1932

Abstract

In recent years, mechanochemistry has imposed itself as a novel promising chemical tool to bridge the gap between polymer physics and continuum mechanics in soft materials. The suitable incorporation of force-sensitive molecules (mechanophores) in load-bearing positions in soft (entropic) polymer networks and in linear chains has provided a tool to detect stresses and bond scission in 2D and 3D through the intensity of an optical signal. We review recent results linking the optical signal detected upon mechanophore activation with the applied mechanical load. Recent investigations have addressed critical questions, such as detecting and quantifying stress fields and measuring quantitative damage by bond scission in diverse cases, including failure in uniaxial tension, crack propagation in continuous loading, cyclic fatigue, or crack initiation in uniaxial and triaxial tension. We also discuss the requirements to go from simple imaging to quantitative detection, enabling comparisons between different materials and the calibration of continuum mechanics models. In ideal cases, the optical signal provides highly sensitive information on the size and intensity of damage zones in front of cracks—regions that would otherwise be undetectable.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092220-113154
2025-06-09
2025-06-20
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/16/1/annurev-chembioeng-092220-113154.html?itemId=/content/journals/10.1146/annurev-chembioeng-092220-113154&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Gent AN. 2012.. Engineering with rubber. . In Engineering with Rubber, pp. 19. Munich, Ger:.: Carl Hanser Verlag
    [Google Scholar]
  2. 2.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R. 2006.. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. . Adv. Mater. 18:(11):134560. https://doi.org/10.1002/adma.200501612
    [Crossref] [Google Scholar]
  3. 3.
    Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. 2021.. Soft materials by design: unconventional polymer networks give extreme properties. . Chem. Rev. 121:(8):430972. https://doi.org/10.1021/acs.chemrev.0c01088
    [Crossref] [Google Scholar]
  4. 4.
    Creton C. 2003.. Pressure-sensitive adhesives: an introductory course. . MRS Bull. 28:(6):43439. https://doi.org/10.1557/mrs2003.124
    [Crossref] [Google Scholar]
  5. 5.
    Creton C, Ciccotti M. 2016.. Fracture and adhesion of soft materials: a review. . Rep. Prog. Phys. 79:(4):046601. https://doi.org/10.1088/0034-4885/79/4/046601
    [Crossref] [Google Scholar]
  6. 6.
    Tran H, Feig VR, Liu K, Zheng Y, Bao Z. 2019.. Polymer chemistries underpinning materials for skin-inspired electronics. . Macromolecules 52:(11):396574. https://doi.org/10.1021/acs.macromol.9b00410
    [Crossref] [Google Scholar]
  7. 7.
    Chen H, Dejace L, Lacour SP. 2021.. Electronic skins for healthcare monitoring and smart prostheses. . Annu. Rev. Control Robot. Auton. Syst. 4:(1):62950. https://doi.org/10.1146/annurev-control-071320-101023
    [Crossref] [Google Scholar]
  8. 8.
    Gong JP, Katsuyama Y, Kurokawa T, Osada Y. 2003.. Double-network hydrogels with extremely high mechanical strength. . Adv. Mater. 15:(14):115558. https://doi.org/10.1002/adma.200304907
    [Crossref] [Google Scholar]
  9. 9.
    Sun J-Y, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, et al. 2012.. Highly stretchable and tough hydrogels. . Nature 489:(7414):13336. https://doi.org/10.1038/nature11409
    [Crossref] [Google Scholar]
  10. 10.
    Long R, Hui C-Y, Gong JP, Bouchbinder E. 2021.. The fracture of highly deformable soft materials: a tale of two length scales. . Annu. Rev. Condens. Matter Phys. 12:(1):7194. https://doi.org/10.1146/annurev-conmatphys-042020-023937
    [Crossref] [Google Scholar]
  11. 11.
    Rivlin RS, Thomas AG. 1997.. Rupture of rubber. I. Characteristic energy for tearing. . In Collected Papers of R.S. Rivlin, Vol. 10, ed. GI Barenblatt, DD Joseph , pp. 261542. New York:: Springer
    [Google Scholar]
  12. 12.
    Chen C, Wang Z, Suo Z. 2017.. Flaw sensitivity of highly stretchable materials. . Extrem. Mech. Lett. 10::5057. https://doi.org/10.1016/j.eml.2016.10.002
    [Crossref] [Google Scholar]
  13. 13.
    Yang C, Yin T, Suo Z. 2019.. Polyacrylamide hydrogels. I. Network imperfection. . J. Mech. Phys. Solids 131::4355. https://doi.org/10.1016/j.jmps.2019.06.018
    [Crossref] [Google Scholar]
  14. 14.
    Haque MA, Kurokawa T, Kamita G, Gong JP. 2011.. Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting. . Macromolecules 44:(22):891624. https://doi.org/10.1021/ma201653t
    [Crossref] [Google Scholar]
  15. 15.
    Rylski AK, Cater HL, Mason KS, Allen MJ, Arrowood AJ, et al. 2022.. Polymeric multimaterials by photochemical patterning of crystallinity. . Science 378:(6616):21115. https://doi.org/10.1126/science.add6975
    [Crossref] [Google Scholar]
  16. 16.
    Schreier HW, Orteu J-J, Sutton MA. 2009.. Digital image correlation (DIC). . In Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications, pp. 137. Boston:: Springer
    [Google Scholar]
  17. 17.
    Qi Y, Zou Z, Xiao J, Long R. 2019.. Mapping the nonlinear crack tip deformation field in soft elastomer with a particle tracking method. . J. Mech. Phys. Solids 125::32646. https://doi.org/10.1016/j.jmps.2018.12.018
    [Crossref] [Google Scholar]
  18. 18.
    Kwon HJ, Rogalsky AD, Kovalchick C, Ravichandran G. 2010.. Application of digital image correlation method to biogel. . Polym. Eng. Sci. 50:(8):158593. https://doi.org/10.1002/pen.21636
    [Crossref] [Google Scholar]
  19. 19.
    Liu M, Guo J, Hui C-Y, Zehnder AT. 2019.. Application of digital image correlation (DIC) to the measurement of strain concentration of a PVA dual-crosslink hydrogel under large deformation. . Exp. Mech. 59:(7):102132. https://doi.org/10.1007/s11340-019-00520-4
    [Crossref] [Google Scholar]
  20. 20.
    Barney CW, Chen C, Crosby AJ. 2021.. Deep indentation and puncture of a rigid cylinder inserted into a soft solid. . Soft Matter 22::557480. https://doi.org/10.1039/D0SM01775B
    [Crossref] [Google Scholar]
  21. 21.
    Mzabi S, Berghezan D, Roux S, Hild F, Creton C. 2011.. A critical local energy release rate criterion for fatigue fracture of elastomers. . J. Polym. Sci. B 49:(21):151824. https://doi.org/10.1002/polb.22338
    [Crossref] [Google Scholar]
  22. 22.
    Scetta G, Euchler E, Ju J, Selles N, Heuillet P, et al. 2021.. Self-organization at the crack tip of fatigue-resistant thermoplastic polyurethane elastomers. . Macromolecules 54:(18):872637. https://doi.org/10.1021/acs.macromol.1c00934
    [Crossref] [Google Scholar]
  23. 23.
    Ju J, Cipelletti L, Zoellner S, Narita T, Creton C. 2022.. Multispeckle diffusing wave spectroscopy as a tool to study heterogeneous mechanical behavior in soft solids. . J. Rheol. 66:(6):126983. https://doi.org/10.1122/8.0000401
    [Crossref] [Google Scholar]
  24. 24.
    Sbrescia S, Ju J, Creton C, Engels T, Seitz M. 2023.. Effect of temperature, rate, and molecular weight on the failure behavior of soft block copoly(ether-ester) thermoplastic elastomers. . Soft Matter 19:(27):512741. https://doi.org/10.1039/D3SM00210A
    [Crossref] [Google Scholar]
  25. 25.
    Arrowood A, Ansari MA, Ciccotti M, Huang R, Liechti KM, Sanoja GE. 2023.. Understanding the role of crosslink density and linear viscoelasticity on the shear failure of pressure-sensitive-adhesives. . Soft Matter 19:(32):608896. https://doi.org/10.1039/D3SM00562C
    [Crossref] [Google Scholar]
  26. 26.
    Black AL, Lenhardt JM, Craig SL. 2011.. From molecular mechanochemistry to stress-responsive materials. . J. Mater. Chem. 21:(6):165563. https://doi.org/10.1039/C0JM02636K
    [Crossref] [Google Scholar]
  27. 27.
    Li J, Nagamani C, Moore JS. 2015.. Polymer mechanochemistry: from destructive to productive. . Acc. Chem. Res. 48:(8):218190. https://doi.org/10.1021/acs.accounts.5b00184
    [Crossref] [Google Scholar]
  28. 28.
    Göstl R, Clough JM, Sijbesma RP. 2018.. Polymer chemistry series. . In Mechanochemistry in Materials, ed. YC Simon, SL Craig , pp. 5375. London:: R. Soc. Chem.
    [Google Scholar]
  29. 29.
    Deneke N, Rencheck ML, Davis CS. 2020.. An engineer's introduction to mechanophores. . Soft Matter 16:(27):623052. https://doi.org/10.1039/D0SM00465K
    [Crossref] [Google Scholar]
  30. 30.
    Chen Y, Mellot G, van Luijk D, Creton C, Sijbesma RP. 2021.. Mechanochemical tools for polymer materials. . Chem. Soc. Rev. 50:(6):410040. https://doi.org/10.1039/D0CS00940G
    [Crossref] [Google Scholar]
  31. 31.
    Lloyd EM, Vakil JR, Yao Y, Sottos NR, Craig SL. 2023.. Covalent mechanochemistry and contemporary polymer network chemistry: a marriage in the making. . J. Am. Chem. Soc. 145:(2):75168. https://doi.org/10.1021/jacs.2c09623
    [Crossref] [Google Scholar]
  32. 32.
    Versaw BA, Zeng T, Hu X, Robb MJ. 2021.. Harnessing the power of force: development of mechanophores for molecular release. . J. Am. Chem. Soc. 143:(51):2146173. https://doi.org/10.1021/jacs.1c11868
    [Crossref] [Google Scholar]
  33. 33.
    Groote R, Jakobs RTM, Sijbesma RP. 2013.. Mechanocatalysis: forcing latent catalysts into action. . Polym. Chem. 4:(18):4846. https://doi.org/10.1039/c3py00071k
    [Crossref] [Google Scholar]
  34. 34.
    Davis DA, Hamilton A, Yang J, Cremar LD, Van Gough D, et al. 2009.. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. . Nature 459:(7243):6872. https://doi.org/10.1038/nature07970
    [Crossref] [Google Scholar]
  35. 35.
    Kingsbury CM, May PA, Davis DA, White SR, Moore JS, Sottos NR. 2011.. Shear activation of mechanophore-crosslinked polymers. . J. Mater. Chem. 21:(23):8381. https://doi.org/10.1039/c0jm04015k
    [Crossref] [Google Scholar]
  36. 36.
    Robb MJ, Kim TA, Halmes AJ, White SR, Sottos NR, Moore JS. 2016.. Regioisomer-specific mechanochromism of naphthopyran in polymeric materials. . J. Am. Chem. Soc. 138:(38):1232831. https://doi.org/10.1021/jacs.6b07610
    [Crossref] [Google Scholar]
  37. 37.
    Qian H, Purwanto NS, Ivanoff DG, Halmes AJ, Sottos NR, Moore JS. 2021.. Fast, reversible mechanochromism of regioisomeric oxazine mechanophores: developing in situ responsive force probes for polymeric materials. . Chemistry 7:(4):108091. https://doi.org/10.1016/j.chempr.2021.02.014
    [Crossref] [Google Scholar]
  38. 38.
    Chen Y, Kovalenko A, Brûlet A, Bresson B, Lantheaume A, et al. 2023.. Spiropyran mechano-activation in model silica-filled elastomer nanocomposites reveals how macroscopic stress in uniaxial tension transfers from filler/filler contacts to highly stretched polymer strands. . Macromolecules 56:(14):533645. https://doi.org/10.1021/acs.macromol.3c00415
    [Crossref] [Google Scholar]
  39. 39.
    Li J, Shiraki T, Hu B, Wright RAE, Zhao B, Moore JS. 2014.. Mechanophore activation at heterointerfaces. . J. Am. Chem. Soc. 136:(45):1592528. https://doi.org/10.1021/ja509949d
    [Crossref] [Google Scholar]
  40. 40.
    Rencheck ML, Mackey BT, Hu YY, Chang CC, Sangid MD, Davis CS. 2022.. Identifying internal stresses during mechanophore activation. . Adv. Eng. Mater. 24:(4):2270015. https://doi.org/10.1002/adem.202101080
    [Crossref] [Google Scholar]
  41. 41.
    Gohl JA, Wiley TJ, Chang H-C, Chang C-C, Davis CS. 2023.. Stress quantification in a composite matrix via mechanophores. . Front. Soft Matter 3::1125163. https://doi.org/10.3389/frsfm.2023.1125163
    [Crossref] [Google Scholar]
  42. 42.
    Zhao Z, Lei H, Chen H-S, Zhang Q, Wang P, Lei M. 2021.. A multiscale tensile failure model for double network elastomer composites. . Mech. Mater. 163::104074. https://doi.org/10.1016/j.mechmat.2021.104074
    [Crossref] [Google Scholar]
  43. 43.
    Chen Y, Spiering AJH, Karthikeyan S, Peters GWM, Meijer EW, Sijbesma RP. 2012.. Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. . Nat. Chem. 4:(7):55962. https://doi.org/10.1038/nchem.1358
    [Crossref] [Google Scholar]
  44. 44.
    Chen Y, Sijbesma RP. 2014.. Dioxetanes as mechanoluminescent probes in thermoplastic elastomers. . Macromolecules 47:(12):3797805. https://doi.org/10.1021/ma500598t
    [Crossref] [Google Scholar]
  45. 45.
    Ducrot E, Chen Y, Bulters M, Sijbesma RP, Creton C. 2014.. Toughening elastomers with sacrificial bonds and watching them break. . Science 344:(6180):18689. https://doi.org/10.1126/science.1248494
    [Crossref] [Google Scholar]
  46. 46.
    Millereau P, Ducrot E, Clough JM, Wiseman ME, Brown HR, et al. 2018.. Mechanics of elastomeric molecular composites. . PNAS 115:(37):911015. https://doi.org/10.1073/pnas.1807750115
    [Crossref] [Google Scholar]
  47. 47.
    Meijer EW. 1982.. Chemiluminescence in action: synthesis, properties, and applications of 1,2-dioxetanes. PhD Diss. , Univ. Groningen, Groningen, Neth:.
    [Google Scholar]
  48. 48.
    Clough JM, Sijbesma RP. 2014.. Dioxetane scission products unchanged by mechanical force. . ChemPhysChem 15:(16):356571. https://doi.org/10.1002/cphc.201402365
    [Crossref] [Google Scholar]
  49. 49.
    Göstl R, Sijbesma RP. 2016.. π-Extended anthracenes as sensitive probes for mechanical stress. . Chem. Sci. 7:(1):37075. https://doi.org/10.1039/C5SC03297K
    [Crossref] [Google Scholar]
  50. 50.
    Stratigaki M, Baumann C, van Breemen LCA, Heuts JPA, Sijbesma RP, Göstl R. 2020.. Fractography of poly(N-isopropylacrylamide) hydrogel networks crosslinked with mechanofluorophores using confocal laser scanning microscopy. . Polym. Chem. 11:(2):35866. https://doi.org/10.1039/C9PY00819E
    [Crossref] [Google Scholar]
  51. 51.
    Baumann C, Willis-Fox N, Campagna D, Rognin E, Marten P, et al. 2022.. Regiochemical effects for the mechanochemical activation of 9-π-extended anthracene-maleimide Diels-Alder adducts. . J. Polym. Sci. 60:(22):312833. https://doi.org/10.1002/pol.20220342
    [Crossref] [Google Scholar]
  52. 52.
    Morelle XP, Sanoja GE, Castagnet S, Creton C. 2021.. 3D fluorescent mapping of invisible molecular damage after cavitation in hydrogen exposed elastomers. . Soft Matter 17:(16):426674. https://doi.org/10.1039/d1sm00325a
    [Crossref] [Google Scholar]
  53. 53.
    Gent AN, Wang C. 1991.. Fracture mechanics and cavitation in rubber-like solids. . J. Mater. Sci. 26:(12):339295. https://doi.org/10.1007/bf01124691
    [Crossref] [Google Scholar]
  54. 54.
    Lin YY, Hui CY. 2004.. Cavity growth from crack-like defects in soft materials. . Int. J. Fract. 126:(3):20521. https://doi.org/10.1023/b:frac.0000026510.60747.3a
    [Crossref] [Google Scholar]
  55. 55.
    Lefèvre V, Ravi-Chandar K, Lopez-Pamies O. 2015.. Cavitation in rubber: An elastic instability or a fracture phenomenon?. Int. J. Fract. 192:(1):123. https://doi.org/10.1007/s10704-014-9982-0
    [Crossref] [Google Scholar]
  56. 56.
    Raayai-Ardakani S, Earl DR, Cohen T. 2019.. The intimate relationship between cavitation and fracture. . Soft Matter 15:(25):49995005. https://doi.org/10.1039/c9sm00570f
    [Crossref] [Google Scholar]
  57. 57.
    Kim JY, Liu Z, Weon BM, Cohen T, Hui C-YY, et al. 2018.. Extreme cavity expansion in soft solids: damage without fracture. . Sci. Adv. 6:(13):eaaz0418. https://doi.org/10.1126/sciadv.aaz0418
    [Crossref] [Google Scholar]
  58. 58.
    Kumar A, Lopez-Pamies O. 2021.. The poker-chip experiments of Gent and Lindley 1959 explained. . J. Mech. Phys. Solids 150::104359. https://doi.org/10.1016/j.jmps.2021.104359
    [Crossref] [Google Scholar]
  59. 59.
    Gossweiler GR, Kouznetsova TB, Craig SL. 2015.. Force-rate characterization of two spiropyran-based molecular force probes. . J. Am. Chem. Soc. 137:(19):614851. https://doi.org/10.1021/jacs.5b02492
    [Crossref] [Google Scholar]
  60. 60.
    Beyer MK. 2000.. The mechanical strength of a covalent bond calculated by density functional theory. . J. Chem. Phys. 112:(17):730712. https://doi.org/10.1063/1.481330
    [Crossref] [Google Scholar]
  61. 61.
    Ryu CY, Ruokolainen J, Fredrickson GH, Kramer EJ, Hahn SF. 2002.. Chain architecture effects on deformation and fracture of block copolymers with unentangled matrices. . Macromolecules 35:(6):215766. https://doi.org/10.1021/ma011576r
    [Crossref] [Google Scholar]
  62. 62.
    Jiang S, Zhang L, Xie T, Lin Y, Zhang H, et al. 2013.. Mechanoresponsive PS-PnBA-PS triblock copolymers via covalently embedding mechanophore. . ACS Macro Lett. 2:(8):7059. https://doi.org/10.1021/mz400198n
    [Crossref] [Google Scholar]
  63. 63.
    Lake GJ, Thomas AG. 1967.. The strength of highly elastic materials. . Proc. R. Soc. A 300:(1460):10819. https://doi.org/10.1098/rspa.1967.0160
    [Google Scholar]
  64. 64.
    Huo Z, Arora S, Kong VA, Myrga BJ, Statt A, Laaser JE. 2023.. Effect of polymer composition and morphology on mechanochemical activation in nanostructured triblock copolymers. . Macromolecules 56:(5):184554. https://doi.org/10.1021/acs.macromol.2c02475
    [Crossref] [Google Scholar]
  65. 65.
    Slootman J, Waltz V, Yeh CJ, Baumann C, Göstl R, et al. 2020.. Quantifying rate- and temperature-dependent molecular damage in elastomer fracture. . Phys. Rev. X 10:(4):041045. https://doi.org/10.1103/PhysRevX.10.041045
    [Google Scholar]
  66. 66.
    Greensmith HW, Thomas AG. 1956.. Rupture of rubber. III. Determination of tear properties. . Rubber Chem. Technol. 29:(2):37281. https://doi.org/10.5254/1.3542533
    [Crossref] [Google Scholar]
  67. 67.
    Smith TL. 1963.. Ultimate tensile properties of elastomers. I. Characterization by a time and temperature independent failure envelope. . J. Polym. Sci. A 1:(12):3597615. https://doi.org/10.1002/pol.1963.100011207
    [Google Scholar]
  68. 68.
    Smith TL. 1978.. Strength of elastomers: a perspective. . Rubber Chem. Technol. 51:(2):22552. https://doi.org/10.5254/1.3545831
    [Crossref] [Google Scholar]
  69. 69.
    Gent AN, Lai S-M, Nah C, Wang C. 1994.. Viscoelastic effects in cutting and tearing rubber. . Rubber Chem. Technol. 67:(4):61018. https://doi.org/10.5254/1.3538696
    [Crossref] [Google Scholar]
  70. 70.
    Kumar SK, Benicewicz BC, Vaia RA, Winey KI. 2017.. 50th anniversary perspective: Are polymer nanocomposites practical for applications?. Macromolecules 50:(3):71431. https://doi.org/10.1021/acs.macromol.6b02330
    [Crossref] [Google Scholar]
  71. 71.
    Na Y-H, Tanaka Y, Kawauchi Y, Furukawa H, Sumiyoshi T, et al. 2006.. Necking phenomenon of double-network gels. . Macromolecules 39:(14):464145. https://doi.org/10.1021/ma060568d
    [Crossref] [Google Scholar]
  72. 72.
    Huang M, Furukawa H, Tanaka Y, Nakajima T, Osada Y, Gong JP. 2007.. Importance of entanglement between first and second components in high-strength double network gels. . Macromolecules 40:(18):665864. https://doi.org/10.1021/ma062482q
    [Crossref] [Google Scholar]
  73. 73.
    Gong JP. 2010.. Why are double network hydrogels so tough?. Soft Matter 6:(12):2583. https://doi.org/10.1039/b924290b
    [Crossref] [Google Scholar]
  74. 74.
    Fukao K, Nakajima T, Nonoyama T, Kurokawa T, Kawai T, Gong JP. 2020.. Effect of relative strength of two networks on the internal fracture process of double network hydrogels as revealed by in situ small-angle x-ray scattering. . Macromolecules 53:(4):115463. https://doi.org/10.1021/acs.macromol.9b02562
    [Crossref] [Google Scholar]
  75. 75.
    Slootman J, Yeh CJ, Millereau P, Comtet J, Creton C. 2022.. A molecular interpretation of the toughness of multiple network elastomers at high temperature. . PNAS 119:(13):e2116127119. https://doi.org/10.1073/pnas.2116127119
    [Crossref] [Google Scholar]
  76. 76.
    Boots JNM, te Brake DW, Clough JM, Tauber J, Ruiz-Franco J, et al. 2022.. Quantifying bond rupture during indentation fracture of soft polymer networks using molecular mechanophores. . Phys. Rev. Mater. 6:(2):025605. https://doi.org/10.1103/PhysRevMaterials.6.025605
    [Crossref] [Google Scholar]
  77. 77.
    Clough JM, Creton C, Craig SL, Sijbesma RP. 2016.. Covalent bond scission in the Mullins effect of a filled elastomer: real-time visualization with mechanoluminescence. . Adv. Funct. Mater. 26:(48):906374. https://doi.org/10.1002/adfm.201602490
    [Crossref] [Google Scholar]
  78. 78.
    Chen Y, Sanoja G, Creton C. 2021.. Mechanochemistry unveils stress transfer during sacrificial bond fracture of tough multiple network elastomers. . Chem. Sci. 12:(33):11098108. https://doi.org/10.1039/d1sc03352b
    [Crossref] [Google Scholar]
  79. 79.
    Sanoja GE, Morelle XP, Comtet J, Yeh CJ, Ciccotti M, Creton C. 2021.. Why is mechanical fatigue different from toughness in elastomers? The role of damage by polymer chain scission. . Sci. Adv. 7:(42):eabg9410. https://doi.org/10.1126/sciadv.abg9410
    [Crossref] [Google Scholar]
  80. 80.
    Gong JP. 2014.. Materials both tough and soft. . Science 344:(6180):16162. https://doi.org/10.1126/science.1252389
    [Crossref] [Google Scholar]
  81. 81.
    Gossweiler GR, Hewage GB, Soriano G, Wang Q, Welshofer GW, et al. 2014.. Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. . ACS Macro Lett. 3:(3):21619. https://doi.org/10.1021/mz500031q
    [Crossref] [Google Scholar]
  82. 82.
    Li M, Liu W, Zhang Q, Zhu S. 2017.. Mechanical force sensitive acrylic latex coating. . ACS Appl. Mater. Interfaces 9:(17):1515663. https://doi.org/10.1021/acsami.7b04154
    [Crossref] [Google Scholar]
  83. 83.
    Fang X, Zhang H, Chen Y, Lin Y, Xu Y, Weng W. 2013.. Biomimetic modular polymer with tough and stress sensing properties. . Macromolecules 46:(16):656674. https://doi.org/10.1021/ma4014862
    [Crossref] [Google Scholar]
  84. 84.
    Chen Y, Zhang H, Fang X, Lin Y, Xu Y, Weng W. 2014.. Mechanical activation of mechanophore enhanced by strong hydrogen bonding interactions. . ACS Macro Lett. 3:(2):14145. https://doi.org/10.1021/mz400600r
    [Crossref] [Google Scholar]
  85. 85.
    Beiermann BA, Kramer SLB, May PA, Moore JS, White SR, Sottos NR. 2014.. The effect of polymer chain alignment and relaxation on force-induced chemical reactions in an elastomer. . Adv. Funct. Mater. 24:(11):152937. https://doi.org/10.1002/adfm.201302341
    [Crossref] [Google Scholar]
  86. 86.
    Silberstein MN, Cremar LD, Beiermann BA, Kramer SB, Martinez TJ, et al. 2014.. Modeling mechanophore activation within a viscous rubbery network. . J. Mech. Phys. Solids 63:(1):14153. https://doi.org/10.1016/j.jmps.2013.09.014
    [Crossref] [Google Scholar]
  87. 87.
    Kim TA, Robb MJ, Moore JS, White SR, Sottos NR. 2018.. Mechanical reactivity of two different spiropyran mechanophores in polydimethylsiloxane. . Macromolecules 51::917783. https://doi.org/10.1021/acs.macromol.8b01919
    [Crossref] [Google Scholar]
  88. 88.
    Kim TA, Lamuta C, Kim H, Leal C, Sottos NR. 2020.. Interfacial force-focusing effect in mechanophore-linked nanocomposites. . Adv. Sci. 7:(7):1903464. https://doi.org/10.1002/advs.201903464
    [Crossref] [Google Scholar]
  89. 89.
    Chen Y, Yeh CJ, Qi Y, Long R, Creton C. 2020.. From force-responsive molecules to quantifying and mapping stresses in soft materials. . Sci. Adv. 6:(20):eaaz5093. https://doi.org/10.1126/sciadv.aaz5093
    [Crossref] [Google Scholar]
  90. 90.
    Chen Y, Yeh CJ, Guo Q, Qi Y, Long R, Creton C. 2021.. Fast reversible isomerization of merocyanine as a tool to quantify stress history in elastomers. . Chem. Sci. 12:(5):1693701. https://doi.org/10.1039/d0sc06157c
    [Crossref] [Google Scholar]
  91. 91.
    Brown HR. 2007.. A model of the fracture of double network gels. . Macromolecules 40:(10):381518. https://doi.org/10.1021/ma062642y
    [Crossref] [Google Scholar]
  92. 92.
    Brown HR. 1991.. A molecular interpretation of the toughness of glassy polymers. . Macromolecules 24:(10):275256. https://doi.org/10.1021/ma00010a018
    [Crossref] [Google Scholar]
  93. 93.
    Kiyama R, Yoshida M, Nonoyama T, Sedlačík T, Jinnai H, et al. 2023.. Nanoscale TEM imaging of hydrogel network architecture. . Adv. Mater. 35:(1):2208902. https://doi.org/10.1002/adma.202208902
    [Crossref] [Google Scholar]
  94. 94.
    Persson BNJ, Brener EA. 2005.. Crack propagation in viscoelastic solids. . Phys. Rev. E 71:(3):036123. https://doi.org/10.1103/PhysRevE.71.036123
    [Crossref] [Google Scholar]
  95. 95.
    Hui C-Y, Zhu B, Long R. 2022.. Steady state crack growth in viscoelastic solids: a comparative study. . J. Mech. Phys. Solids 159::104748. https://doi.org/10.1016/j.jmps.2021.104748
    [Crossref] [Google Scholar]
  96. 96.
    Dubach FFC, Ellenbroek WG, Storm C. 2021.. How accurately do mechanophores report on bond scission in soft polymer materials?. J. Polym. Sci. 59:(12):118899. https://doi.org/10.1002/pol.20210025
    [Crossref] [Google Scholar]
  97. 97.
    Matsuda T, Kawakami R, Nakajima T, Gong JP. 2020.. Crack tip field of a double-network gel: visualization of covalent bond scission through mechanoradical polymerization. . Macromolecules 53:(20):878795. https://doi.org/10.1021/acs.macromol.0c01485
    [Crossref] [Google Scholar]
  98. 98.
    Kubota K, Toyoshima N, Miura D, Jiang J, Maeda S, et al. 2021.. Introduction of a luminophore into generic polymers via mechanoradical coupling with a prefluorescent reagent. . Angew. Chem. 133:(29):1613944. https://doi.org/10.1002/ange.202105381
    [Crossref] [Google Scholar]
  99. 99.
    Zheng Y, Jiang J, Jin M, Miura D, Lu FX, et al. 2023.. In situ and real-time visualization of mechanochemical damage in double-network hydrogels by prefluorescent probe via oxygen-relayed radical trapping. . J. Am. Chem. Soc. 145:(13):737689. https://doi.org/10.1021/jacs.2c13764
    [Crossref] [Google Scholar]
  100. 100.
    Huang Q, Hassager O, Madsen J. 2022.. Spatial radical distribution in fractured polymer glasses and melts visualized using a profluorescent nitroxide probe. . Macromolecules 55:(21):943141. https://doi.org/10.1021/acs.macromol.2c01594
    [Crossref] [Google Scholar]
  101. 101.
    Matsuda T, Kawakami R, Nakajima T, Hane Y, Gong JP. 2021.. Revisiting the origins of the fracture energy of tough double-network hydrogels with quantitative mechanochemical characterization of the damage zone. . Macromolecules 54:(22):1033139. https://doi.org/10.1021/acs.macromol.1c01214
    [Crossref] [Google Scholar]
  102. 102.
    Matsuda T, Kawakami R, Namba R, Nakajima T, Gong JP. 2019.. Mechanoresponsive self-growing hydrogels inspired by muscle training. . Science 363:(6426):5048
    [Crossref] [Google Scholar]
  103. 103.
    Wang ZJ, Wang S, Jiang J, Hu Y, Nakajima T, et al. 2024.. Effect of the activation force of mechanophore on its activation selectivity and efficiency in polymer networks. . J. Am. Chem. Soc. 146:(19):1333646. https://doi.org/10.1021/jacs.4c01879
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092220-113154
Loading
/content/journals/10.1146/annurev-chembioeng-092220-113154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error