1932

Abstract

Hydrogen is similar to natural gas in terms of its physical and chemical properties but does not release carbon dioxide when burnt. This makes hydrogen an energy carrier of great importance in climate policy, especially as an enabler of increasing integration of volatile renewable energy, progressive electrification, and effective emission reductions in the hard-to-decarbonize sectors. Leaving aside the problems of transporting hydrogen as a liquid, technological challenges along the entire supply chain can be considered as solved in principle, as shown in the experimental findings of the Hydrogen Innovation Program of the German Technical and Scientific Association for Gas and Water. By scaling up production and end-use capacities and, most importantly, producing hydrogen in regions with abundant renewable energy, hydrogen and its applications can displace natural gas at affordable prices in the medium term. However, this substitution will take place at different rates in different regions and with different levels of added value, all of which must be understood for hydrogen uptake to be successful.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-100522-110306
2024-07-24
2025-02-13
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/15/1/annurev-chembioeng-100522-110306.html?itemId=/content/journals/10.1146/annurev-chembioeng-100522-110306&mimeType=html&fmt=ahah

Literature Cited

  1. [Google Scholar]
  2. 2.
    Dtsch. Ver. Gas Wasserfaches e.V. (DVGW). 2022.. Hydrogen research projects 2022. Publ. , DVGW, Bonn, Ger.: https://www.dvgw.de/medien/dvgw/leistungen/publikationen/wasserstoff-forschungsprojekte-dvgw-2022engl.pdf
    [Google Scholar]
  3. 3.
    Bundesanst. Mater. -prüfung (BAM). 2016.. Abschlussbericht zum forschungsvorhaben 2539, sicherheitstechnische eigenschaften von erdgas-wasserstoff-gemischen. Rep. , BAM, Berlin:. https://opus4.kobv.de/opus4-bam/files/37297/Schroeder_BAM-VH+2539.pdf
    [Google Scholar]
  4. 4.
    Deloitte. 2023.. Green hydrogen: energizing the path to net zero. Perspective, Deloitte, New York:. https://www.deloitte.com/global/en/issues/climate/green-hydrogen.html
    [Google Scholar]
  5. 5.
    Heneka M, Mörs F. 2022.. Ecological evaluation of hydrogen supply—sensitivity analysis on GHG emission of hydrogen. Present., Dtsch. Ver. Gas Wasserfaches e.V., Bonn, Ger.: https://www.dvgw.de/medien/dvgw/forschung/berichte/g202148-presentation-ghg-emissions-hydrogen-2022-05.pdf
    [Google Scholar]
  6. 6.
    Dtsch. Ver. Gas Wasserfaches e.V. (DVGW). 2023.. Wasserstoff verkleinert den CO2-fußabdruck—auf vielen wegen. Publ. , DVGW, Bonn, Ger.: https://www.dvgw.de/medien/dvgw/leistungen/publikationen/h2-verkleinert-co2-fussabdruck-dvgw.pdf
    [Google Scholar]
  7. 7.
    Int. Renew. Energy Agency (IRENA). 2023.. Hydrogen. https://www.irena.org/Energy-Transition/Technology/Hydrogen
    [Google Scholar]
  8. 8.
    Albrecht U, Bünger U, Michalski J, Raksha T, Wurster R, Zerhusen J. 2020.. International hydrogen strategies—a study commissioned by and in cooperation with the World Energy Council. Study, Weltengierat, Ger.: https://www.weltenergierat.de/publikationen/studien/international-hydrogen-strategies/
    [Google Scholar]
  9. 9.
    Int. Gas Union (IGU). Global carbon budget. Doc. , IGU, Barcelona:. https://www.igu.org/wp-content/uploads/2020/06/Sustainability-min.pdf
    [Google Scholar]
  10. 10.
    Dtsch. Ver. Gas Wasserfaches e.V. (DVGW). 2023.. Investigation of steel materials for gas pipelines and plants for assessment of their sustainability with hydrogen. Rep. , DVGW, Bonn, Ger.: https://www.dvgw.de/medien/dvgw/forschung/berichte/g202006-sywesth2-steel-dvgw.pdf
    [Google Scholar]
  11. 11.
    Int. Renew. Energy Agency (IRENA). 2022.. Geopolitics of the energy transformation: the hydrogen factor. Rep. , IRENA, Abu Dhabi:. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jan/IRENA_Geopolitics_Hydrogen_2022.pdf
    [Google Scholar]
  12. 12.
    Mischner J, Fasold HG, Heymer J. 2015.. gas2energy.net: Systemplanerische Grundlagen der Gasversorgung. Munich, Ger.:: Div. Dtsch. Ind. GmbH. , 2nd ed..
    [Google Scholar]
  13. 13.
    Gas4Climate. 2022.. The European hydrogen backbone—a European hydrogen infrastructure vision covering 28 countries. Rep. , Gas4Climate. https://ehb.eu/files/downloads/ehb-report-220428-17h00-interactive-1.pdf
    [Google Scholar]
  14. 14.
    Ver. Fernleitungsnetzbetreiber Gas e.V. (FNB). 2023.. Planungsstand wasserstoff-kernnetz. Rep. , FNB, Berlin:. https://fnb-gas.de/wp-content/uploads/2023/07/2023-07-12_FNB-Gas_Planungsstand-Wasserstoff-Kernnetz.pdf
    [Google Scholar]
  15. 15.
    Schoppen H. 2021.. Entwicklung einer konzeption zur transformation von gasverteilnetzen vom medium erdgas auf wasserstoff. Master's Thesis , Univ. Bochum, Bocum, Ger:.
    [Google Scholar]
  16. 16.
    Wikipedia. 2023.. Wasserstofftanker. https://de.wikipedia.org/wiki/Wasserstofftanker
    [Google Scholar]
  17. 17.
    Dtsch. Ver. Gas Wasserfaches e.V. (DVGW). 2023.. Kurzstudie zu transportoptionen von wasserstoff. Rep. G 202224 , DVGW, Bonn, Ger.: https://www.dvgw.de/themen/forschung-und-innovation/forschungsprojekte/dvgw-forschungsprojekt-h2-import
    [Google Scholar]
  18. 18.
    Energie Weser Ems (EWE). HyCAVmobil—EWE is starting a groundbreaking research project on hydrogen storage. . EWE AG, Dec. 17. https://www.ewe.com/de/media-center/neuigkeiten/2020/hycavmobil-ewe-startet-ein-wegweisendes-forschungsprojekt-zur-wasserstoffspeicherung
    [Google Scholar]
  19. 19.
    Undergr. Sun Convers. 2023.. Nachhaltiger kohlenstoff-kreislauf. Doc., Undergr. Sun Convers., Vienna:. https://www.underground-sun-conversion.at/fileadmin/bilder/02_neu_sunconversion/Startseite/kohlenstoffkreislauf_dt.pdf
    [Google Scholar]
  20. [Google Scholar]
  21. 21.
    Int. Energy Agency. 2019.. The future of hydrogen. Rep. , Int. Energy Agency, Paris:. https://www.iea.org/reports/the-future-of-hydrogen
    [Google Scholar]
  22. 22.
    Int. Renew. Energy Agency (IRENA). 2021.. Green hydrogen supply. A guide to policy making. Doc., IRENA , Abu Dhabi:. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/May/IRENA_Green_Hydrogen_Supply_2021.pdf
    [Google Scholar]
  23. 23.
    Hydrogen4EU. 2022.. Hydrogen4EU: charting pathway to net zero—2022 edition. Rep. , Hydrogen4EU. https://www.researchgate.net/publication/351351583_Hydrogen_4_EU_Hydrogen_for_Europe_report_-_Charting_pathways_to_enable_net_zero_-_2021_Edition
    [Google Scholar]
  24. 24.
    Islami B, Giese A, Biebl M, Fleischmann B, Overath J, Nelles C. 2021.. Wasserstoffnutzung in der glasindustrie als möglichkeit zur reduzierung von CO2-emissionen und des einsatzes erneuerbarer gase – untersuchung der auswirkung auf den gasherstellungsprozess und analyse der potenziale in NRW (Akronym: HyGlass). Rep. , Gas-Wärme Inst. Essen, Essen, Ger.: https://www.bvglas.de/index.php?eID=dumpFile&t=f&f=2514&token=69553e2ada72ffc160a9ebce8174bfcedf2870ec
    [Google Scholar]
  25. 25.
    Dtsch. Ver. Gas Wasserfaches e.V. (DVGW). 2022.. Plattform grüne industrie. Doc., DVGW, Bonn, Ger.: https://www.dvgw.de/medien/dvgw/verein/energiewende/bilder/wasserstoff/plattform-gruene-industrie-flyer-dvgw.pdf
    [Google Scholar]
  26. 26.
    Dtsch. Ver. Gas Wasserfaches e.V. (DVGW). 2023.. Normungsroadmap wasserstoff. Doc., DVGW, Bonn, Ger.: https://www.dvgw.de/themen/energiewende/wasserstoff-und-energiewende/normungsroadmap-wasserstofftechnologien
    [Google Scholar]
  27. 27.
    Eur. Comm. 2023.. State aid: Commission approves German €550 million direct grant and conditional payment mechanism of up to €1.45 billion to support ThyssenKrupp Steel Europe in decarbonising its steel production and accelerating renewable hydrogen uptake. Press Rel., July 20. https://ec.europa.eu/commission/presscorner/detail/en/IP_23_3928
    [Google Scholar]
  28. 28.
    Wikipedia. 2023.. Ammoniak. https://de.wikipedia.org/wiki/Ammoniak
    [Google Scholar]
  29. 29.
    Eur. Automob. Manuf. Assoc. (ACEA). 2020.. Making the transition to zero emission mobility - 2020 progress report. Rep. , ACEA, Brussels:. https://www.acea.auto/uploads/publications/ACEA_progress_report_2020.pdf
    [Google Scholar]
  30. 30.
    VGBE. 2023.. Fact sheet H2—readiness für gasturbinenanlagen. Fact Sheet, VGBE, Essen, Ger.: https://www.vgbe.energy/?jet_download=25742
    [Google Scholar]
  31. 31.
    Dörr H, Pietsch P, Giese A, Burmeister F. 2022.. Roadmap Gas 2050 – TP3: H2-readiness gasanwendung. Work. Pap. , Dtsch. Ver. Gas Wasserfaches e.V., Bonn, Ger.: https://www.dvgw.de/medien/dvgw/forschung/events/g201824-rmg2050-vortrag-tp3-burmeister-gat22.pdf
    [Google Scholar]
  32. 32.
    Dtsch. Ver. Gas Wasserfaches e.V. (DVGW). 2022.. H2–20 – Field test involving the injection of a 20% hydrogen gas mix into the distribution grid. . In Hydrogen Research Projects 2022, p. 55. Bonn, Ger.:: DVGW. https://www.dvgw.de/medien/dvgw/leistungen/publikationen/wasserstoff-forschungsprojekte-dvgw-2022engl.pdf
    [Google Scholar]
  33. 33.
    Robinson Z, Peacock A, Thompson M, Catney P. 2022.. Consumer perception of blended hydrogen in the home: learning from Hydeplay. Rep. , Keele Univ., Keele, UK:. https://www.keele.ac.uk/sustainable-futures/ourchallengethemes/providingcleanenergyreducingcarbonemissions/hydeploy/customer-perceptions-report.pdf
    [Google Scholar]
  34. 34.
    DAA GmbH. 2023.. H2-ready heizung: bedeutung, kosten und betrieb. https://www.effizienzhaus-online.de/h2-ready-heizung-bedeutung-kosten-und-betrieb/
    [Google Scholar]
  35. 35.
    Linke G. 2023.. Energiegase: methan, biogas, wasserstoff, synthesegase. Lectures, Ruhr Univ. Bochum, Bochum, Ger:.
    [Google Scholar]
  36. 36.
    Bundesverb. WindEnergie. 2023.. Windenergie in Deutschland—zahlen und fakten. https://www.wind-energie.de/themen/zahlen-und-fakten/deutschland/
    [Google Scholar]
  37. 37.
    KPMG, Kearny. 2023.. Statistical review of world energy, 72nd ed. Rep. , Energy Inst., London:. http://www.energyinst.org/statistical-review
    [Google Scholar]
  38. 38.
    Gas4Climate. 2020.. Gas decarbonisation pathways 2020–2050. Rep. , Gas4Climate. https://gasforclimate2050.eu/wp-content/uploads/2020/04/Gas-for-Climate-Gas-Decarbonisation-Pathways-2020-2050.pdf
    [Google Scholar]
  39. 39.
    Chen J. 2023.. Contract for differences (CFD) definition, uses, and examples. . Investopedia, June 18. https://www.investopedia.com/terms/c/contractfordifferences.asp
    [Google Scholar]
  40. 40.
    Dtsch.-Nor. Handelskamm. 2022.. German-Norwegian Working Group on Hydrogen: open meeting & networking. https://norwegen.ahk.de/veranstaltungen/kommende-veranstaltungen/detailansicht/german-norwegian-working-group-on-hydrogen-open-meeting-networking
    [Google Scholar]
  41. 41.
    Ger.-Aust. Chamb. Ind. Commer. 2023.. German-Australian Hydrogen Alliance. https://australien.ahk.de/en/market-entry/german-australian-hydrogen-alliance
    [Google Scholar]
  42. 42.
    Int. Renew. Energy Agency (IRENA). 2022.. Decarbonising end-use sectors: green hydrogen certification. Rep. , IRENA, Abu Dhabi:. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Mar/IRENA_Green_Hydrogen_Certification_Brief_2022.pdf
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-100522-110306
Loading
/content/journals/10.1146/annurev-chembioeng-100522-110306
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error