Rossmeisl JH, Davalos RV, Dervisis NG. 2022.. High-frequency irreversible electroporation brain tumor ablation: exploring the dynamics of cell death and recovery. . Bioelectrochemistry 144::108001
    [Crossref] [Google Scholar]
  69. 69.
    Hogenes AM, Overduin CG, Slump CH, van Laarhoven CJHM, Fütterer JJ, et al. 2023.. The influence of irreversible electroporation parameters on the size of the ablation zone and thermal effects: a systematic review. . Technol. Cancer Res. Treat. 22::15330338221125003
    [Crossref] [Google Scholar]
  70. 70.
    Gasperetti A, Assis F, Tripathi H, Suzuki M, Gonuguntla A, et al. 2023.. Determinants of acute irreversible electroporation lesion characteristics after pulsed field ablation: the role of voltage, contact, and adipose interference. . EP Europace 25:(9):euad257
    [Crossref] [Google Scholar]
  71. 71.
    Aycock KN, Vadlamani RA, Jacobs EJ, Imran KM, Verbridge SS, et al. 2022.. Experimental and numerical investigation of parameters affecting high-frequency irreversible electroporation for prostate cancer ablation. . J. Biomech. Eng. 144:(6):061003
    [Crossref] [Google Scholar]
  72. 72.
    van den Bos W, Scheffer HJ, Vogel JA, Wagstaff PGK, de Bruin DM, et al. 2016.. Thermal energy during irreversible electroporation and the influence of different ablation parameters. . J. Vasc. Interv. Radiol. 27:(3):43343
    [Crossref] [Google Scholar]
  73. 73.
    Agnass P, Rodermond HM, van Veldhuisen E, Vogel JA, ten Cate R, et al. 2023.. Quantitative analysis of contribution of mild and moderate hyperthermia to thermal ablation and sensitization of irreversible electroporation of pancreatic cancer cells. . J. Therm. Biol. 115::103619
    [Crossref] [Google Scholar]
  74. 74.
    Fesmire CC, Petrella RA, Kaufman JD, Topasna N, Sano MB. 2020.. Irreversible electroporation is a thermally mediated ablation modality for pulses on the order of one microsecond. . Bioelectrochemistry 135::107544
    [Crossref] [Google Scholar]
  75. 75.
    Fesmire CC, Petrella RA, Fogle CA, Gerber DA, Xing L, Sano MB. 2020.. Temperature dependence of high frequency irreversible electroporation evaluated in a 3D tumor model. . Ann. Biomed. Eng. 48:(8):223346
    [Crossref] [Google Scholar]
  76. 76.
    Yao C, Lv Y, Zhao Y, Dong S, Liu H, Ma J. 2017.. Synergistic combinations of short high-voltage pulses and long low-voltage pulses enhance irreversible electroporation efficacy. . Sci. Rep. 7::15123
    [Crossref] [Google Scholar]
  77. 77.
    Lv Y, Yao C, Rubinsky B. 2020.. A 2-D cell layer study on synergistic combinations of high-voltage and low-voltage irreversible electroporation pulses. . IEEE Trans. Biomed. Eng. 67:(4):95765
    [Crossref] [Google Scholar]
  78. 78.
    Kim KH, An J, Park YJ, Park JH, Kim HB, et al. 2023.. Tissue ablation using irreversible electrolytic electroporation with reduced voltage. . Electronics 12:(13):2916
    [Crossref] [Google Scholar]
  79. 79.
    Peng W, Cao Y, Zhang Y, Zhong A, Zhang C, et al. 2024.. Optimal irreversible electroporation combined with nano-enabled immunomodulatory to boost systemic antitumor immunity. . Adv. Healthc. Mater. 13:(7):2302549
    [Crossref] [Google Scholar]
  80. 80.
    Lon X, Dai A, Huang T, Niu W, Liu L, et al. 2023.. Simultaneous delivery of dual inhibitors of DNA damage repair sensitizes pancreatic cancer response to irreversible electroporation. . ACS Nano 17:(13):1291532
    [Crossref] [Google Scholar]
  81. 81.
    Navickaitė D, Ruzgys P, Maciulevičius M, Dijk G, O'Connor RP, Šatkauskas S, et al. 2021.. Ca2+ roles in electroporation-induced changes of cancer cell physiology: from membrane repair to cell death. . Bioelectrochemistry 142::107927
    [Crossref] [Google Scholar]
  82. 82.
    Wasson EM, Alinezhadbalalami N, Brock RM, Allen IC, Verbridge SS, Davalos RV. 2020.. Understanding the role of calcium-mediated cell death in high-frequency irreversible electroporation. . Bioelectrochemistry 131::107369
    [Crossref] [Google Scholar]
  83. 83.
    Hristov K, Mangalanathan U, Casciola M, Pakhomova ON, Pakhomov AG. 2018.. Expression of voltage-gated calcium channels augments cell susceptibility to membrane disruption by nanosecond pulsed electric field. . Biochim. Biophys. Acta 1860:(11):217583
    [Crossref] [Google Scholar]
  84. 84.
    Hanson SM, Forsyth B, Wang C. 2021.. Combination of irreversible electroporation with sustained release of a synthetic membranolytic polymer for enhanced cancer cell killing. . Sci. Rep. 11::10810
    [Crossref] [Google Scholar]
  85. 85.
    Petrella RA, Levit SL, Fesmire CC, Tang C, Sano MB. 2022.. Polymer nanoparticles enhance irreversible electroporation in vitro. . IEEE Trans. Biomed. Eng. 69:(7):235362
    [Crossref] [Google Scholar]
  86. 86.
    Pan F, Vollherbst DF, Do T, Ridder DA, Pereira PL, et al. 2020.. Intra-arterial injection of lidocaine as a cell sensitizer during irreversible electroporation. . J. Vasc. Interv. Radiol. 31:(5):83139.e2
    [Crossref] [Google Scholar]
  87. 87.
    Wardhana G, Raman NM, Abayazid M, Fütterer JJ. 2022.. Investigating the effect of electrode orientation on irreversible electroporation with experiment and simulation. . Int. J. Comput. Assist. Radiol. Surg. 17:(8):1399407
    [Crossref] [Google Scholar]
  88. 88.
    Lv Y, Tang X, Peng W, Cheng X, Chen S, Yao C. 2020.. Analysis on reversible/irreversible electroporation region in lung adenocarcinoma cell model in vitro with electric pulses delivered by needle electrodes. . Phys. Med. Biol. 65:(22):225001
    [Crossref] [Google Scholar]
  89. 89.
    Kim HB, Zeng CH, Kim Y, Jeong S, Kim SH, et al. 2022.. Effects of different applied voltages of irreversible electroporation on prostate cancer in a mouse model. . Sci. Rep. 12::22336
    [Crossref] [Google Scholar]
  90. 90.
    Jeon HJ, Chun HJ, Choi HS, Keum B, Kim HB, Kim JH. 2024.. Biphasic regulation of apoptosis following gastric irreversible electroporation using tissue immunohistochemistry of activated caspase-3 with TUNEL method. . Cancers 16:(7):1389
    [Crossref] [Google Scholar]
  91. 91.
    Aycock KN, Zhao Y, Lorenzo MF, Davalos RV. 2021.. A theoretical argument for extended interpulse delays in therapeutic high-frequency irreversible electroporation treatments. . IEEE Trans. Biomed. Eng. 68:(6):19992010
    [Crossref] [Google Scholar]
  92. 92.
    Vižintin A, Vidmar J, Ščančar J, Miklavčič D. 2020.. Effect of interphase and interpulse delay in high-frequency irreversible electroporation pulses on cell survival, membrane permeabilization and electrode material release. . Bioelectrochemistry 134::107523
    [Crossref] [Google Scholar]
  93. 93.
    Sano MB, Fan RE, Xing L. 2017.. Asymmetric waveforms decrease lethal thresholds in high frequency irreversible electroporation therapies. . Sci. Rep. 7::40747
    [Crossref] [Google Scholar]
  94. 94.
    Ding L, Fang Z, Moser MAJ, Zhang W, Zhang B. 2023.. A single-cell electroporation model for quantitatively estimating the pore area ratio by high-frequency irreversible electroporation. . Appl. Sci. 13:(3):1808
    [Crossref] [Google Scholar]
  95. 95.
    Pakhomov AG, Gianulis E, Vernier PT, Semenov I, Xiao S, Pakhomova ON. 2015.. Multiple nanosecond electric pulses increase the number but not the size of long-lived nanopores in the cell membrane. . Biochim. Biophys. Acta Biomembr. 1848:(4):95866
    [Crossref] [Google Scholar]
  96. 96.
    Pakhomov AG, Grigoryev S, Semenov I, Casciola M, Jiang C, Xiao S. 2018.. The second phase of bipolar, nanosecond-range electric pulses determines the electroporation efficiency. . Bioelectrochemistry 122::12333
    [Crossref] [Google Scholar]
  97. 97.
    Dermol-Černe J, Batista Napotnik T, Reberšek M, Miklavčič D. 2020.. Short microsecond pulses achieve homogeneous electroporation of elongated biological cells irrespective of their orientation in electric field. . Sci. Rep. 10::9149
    [Crossref] [Google Scholar]
  98. 98.
    Scuderi M, Dermol-Černe J, Batista Napotnik T, Chaigne S, Bernus O, et al. 2023.. Characterization of experimentally observed complex interplay between pulse duration, electrical field strength, and cell orientation on electroporation outcome using a time-dependent nonlinear numerical model. . Biomolecules 13:(5):727
    [Crossref] [Google Scholar]
  99. 99.
    Peng W, Polajžer T, Yao C, Miklavčič D. 2024.. Dynamics of cell death due to electroporation using different pulse parameters as revealed by different viability assays. . Ann. Biomed. Eng. 52:(1):2235
    [Crossref] [Google Scholar]
  100. 100.
    Lv Y, Chen S, Wu S, Cheng X, Shi J, Yao C. 2023.. Study on B16 cell cytotoxicity by high frequency reversible electroporation with bleomycin that induces hallmarks of immunogenic death. . IEEE Trans. Biomed. Eng. 70:(4):135967
    [Crossref] [Google Scholar]
  101. 101.
    Ruzgys P, Barauskaitė N, Novickij V, Novickij J, Šatkauskas S. 2021.. The evidence of the bystander effect after bleomycin electrotransfer and irreversible electroporation. . Molecules 26:(19):6001
    [Crossref] [Google Scholar]
  102. 102.
    Ma Y, Chen Z, Zhu W, Yu J, Ji H, et al. 2021.. Chemotherapy plus concurrent irreversible electroporation improved local tumor control in unresectable hilar cholangiocarcinoma compared with chemotherapy alone. . Int. J. Hyperth. 38:(1):151218
    [Crossref] [Google Scholar]
  103. 103.
    Rojo RD, Perez JVD, Damasco JA, Yu G, Lin SC, et al. 2021.. Combinatorial effect of radium-223 and irreversible electroporation on prostate cancer bone metastasis in mice. . Int. J. Hyperth. 38:(1):65062
    [Crossref] [Google Scholar]
  104. 104.
    Xu K, Chen Y, Su J, Su M, Yan L. 2020.. Irreversible electroporation and adjuvant chemoradiotherapy for locally advanced pancreatic carcinoma. . J. Cancer Res. Ther. 16:(2):280
    [Crossref] [Google Scholar]
  105. 105.
    Jiang M, Fiering S, Shao Q. 2023.. Combining energy-based focal ablation and immune checkpoint inhibitors: preclinical research and clinical trials. . Front. Oncol. 13::1153066
    [Crossref] [Google Scholar]
  106. 106.
    Burbach BJ, O'Flanagan SD, Shao Q, Young KM, Slaughter JR, et al. 2021.. Irreversible electroporation augments checkpoint immunotherapy in prostate cancer and promotes tumor antigen-specific tissue-resident memory CD8+ T cells. . Nat. Commun. 12::3862
    [Crossref] [Google Scholar]
  107. 107.
    Shi X, O'Neill C, Wang X, Chen Y, Yu Y, et al. 2021.. Irreversible electroporation enhances immunotherapeutic effect in the off-target tumor in a murine model of orthotopic HCC. . Am. J. Cancer Res. 11:(6):330419
    [Google Scholar]
  108. 108.
    Ma Y, Xing Y, Li H, Yuan T, Liang B, et al. 2023.. Irreversible electroporation combined with chemotherapy and PD-1/PD-L1 blockade enhanced antitumor immunity for locally advanced pancreatic cancer. . Front. Immunol. 14::1193040
    [Crossref] [Google Scholar]
  109. 109.
    He C, Sun S, Zhang Y, Li S. 2021.. Irreversible electroporation plus anti-PD-1 antibody versus irreversible electroporation alone for patients with locally advanced pancreatic cancer. . J. Inflamm. Res. 14::4795807
    [Crossref] [Google Scholar]
  110. 110.
    O'Neill C, Hayat T, Hamm J, Healey M, Zheng Q, et al. 2020.. A phase 1b trial of concurrent immunotherapy and irreversible electroporation in the treatment of locally advanced pancreatic adenocarcinoma. . Surgery 168:(4):61016
    [Crossref] [Google Scholar]
  111. 111.
    Geboers B, Timmer FEF, Ruarus AH, Pouw JEE, Schouten EAC, et al. 2021.. Irreversible electroporation and nivolumab combined with intratumoral administration of a Toll-like receptor ligand, as a means of in vivo vaccination for metastatic pancreatic ductal adenocarcinoma (PANFIRE-III). A phase-I study protocol. . Cancers 13:(15):3902
    [Crossref] [Google Scholar]
  112. 112.
    Au JT, Mittra A, Song TJ, Cavnar M, Jun K, et al. 2013.. Irreversible electroporation facilitates gene transfer of a GM-CSF plasmid with a local and systemic response. . Surgery 154:(3):496503
    [Crossref] [Google Scholar]
  113. 113.
    Babikr F, Wan J, Xu A, Wu Z, Ahmed S, et al. 2021.. Distinct roles but cooperative effect of TLR3/9 agonists and PD-1 blockade in converting the immunotolerant microenvironment of irreversible electroporation-ablated tumors. . Cell. Mol. Immunol. 18:(12):263247
    [Crossref] [Google Scholar]
  114. 114.
    Vivas I, Iribarren K, Lozano T, Cano D, Lasarte-Cia A, et al. 2019.. Therapeutic effect of irreversible electroporation in combination with poly-ICLC adjuvant in preclinical models of hepatocellular carcinoma. . J. Vasc. Inter. Radiol. 30:(7):1098105
    [Crossref] [Google Scholar]
  115. 115.
    Narayanan JSS, Ray P, Hayashi T, Whisenant TC, Vicente D, et al. 2019.. Irreversible electroporation combined with checkpoint blockade and TLR7 stimulation induces antitumor immunity in a murine pancreatic cancer model. . Cancer Immunol. Res. 7:(10):171426
    [Crossref] [Google Scholar]
  116. 116.
    Go EJ, Yang H, Chon HJ, Yang D, Ryu W, et al. 2020.. Combination of irreversible electroporation and STING agonist for effective cancer immunotherapy. . Cancers 12:(11):3123
    [Crossref] [Google Scholar]
  117. 117.
    Lasarte-Cia A, Lozano T, Cano D, Martín-Otal C, Navarro F, et al. 2021.. Intratumoral STING agonist injection combined with irreversible electroporation delays tumor growth in a model of hepatocarcinoma. . BioMed. Res. Int. 2021::8852233
    [Crossref] [Google Scholar]
  118. 118.
    Narayanan JSS, Hayashi T, Erdem S, McArdle S, Tiriac H, et al. 2023.. Treatment of pancreatic cancer with irreversible electroporation and intratumoral CD40 antibody stimulates systemic immune responses that inhibit liver metastasis in an orthotopic model. . J. Immunother. Cancer 11:(1):e006133
    [Crossref] [Google Scholar]
  119. 119.
    Peng H, Shen J, Long X, Zhou X, Zhang J, et al. 2022.. Local release of TGF-β inhibitor modulates tumor-associated neutrophils and enhances pancreatic cancer response to combined irreversible electroporation and immunotherapy. . Adv. Sci. 9:(10):2105240
    [Crossref] [Google Scholar]
  120. 120.
    Sun S, Liu Y, He C, Hu W, Liu W, et al. 2021.. Combining NanoKnife with M1 oncolytic virus enhances anticancer activity in pancreatic cancer. . Cancer Lett. 502::924
    [Crossref] [Google Scholar]
  121. 121.
    Woeste MR, Shrestha R, Geller AE, Li S, Montoya-Durango D, et al. 2023.. Irreversible electroporation augments β-glucan induced trained innate immunity for the treatment of pancreatic ductal adenocarcinoma. . J. Immunother. Cancer 11:(4):e006221
    [Crossref] [Google Scholar]
  122. 122.
    Zhao J, Qiao Y, Zhou M, Wallace M, Gupta S, et al. 2015.. Antitumor efficacy of irreversible electroporation and doxorubicin-loaded polymeric micelles. . ACS Macro Lett. 4:(10):108184
    [Crossref] [Google Scholar]
  123. 123.
    Yu B, Zhang W, Kwak K, Choi H, Kim DH. 2020.. Electric pulse responsive magnetic nanoclusters loaded with indoleamine 2,3-dioxygenase inhibitor for synergistic immuno-ablation cancer therapy. . ACS Appl. Mater. Interfaces 12:(49):5441525
    [Crossref] [Google Scholar]
  124. 124.
    Han JH, Lee YY, Shin HE, Han J, Kang JM, et al. 2022.. Image-guided in situ cancer vaccination with combination of multi-functional nano-adjuvant and an irreversible electroporation technique. . Biomaterials 289::121762
    [Crossref] [Google Scholar]
  125. 125.
    Jiang Y, Jenjob R, Yang SG. 2023.. Enhanced therapeutic potential of irreversible electroporation under combination with gold-doped mesoporous silica nanoparticles against EMT-6 breast cancer cells. . Biosensors 13:(1):41
    [Crossref] [Google Scholar]
  126. 126.
    Cornelis FH, Cindrič H, Kos B, Fujimori M, Petre EN, Miklavčič D, et al. 2020.. Peri-tumoral metallic implants reduce the efficacy of irreversible electroporation for the ablation of colorectal liver metastases. . Cardiovasc. Intervent. Radiol. 43:(1):8493
    [Crossref] [Google Scholar]
  127. 127.
    Han JH, Shin HE, Lee J, Kang JM, Park JH, et al. 2022.. Combination of metal-phenolic network-based immunoactive nanoparticles and bipolar irreversible electroporation for effective cancer immunotherapy. . Small 18:(25):2200316
    [Crossref] [Google Scholar]
  128. 128.
    Jeon SM, Davaa E, Jenjob R, Pechyen C, Natphopsuk S, et al. 2024.. The induction of combined hyperthermal ablation effect of irreversible electroporation with polydopamine nanoparticle-coated electrodes. . Int. J. Mol. Sci. 25:(8):4317
    [Crossref] [Google Scholar]
  129. 129
    Pelaez F, Shao Q, Ranjbartehrani P, Lam T, Lee HR, et al. 2020.. Optimizing integrated electrode design for irreversible electroporation of implanted polymer scaffolds. . Ann. Biomed. Eng. 48:(4):123040
    [Crossref] [Google Scholar]
  130. 130.
    Silbaugh A, Vallin J, Pelaez F, Kim M, Shao Q, et al. 2023.. Enhancing electroporation-induced liposomal drug release in suspension and solid phases. . Int. J. Pharm. 635::122744
    [Crossref] [Google Scholar]
  131. 131.
    Lin M, Liang S, Wang X, Liang Y, Zhang M, et al. 2017.. Short-term clinical efficacy of percutaneous irreversible electroporation combined with allogeneic natural killer cell for treating metastatic pancreatic cancer. . Immunol. Lett. 186::2027
    [Crossref] [Google Scholar]
  132. 132.
    Pan Q, Hu C, Fan Y, Wang Y, Li R, Hu X. 2020.. Efficacy of irreversible electroporation ablation combined with natural killer cells in treating locally advanced pancreatic cancer. . JBUON 25:(3):164349
    [Google Scholar]
  133. 133.
    Alnaggar M, Lin M, Mesmar A, Liang S, Qaid A, et al. 2018.. Allogenic natural killer cell immunotherapy combined with irreversible electroporation for stage IV hepatocellular carcinoma: survival outcome. . Cell. Physiol. Biochem. 48:(5):188293
    [Crossref] [Google Scholar]
  134. 134.
    Yang J, Eresen A, Shangguan J, Ma Q, Yaghmai V, Zhang Z. 2021.. Irreversible electroporation ablation overcomes tumor-associated immunosuppression to improve the efficacy of DC vaccination in a mice model of pancreatic cancer. . OncoImmunology 10:(1):1875638
    [Crossref] [Google Scholar]
  135. 135.
    Lin M, Zhang X, Liang S, Luo H, Alnaggar M, et al. 2020.. Irreversible electroporation plus allogenic Vγ9Vδ2 T cells enhances antitumor effect for locally advanced pancreatic cancer patients. . Signal Transduct. Target. Ther. 5::215
    [Crossref] [Google Scholar]
  136. 136.
    Huang T, Wen X, Liang Y, Liu X, Zhao J, Long X. 2024.. Irreversible electroporation-induced inflammation facilitates neutrophil-mediated drug delivery to enhance pancreatic cancer therapy. . Mol. Pharm. 21:(4):19982011
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-082223-054259
Loading
/content/journals/10.1146/annurev-chembioeng-082223-054259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error