1932

Abstract

Advances in experimental synthesis and computer simulations have led to the proliferation of anisotropy and particle geometry as popular handles for directed self-assembly. This paradigm employs entropy to direct building block organization into desired spatial and orientational orderings. Yet, how does a metric associated primarily with disorder give rise to ordered assemblies? We first explain the governing principles behind entropic crystallization and entropy maximization processes. We then show how entropic forces can produce emergent, attractive, and bond-like interactions between otherwise sterically repulsive particles. Building on these ideas, we establish entropy as a mediator of interparticle attraction in hard particle systems that relies on extrinsic, systems-level behaviors as opposed to intrinsic, particle-level properties. Finally, we present a theory of entropic bonding that formalizes the phenomena discussed into a rigorous mathematical framework and discuss relevant next steps for its development and applications of entropic crystallization in materials design.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-082323-092941
2025-06-09
2025-06-23
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/16/1/annurev-chembioeng-082323-092941.html?itemId=/content/journals/10.1146/annurev-chembioeng-082323-092941&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    He Z, Zhang Z, Bi S. 2020.. Nanoparticles for organic electronics applications. . Mater. Res. Express 7::012004
    [Crossref] [Google Scholar]
  2. 2.
    Zhou Q, Wang B, Wang P, Dellago C, Wang Y, Fang Y. 2013.. Nanoparticle-based crystal growth via multistep self-assembly. . CrystEngComm 15:(25):511418
    [Crossref] [Google Scholar]
  3. 3.
    Zhang Q, Yang X, Li P, Huang G, Feng S, et al. 2015.. Bioinspired engineering of honeycomb structure—using nature to inspire human innovation. . Prog. Mater. Sci. 74::332400
    [Crossref] [Google Scholar]
  4. 4.
    Radjai F, Roux JN, Daouadji A. 2017.. Modeling granular materials: century-long research across scales. . J. Eng. Mech. 143:(4):04017002
    [Crossref] [Google Scholar]
  5. 5.
    Winn JN, Fabrycky DC. 2015.. The occurrence and architecture of exoplanetary systems. . Annu. Rev. Astron. Astrophys. 53::40947
    [Crossref] [Google Scholar]
  6. 6.
    Rocha BC, Paul S, Vashisth H. 2020.. Role of entropy in colloidal self-assembly. . Entropy 22:(8):877
    [Crossref] [Google Scholar]
  7. 7.
    Damasceno PF, Engel M, Glotzer SC. 2012.. Predictive self-assembly of polyhedra into complex structures. . Science 337:(6093):45357
    [Crossref] [Google Scholar]
  8. 8.
    Agarwal U, Escobedo FA. 2011.. Mesophase behaviour of polyhedral particles. . Nat. Mater. 10:(3):23035
    [Crossref] [Google Scholar]
  9. 9.
    Gantapara AP, de Graaf J, van Roij R, Dijkstra M. 2013.. Phase diagram and structural diversity of a family of truncated cubes: Degenerate close-packed structures and vacancy-rich states. . Phys. Rev. Lett. 111::015501
    [Crossref] [Google Scholar]
  10. 10.
    Torquato S, Stillinger FH. 2010.. Jammed hard-particle packings: from Kepler to Bernal and beyond. . Rev. Mod. Phys. 82:(3):263372
    [Crossref] [Google Scholar]
  11. 11.
    van Anders G, Ahmed NK, Smith R, Engel M, Glotzer SC. 2014.. Entropically patchy particles: engineering valence through shape entropy. . ACS Nano 8:(1):93140
    [Crossref] [Google Scholar]
  12. 12.
    van Anders G, Klotsa D, Ahmed NK, Engel M, Glotzer SC. 2014.. Understanding shape entropy through local dense packing. . PNAS 111:(45):E481221
    [Crossref] [Google Scholar]
  13. 13.
    Avendaño C, Escobedo FA. 2017.. Packing, entropic patchiness, and self-assembly of non-convex colloidal particles: a simulation perspective. . Curr. Opin. Colloid Interface Sci. 30::6269
    [Crossref] [Google Scholar]
  14. 14.
    Escobedo FA. 2014.. Engineering entropy in soft matter: the bad, the ugly and the good. . Soft Matter 10:(42):8388400
    [Crossref] [Google Scholar]
  15. 15.
    Cercignani C. 1988.. The Boltzmann equation. . In The Boltzmann Equation and Its Applications, pp. 40103. New York:: Springer
    [Google Scholar]
  16. 16.
    Erpenbeck JJ, Wood WW. 1984.. Molecular dynamics calculations of the hard-sphere equation of state. . J. Stat. Phys. 35:(3):32140
    [Crossref] [Google Scholar]
  17. 17.
    Wood WW, Jacobson JD. 1957.. Preliminary results from a recalculation of the Monte Carlo equation of state of hard spheres. . J. Chem. Phys. 27:(5):12078
    [Crossref] [Google Scholar]
  18. 18.
    Alder BJ, Wainwright TE. 1957.. Phase transition for a hard sphere system. . J. Chem. Phys. 27:(5):12089
    [Crossref] [Google Scholar]
  19. 19.
    Barker JA, Henderson D. 1971.. Monte Carlo values for the radial distribution function of a system of fluid hard spheres. . Mol. Phys. 21:(1):18791
    [Crossref] [Google Scholar]
  20. 20.
    Pusey PN, van Megen W. 1986.. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. . Nature 320:(6060):34042
    [Crossref] [Google Scholar]
  21. 21.
    Zhu J, Li M, Rogers R, Meyer W, Ottewill RH, et al. 1997.. Crystallization of hard-sphere colloids in microgravity. . Nature 387:(6636):88385
    [Crossref] [Google Scholar]
  22. 22.
    Speedy RJ. 1998.. The hard sphere glass transition. . Mol. Phys. 95:(2):16978
    [Crossref] [Google Scholar]
  23. 23.
    Truskett TM, Torquato S, Debenedetti PG. 2000.. Towards a quantification of disorder in materials: distinguishing equilibrium and glassy sphere packings. . Phys. Rev. E 62:(1):9931001
    [Crossref] [Google Scholar]
  24. 24.
    Sciortino F, Tartaglia P. 2005.. Glassy colloidal systems. . Adv. Phys. 54:(6–7):471524
    [Crossref] [Google Scholar]
  25. 25.
    Kansal AR, Torquato S, Stillinger FH. 2002.. Diversity of order and densities in jammed hard-particle packings. . Phys. Rev. E 66:(4):041104. . 2010.. Phys. Rev. E 81::049908
    [Google Scholar]
  26. 26.
    Conway JH, Torquato S. 2006.. Packing, tiling, and covering with tetrahedra. . PNAS 103:(28):1061217
    [Crossref] [Google Scholar]
  27. 27.
    Betke U, Henk M. 2000.. Densest lattice packings of 3-polytopes. . Comput. Geom. 16:(3):15786
    [Crossref] [Google Scholar]
  28. 28.
    Kallus Y, Elser V, Gravel S. 2010.. Dense periodic packings of tetrahedra with small repeating units. . Discrete Comput. Geom. 44:(2):24552
    [Crossref] [Google Scholar]
  29. 29.
    Jaoshvili A, Esakia A, Porrati M, Chaikin PM. 2010.. Experiments on the random packing of tetrahedral dice. . Phys. Rev. Lett. 104:(18):185501
    [Crossref] [Google Scholar]
  30. 30.
    Torquato S, Jiao Y. 2009.. Dense packings of polyhedra: Platonic and Archimedean solids. . Phys. Rev. E 80:(4):041104
    [Crossref] [Google Scholar]
  31. 31.
    Haji-Akbari A, Engel M, Glotzer SC. 2011.. Degenerate quasicrystal of hard triangular bipyramids. . Phys. Rev. Lett. 107:(21):215702
    [Crossref] [Google Scholar]
  32. 32.
    Chen ER, Klotsa D, Engel M, Damasceno PF, Glotzer SC. 2014.. Complexity in surfaces of densest packings for families of polyhedra. . Phys. Rev. X 4:(1):011024
    [Google Scholar]
  33. 33.
    Smallenburg F, Filion L, Marechal M, Dijkstra M. 2012.. Vacancy-stabilized crystalline order in hard cubes. . PNAS 109:(44):1788690
    [Crossref] [Google Scholar]
  34. 34.
    Henzie J, Grünwald M, Widmer-Cooper A, Geissler PL, Yang P. 2011.. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. . Nat. Mater. 11:(2):13137
    [Crossref] [Google Scholar]
  35. 35.
    Haji-Akbari A, Engel M, Glotzer SC. 2011.. Phase diagram of hard tetrahedra. . J. Chem. Phys. 135:(19):194101
    [Crossref] [Google Scholar]
  36. 36.
    Chen ER, Engel M, Glotzer SC. 2010.. Dense crystalline dimer packings of regular tetrahedra. . Discrete Comput. Geom. 44:(2):25380
    [Crossref] [Google Scholar]
  37. 37.
    Irrgang ME, Engel M, Schultz AJ, Kofke DA, Glotzer SC. 2017.. Virial coefficients and equations of state for hard polyhedron fluids. . Langmuir 33:(42):1178896
    [Crossref] [Google Scholar]
  38. 38.
    Vo T, Glotzer SC. 2019.. Principle of corresponding states for hard polyhedron fluids. . Mol. Phys. 117:(23–24):351826
    [Crossref] [Google Scholar]
  39. 39.
    Sharma AK, Escobedo FA. 2024.. Diffusionless rotator-crystal transitions in colloidal truncated cubes. . J. Chem. Phys. 161:(3):034509
    [Crossref] [Google Scholar]
  40. 40.
    Damasceno PF, Engel M, Glotzer SC. 2012.. Crystalline assemblies and densest packings of a family of truncated tetrahedra and the role of directional entropic forces. . ACS Nano 6:(1):60914
    [Crossref] [Google Scholar]
  41. 41.
    Anderson JA, Antonaglia J, Millan JA, Engel M, Glotzer SC. 2017.. Shape and symmetry determine two-dimensional melting transitions of hard regular polygons. . Phys. Rev. X 7:(2):021001
    [Google Scholar]
  42. 42.
    Zhao K, Bruinsma R, Mason TG. 2011.. Entropic crystal-crystal transitions of Brownian squares. . PNAS 108:(7):268487
    [Crossref] [Google Scholar]
  43. 43.
    Zhao K, Mason TG. 2009.. Frustrated rotator crystals and glasses of Brownian pentagons. . Phys. Rev. Lett. 103:(20):208302
    [Crossref] [Google Scholar]
  44. 44.
    Zhao K, Bruinsma R, Mason TG. 2012.. Local chiral symmetry breaking in triatic liquid crystals. . Nat. Commun. 3::801
    [Crossref] [Google Scholar]
  45. 45.
    Torres-Díaz I, Hendley RS, Mishra A, Yeh AJ, Bevan MA. 2022.. Hard superellipse phases: particle shape anisotropy & curvature. . Soft Matter 18:(6):131930
    [Crossref] [Google Scholar]
  46. 46.
    Geng Y, van Anders G, Dodd PM, Dshemuchadse J, Glotzer SC. 2024.. Engineering entropy for the inverse design of colloidal crystals from hard shapes. . Sci. Adv. 5:(7):eaaw0514
    [Crossref] [Google Scholar]
  47. 47.
    Varilly P, Angioletti-Uberti S, Mognetti BM, Frenkel D. 2012.. A general theory of DNA-mediated and other valence-limited colloidal interactions. . J. Chem. Phys. 137:(9):094108
    [Crossref] [Google Scholar]
  48. 48.
    Leunissen ME, Frenkel D. 2011.. Numerical study of DNA-functionalized microparticles and nanoparticles: explicit pair potentials and their implications for phase behavior. . J. Chem. Phys. 134:(8):084702
    [Crossref] [Google Scholar]
  49. 49.
    Onsager L. 1949.. The effects of shape on the interaction of colloidal particles. . Ann. N.Y. Acad. Sci. 51:(4):62759
    [Crossref] [Google Scholar]
  50. 50.
    Frenkel D. 1999.. Entropy-driven phase transitions. . Physica A 263:(1–4):2638
    [Crossref] [Google Scholar]
  51. 51.
    Frenkel D. 2014.. Order through entropy. . Nat. Mater. 14:(1):912
    [Crossref] [Google Scholar]
  52. 52.
    Cersonsky RK, van Anders G, Dodd PM, Glotzer SC. 2018.. Relevance of packing to colloidal self-assembly. . PNAS 115:(7):143944
    [Crossref] [Google Scholar]
  53. 53.
    Shevchenko EV, Talapin DV, Kotov NA, O'Brien S, Murray CB. 2006.. Structural diversity in binary nanoparticle superlattices. . Nature 439:(7072):5559
    [Crossref] [Google Scholar]
  54. 54.
    Ye X, Millan JA, Engel M, Chen J, Diroll BT, et al. 2013.. Shape alloys of nanorods and nanospheres from self-assembly. . Nano Lett. 13:(10):498088
    [Crossref] [Google Scholar]
  55. 55.
    Ye X, Collins JE, Kang Y, Chen J, Chen DTN, et al. 2010.. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. . PNAS 107:(52):2243035
    [Crossref] [Google Scholar]
  56. 56.
    Ye X, Chen J, Engel M, Millan JA, Li W, et al. 2013.. Competition of shape and interaction patchiness for self-assembling nanoplates. . Nat. Chem. 5:(6):46673
    [Crossref] [Google Scholar]
  57. 57.
    Hendley RS, Torres-Díaz I, Bevan MA. 2021.. Anisotropic colloidal interactions & assembly in AC electric fields. . Soft Matter 17:(40):906677
    [Crossref] [Google Scholar]
  58. 58.
    Lee S, Vo T, Glotzer SC. 2023.. Entropy compartmentalization stabilizes open host-guest colloidal clathrates. . Nat. Chem. 15:(7):90512
    [Crossref] [Google Scholar]
  59. 59.
    Moore TC, Anderson JA, Glotzer SC. 2021.. Shape-driven entropic self-assembly of an open, reconfigurable, binary host-guest colloidal crystal. . Soft Matter 17:(10):284048
    [Crossref] [Google Scholar]
  60. 60.
    Khadilkar MR, Escobedo FA. 2012.. Self-assembly of binary space-tessellating compounds. . J. Chem. Phys. 137:(19):194907
    [Crossref] [Google Scholar]
  61. 61.
    Khadilkar MR, Agarwal U, Escobedo FA. 2013.. Phase behavior of binary mixtures of hard convex polyhedra. . Soft Matter 9:(48):1155767
    [Crossref] [Google Scholar]
  62. 62.
    Avendaño C, Escobedo FA. 2012.. Phase behavior of rounded hard-squares. . Soft Matter 8:(17):467581
    [Crossref] [Google Scholar]
  63. 63.
    Avvisati G, Vissers T, Dijkstra M. 2015.. Self-assembly of patchy colloidal dumbbells. . J. Chem. Phys. 142:(8):084905
    [Crossref] [Google Scholar]
  64. 64.
    Avci C, Imaz I, Carné-Sánchez A, Pariente JA, Tasios N, et al. 2018.. Self-assembly of polyhedral metal-organic framework particles into three-dimensional ordered superstructures. . Nat. Chem. 10:(1):7884
    [Crossref] [Google Scholar]
  65. 65.
    Arciniegas MP, Kim MR, de Graaf J, Brescia R, Marras S, et al. 2014.. Self-assembly of octapod-shaped colloidal nanocrystals into a hexagonal ballerina network embedded in a thin polymer film. . Nano Lett. 14:(2):105663
    [Crossref] [Google Scholar]
  66. 66.
    John BS, Juhlin C, Escobedo FA. 2008.. Phase behavior of colloidal hard perfect tetragonal parallelepipeds. . J. Chem. Phys. 128:(4):044909
    [Crossref] [Google Scholar]
  67. 67.
    Frenkel D. 1987.. Onsager's spherocylinders revisited. . J. Phys. Chem. 91:(19):491216
    [Crossref] [Google Scholar]
  68. 68.
    Ni R, Gantapara AP, de Graaf J, van Roij R, Dijkstra M. 2012.. Phase diagram of colloidal hard superballs: from cubes via spheres to octahedra. . Soft Matter 8:(34):882634
    [Crossref] [Google Scholar]
  69. 69.
    ten Wolde PR, Frenkel D. 1997.. Enhancement of protein crystal nucleation by critical density fluctuations. . Science 277:(5334):197578
    [Crossref] [Google Scholar]
  70. 70.
    Smit B, Frenkel D. 1991.. Vapor-liquid equilibria of the two-dimensional Lennard-Jones fluid(s). . J. Chem. Phys. 94:(8):566368
    [Crossref] [Google Scholar]
  71. 71.
    Johnson JK, Gubbins KE. 1992.. Phase equilibria for associating Lennard-Jones fluids from theory and simulation. . Mol. Phys. 77:(6):103353
    [Crossref] [Google Scholar]
  72. 72.
    ten Wolde PR, Frenkel D. 1998.. Computer simulation study of gas-liquid nucleation in a Lennard-Jones system. . J. Chem. Phys. 109:(22):990118
    [Crossref] [Google Scholar]
  73. 73.
    Zhang Z, Glotzer SC. 2004.. Self-assembly of patchy particles. . Nano Lett. 4:(8):140713
    [Crossref] [Google Scholar]
  74. 74.
    Romano F, Sanz E, Sciortino F. 2010.. Phase diagram of a tetrahedral patchy particle model for different interaction ranges. . J. Chem. Phys. 132:(18):184501
    [Crossref] [Google Scholar]
  75. 75.
    Lu F, Yager KG, Zhang Y, Xin H, Gang O. 2015.. Superlattices assembled through shape-induced directional binding. . Nat. Commun. 6::6912
    [Crossref] [Google Scholar]
  76. 76.
    Tracey DF, Noya EG, Doye JPK. 2019.. Programming patchy particles to form complex periodic structures. . J. Chem. Phys. 151:(22):224506
    [Crossref] [Google Scholar]
  77. 77.
    Doppelbauer G, Noya EG, Bianchi E, Kahl G. 2012.. Self-assembly scenarios of patchy colloidal particles. . Soft Matter 8:(30):776872
    [Crossref] [Google Scholar]
  78. 78.
    Long AW, Ferguson AL. 2018.. Rational design of patchy colloids via landscape engineering. . Mol. Syst. Des. Eng. 3:(1):4965
    [Crossref] [Google Scholar]
  79. 79.
    Romano F, Russo J, Kroc L, Šulc P. 2020.. Designing patchy interactions to self-assemble arbitrary structures. . Phys. Rev. Lett. 125:(11):118003
    [Crossref] [Google Scholar]
  80. 80.
    Liu H, Matthies M, Russo J, Rovigatti L, Narayanan RP, et al. 2024.. Inverse design of a pyrochlore lattice of DNA origami through model-driven experiments. . Science 384:(6697):77681
    [Crossref] [Google Scholar]
  81. 81.
    Adhikari S, Minevich B, Redeker D, Michelson AN, Emamy H, et al. 2023.. Controlling the self-assembly of DNA origami octahedra via manipulation of inter-vertex interactions. . J. Am. Chem. Soc. 145:(36):1957887
    [Crossref] [Google Scholar]
  82. 82.
    Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP. 1961.. The general theory of van der Waals forces. . Adv. Phys. 10:(38):165209
    [Crossref] [Google Scholar]
  83. 83.
    Kim A, Vo T, An H, Banerjee P, Yao L, et al. 2022.. Symmetry-breaking in patch formation on triangular gold nanoparticles by asymmetric polymer grafting. . Nat. Commun. 13::6774
    [Crossref] [Google Scholar]
  84. 84.
    Xiong Y, Yang S, Tian Y, Michelson A, Xiang S, et al. 2020.. Three-dimensional patterning of nanoparticles by molecular stamping. . ACS Nano 14:(6):682333
    [Crossref] [Google Scholar]
  85. 85.
    Chen G, Gibson KJ, Liu D, Rees HC, Lee JH, et al. 2018.. Regioselective surface encoding of nanoparticles for programmable self-assembly. . Nat. Mater. 18:(2):16974
    [Crossref] [Google Scholar]
  86. 86.
    Juárez JJ, Feicht SE, Bevan MA. 2011.. Electric field mediated assembly of three dimensional equilibrium colloidal crystals. . Soft Matter 8:(1):94103
    [Crossref] [Google Scholar]
  87. 87.
    Torres-Díaz I, Rupp B, Yang Y, Bevan MA. 2018.. Energy landscapes for ellipsoids in non-uniform AC electric fields. . Soft Matter 14:(6):93444
    [Crossref] [Google Scholar]
  88. 88.
    Ravaine S, Duguet E. 2017.. Synthesis and assembly of patchy particles: recent progress and future prospects. . Curr. Opin. Colloid Interface Sci. 30::4553
    [Crossref] [Google Scholar]
  89. 89.
    Kim YJ, Kim JH, Jo IS, Pine DJ, Sacanna S, Yi GR. 2021.. Patchy colloidal clusters with broken symmetry. . J. Am. Chem. Soc. 143:(33):1317583
    [Crossref] [Google Scholar]
  90. 90.
    Ducrot É, He M, Yi GR, Pine DJ. 2017.. Colloidal alloys with preassembled clusters and spheres. . Nat. Mater. 16:(6):65257
    [Crossref] [Google Scholar]
  91. 91.
    Wang Y, Wang Y, Breed DR, Manoharan VN, Feng L, et al. 2012.. Colloids with valence and specific directional bonding. . Nature 491:(7422):5155
    [Crossref] [Google Scholar]
  92. 92.
    Mirkin CA, Petrosko SH. 2023.. Inspired beyond nature: three decades of spherical nucleic acids and colloidal crystal engineering with DNA. . ACS Nano 17::16291307
    [Crossref] [Google Scholar]
  93. 93.
    Jones MR, Seeman NC, Mirkin CA. 2015.. Programmable materials and the nature of the DNA bond. . Science 347:(6224):1260901
    [Crossref] [Google Scholar]
  94. 94.
    Kahn JS, Gang O. 2022.. Designer nanomaterials through programmable assembly. . Angew. Chem. Int. Ed. 61:(3):e202105678
    [Crossref] [Google Scholar]
  95. 95.
    Low KP, Ng WM, Leong SS, Toh PY, Lim J, et al. 2024.. Colloidal stability of polyelectrolyte-functionalized magnetic nanoparticles: experimental and theoretical studies. . J. Nanopart. Res. 26:(3):54
    [Crossref] [Google Scholar]
  96. 96.
    Galati E, Tebbe M, Querejeta-Fernández A, Xin HL, Gang O, et al. 2017.. Shape-specific patterning of polymer-functionalized nanoparticles. . ACS Nano 11:(5):49955002
    [Crossref] [Google Scholar]
  97. 97.
    Kumar SK, Benicewicz BC, Vaia RA, Winey KI. 2017.. 50th anniversary perspective: Are polymer nanocomposites practical for applications?. Macromolecules 50:(3):71431
    [Crossref] [Google Scholar]
  98. 98.
    Chen WL, Cordero R, Tran H, Ober CK. 2017.. 50th anniversary perspective: polymer brushes: novel surfaces for future materials. . Macromolecules 50:(11):4089113
    [Crossref] [Google Scholar]
  99. 99.
    Galati E, Tao H, Tebbe M, Ansari R, Rubinstein M, et al. 2019.. Helicoidal patterning of nanorods with polymer ligands. . Angew. Chem. Int. Ed. 58:(10):312327
    [Crossref] [Google Scholar]
  100. 100.
    Choueiri RM, Galati E, Thérien-Aubin H, Klinkova A, Larin EM, et al. 2016.. Surface patterning of nanoparticles with polymer patches. . Nature 538:(7623):7983
    [Crossref] [Google Scholar]
  101. 101.
    Kirkwood JG. 1935.. Statistical mechanics of fluid mixtures. . J. Chem. Phys. 3:(5):30013
    [Crossref] [Google Scholar]
  102. 102.
    Harper ES, van Anders G, Glotzer SC. 2019.. The entropic bond in colloidal crystals. . PNAS 116:(34):1670310
    [Crossref] [Google Scholar]
  103. 103.
    Vo T, Glotzer SC. 2022.. A theory of entropic bonding. . PNAS 119:(4):e2116414119
    [Crossref] [Google Scholar]
  104. 104.
    Akkunuri K, Zhang X, Vo T. 2025.. Elucidating the interplay between entropy-driven and patch-mediated bonding in directing nanoscale assemblies. . Mol. Syst. Des. Eng. 10::1931
    [Crossref] [Google Scholar]
  105. 105.
    Boles MA, Engel M, Talapin DV. 2016.. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. . Chem. Rev. 116:(18):1122089
    [Crossref] [Google Scholar]
  106. 106.
    Marino E, LaCour RA, Moore TC, van Dongen SW, Keller AW, et al. 2023.. Crystallization of binary nanocrystal superlattices and the relevance of short-range attraction. . Nat. Synth. 3:(1):11122
    [Crossref] [Google Scholar]
  107. 107.
    Travesset A. 2016.. Topological structure prediction in binary nanoparticle superlattices. . Soft Matter 13:(1):14757
    [Crossref] [Google Scholar]
  108. 108.
    Travesset A. 2017.. Soft skyrmions, spontaneous valence and selection rules in nanoparticle superlattices. . ACS Nano 11:(6):537582
    [Crossref] [Google Scholar]
  109. 109.
    Waltmann T, Waltmann C, Horst N, Travesset A. 2018.. Many body effects and icosahedral order in superlattice self-assembly. . J. Am. Chem. Soc. 140:(26):823645
    [Crossref] [Google Scholar]
  110. 110.
    Waltmann C, Horst N, Travesset A. 2018.. Potential of mean force for two nanocrystals: core geometry and size, hydrocarbon unsaturation, and universality with respect to the force field. . J. Chem. Phys. 149:(3):034109
    [Crossref] [Google Scholar]
  111. 111.
    Vo T. 2024.. Patchy nanoparticles with surface complexity for directed self-assembly. . MRS Bull. 49:(4):33039
    [Crossref] [Google Scholar]
  112. 112.
    Kim A, Akkunuri K, Qian C, Yao L, Sun K, et al. 2024.. Direct imaging of “patch-clasping” and relaxation in robust and flexible nanoparticle assemblies. . ACS Nano 18:(1):93950
    [Crossref] [Google Scholar]
  113. 113.
    Kahn JS, Minevich B, Gang O. 2020.. Three-dimensional DNA-programmable nanoparticle superlattices. . Curr. Opin. Biotechnol. 63::14250
    [Crossref] [Google Scholar]
  114. 114.
    Hayes OG, Partridge BE, Mirkin CA. 2021.. Encoding hierarchical assembly pathways of proteins with DNA. . PNAS 118:(40):e2106808118
    [Crossref] [Google Scholar]
  115. 115.
    Partridge BE, Winegar PH, Han Z, Mirkin CA. 2021.. Redefining protein interfaces within protein single crystals with DNA. . J. Am. Chem. Soc. 143:(23):892534
    [Crossref] [Google Scholar]
  116. 116.
    McMillan JR, Hayes OG, Winegar PH, Mirkin CA. 2019.. Protein materials engineering with DNA. . Acc. Chem. Res. 52:(7):193948
    [Crossref] [Google Scholar]
  117. 117.
    Hayes OG, McMillan JR, Lee B, Mirkin CA. 2018.. DNA-encoded protein Janus nanoparticles. . J. Am. Chem. Soc. 140:(29):926974
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-082323-092941
Loading
/content/journals/10.1146/annurev-chembioeng-082323-092941
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error