1932

Abstract

This article provides a systematic review of recent progress in optimization-based process synthesis. First, we discuss multiscale modeling frameworks featuring targeting approaches, phenomena-based modeling, unit operation–based modeling, and hybrid modeling. Next, we present the expanded scope of process synthesis objectives, highlighting the considerations of sustainability and operability to assure cost-competitive production in an increasingly dynamic market with growing environmental awareness. Then, we review advances in optimization algorithms and tools, including emerging machine learning–and quantum computing–assisted approaches. We conclude by summarizing the advances in and perspectives for process synthesis strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-100522-112139
2024-07-24
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/15/1/annurev-chembioeng-100522-112139.html?itemId=/content/journals/10.1146/annurev-chembioeng-100522-112139&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Harmsen GJ. 2004.. Industrial best practices of conceptual process design. . Chem. Eng. Proc. 43:(5):67175
    [Crossref] [Google Scholar]
  2. 2.
    Nishida N, Stephanopoulos G, Westerberg AW. 1981.. A review of process synthesis. . AIChE J. 27:(3):32151
    [Crossref] [Google Scholar]
  3. 3.
    Douglas JM. 1988.. Conceptual Design of Chemical Processes. New York:: McGraw-Hill
    [Google Scholar]
  4. 4.
    Moussa AS, ed. 2022.. Systematic Process Development: From Idea to Value via Technology Readiness Levels. Washington, DC:: ACS
    [Google Scholar]
  5. 5.
    Van Gerven T, Stankiewicz A. 2009.. Structure, energy, synergy, time—the fundamentals of process intensification. . Ind. Eng. Chem. Res. 48:(5):246574
    [Crossref] [Google Scholar]
  6. 6.
    Siirola JJ. 1996.. Strategic process synthesis: advances in the hierarchical approach. . Comput. Chem. Eng. 20::S163743
    [Crossref] [Google Scholar]
  7. 7.
    Chen Q, Grossmann IE. 2017.. Recent developments and challenges in optimization-based process synthesis. . Annu. Rev. Chem. Biomol. Eng. 8::24983
    [Crossref] [Google Scholar]
  8. 8.
    Mitsos A, Asprion N, Floudas CA, Bortz M, Baldea M, et al. 2018.. Challenges in process optimization for new feedstocks and energy sources. . Comput. Chem. Eng. 113::20921
    [Crossref] [Google Scholar]
  9. 9.
    Pistikopoulos EN, Barbosa-Povoa A, Lee JH, Misener R, Mitsos A, et al. 2021.. Process systems engineering—the generation next?. Comput. Chem. Eng. 147::107252
    [Crossref] [Google Scholar]
  10. 10.
    Daoutidis P, Zhang Q. 2022.. From Amundson, Aris, and Sargent to the future of process systems engineering. . Chem. Eng. Res. Des. 188::70413
    [Crossref] [Google Scholar]
  11. 11.
    Lee JH, Shin J, Realff MJ. 2018.. Machine learning: overview of the recent progresses and implications for the process systems engineering field. . Comput. Chem. Eng. 114::11121
    [Crossref] [Google Scholar]
  12. 12.
    Bernal DE, Ajagekar A, Harwood SM, Stober ST, Trenev D, You F. 2022.. Perspectives of quantum computing for chemical engineering. . AIChE J. 68:(6):e17651
    [Crossref] [Google Scholar]
  13. 13.
    Ming D, Hildebrandt D, Glasser D. 2010.. A revised method of attainable region construction utilizing rotated bounding hyperplanes. . Ind. Eng. Chem. Res. 49:(21):1054957
    [Crossref] [Google Scholar]
  14. 14.
    Frumkin JA, Doherty MF. 2018.. Target bounds on reaction selectivity via Feinberg's CFSTR equivalence principle. . AIChE J. 64:(3):92639
    [Crossref] [Google Scholar]
  15. 15.
    Horn F. 1964.. Attainable and non-attainable regions in chemical reaction technique. . In Proceedings of the 3rd European Symposium on Chemical Reaction Engineering, pp. 110. Oxford, UK:: Pergamon
    [Google Scholar]
  16. 16.
    Okonye LU, Hildebrandt D, Glasser D, Patel B. 2012.. Attainable regions for a reactor: application of ΔH–ΔG plot. . Chem. Eng. Res. Des. 90:(10):1590609
    [Crossref] [Google Scholar]
  17. 17.
    Feinberg M, Ellison P. 2001.. General kinetic bounds on productivity and selectivity in reactor-separator systems of arbitrary design: principles. . Ind. Eng. Chem. Res. 40:(14):318194
    [Crossref] [Google Scholar]
  18. 18.
    Charis G, Danha G, Glasser D, Muzenda E. 2020.. Development trajectory of the attainable region optimization method: trends and opportunities for applications in the waste-to-energy field. . S. Afr. J. Chem. Eng. 32:(1):1326
    [Google Scholar]
  19. 19.
    Klemeš JJ, Kravanja Z. 2013.. Forty years of heat integration: pinch analysis (PA) and mathematical programming (MP). . Curr. Opin. Chem. Eng. 2:(4):46174
    [Crossref] [Google Scholar]
  20. 20.
    Wilson S, Manousiouthakis V. 2000.. IDEAS approach to process network synthesis: application to multicomponent MEN. . AIChE J. 46:(12):240816
    [Crossref] [Google Scholar]
  21. 21.
    Burri JF, Wilson SD, Manousiouthakis VI. 2002.. Infinite DimEnsionAl State-space approach to reactor network synthesis: application to attainable region construction. . Comput. Chem. Eng. 26:(6):84962
    [Crossref] [Google Scholar]
  22. 22.
    Noureldin MM, El-Halwagi MM. 2015.. Synthesis of C-H-O symbiosis networks. . AIChE J. 61:(4):124262
    [Crossref] [Google Scholar]
  23. 23.
    Tian Y, Demirel SE, Hasan MF, Pistikopoulos EN. 2018.. An overview of process systems engineering approaches for process intensification: state of the art. . Chem. Eng. Proc. 133::160210
    [Crossref] [Google Scholar]
  24. 24.
    Skiborowski M. 2018.. Process synthesis and design methods for process intensification. . Curr. Opin. Chem. Eng. 22::21625
    [Crossref] [Google Scholar]
  25. 25.
    Tula AK, Eden MR, Gani R. 2020.. Computer-aided process intensification: challenges, trends and opportunities. . AIChE J. 66:(1):e16819
    [Crossref] [Google Scholar]
  26. 26.
    Liesche G, Schack D, Sundmacher K. 2019.. The FluxMax approach for simultaneous process synthesis and heat integration: production of hydrogen cyanide. . AIChE J. 65:(7):e16554
    [Crossref] [Google Scholar]
  27. 27.
    Pistikopoulos EN, Tian Y. 2022.. Synthesis and Operability Strategies for Computer-Aided Modular Process Intensification. Amsterdam:: Elsevier
    [Google Scholar]
  28. 28.
    Georgiadis MC, Pistikopoulos EN. 2006.. Energy and Process Integration. Danbury, CT:: Begell House
    [Google Scholar]
  29. 29.
    Mansouri SS, Ismail MI, Babi DK, Simasatitkul L, Huusom JK, Gani R. 2013.. Systematic sustainable process design and analysis of biodiesel processes. . Processes 1:(2):167202
    [Crossref] [Google Scholar]
  30. 30.
    Demirel SE, Li J, Hasan MF. 2019.. A general framework for process synthesis, integration, and intensification. . Ind. Eng. Chem. Res. 58:(15):595067
    [Crossref] [Google Scholar]
  31. 31.
    Mencarelli L, Chen Q, Pagot A, Grossmann IE. 2020.. A review on superstructure optimization approaches in process system engineering. . Comput. Chem. Eng. 136::106808
    [Crossref] [Google Scholar]
  32. 32.
    Yeomans H, Grossmann IE. 1999.. A systematic modeling framework of superstructure optimization in process synthesis. . Comput. Chem. Eng. 23:(6):70931
    [Crossref] [Google Scholar]
  33. 33.
    Friedler F, Aviso KB, Bertok B, Foo DC, Tan RR. 2019.. Prospects and challenges for chemical process synthesis with P-graph. . Curr. Opin. Chem. Eng. 26::5864
    [Crossref] [Google Scholar]
  34. 34.
    Wu W, Henao CA, Maravelias CT. 2016.. A superstructure representation, generation, and modeling framework for chemical process synthesis. . AIChE J. 62:(9):3199214
    [Crossref] [Google Scholar]
  35. 35.
    Ryu J, Kong L, de Lima AEP, Maravelias CT. 2020.. A generalized superstructure-based framework for process synthesis. . Comput. Chem. Eng. 133::106653
    [Crossref] [Google Scholar]
  36. 36.
    Demirhan CD, Tso WW, Powell JB, Pistikopoulos EN. 2021.. A multi-scale energy systems engineering approach towards integrated multi-product network optimization. . Appl. Energy 281::116020
    [Crossref] [Google Scholar]
  37. 37.
    Henao CA, Maravelias CT. 2011.. Surrogate-based superstructure optimization framework. . AIChE J. 57:(5):121632
    [Crossref] [Google Scholar]
  38. 38.
    Wilson ZT, Sahinidis NV. 2017.. The ALAMO approach to machine learning. . Comput. Chem. Eng. 106::78595
    [Crossref] [Google Scholar]
  39. 39.
    Kim SH, Boukouvala F. 2020.. Machine learning-based surrogate modeling for data-driven optimization: a comparison of subset selection for regression techniques. . Optim. Lett. 14:(4):9891010
    [Crossref] [Google Scholar]
  40. 40.
    Mohammadi S, Cremaschi S. 2023.. A new approach to building surrogate models of high-fidelity stochastic simulations: PARIN (PARameter as INput-variable). . Comput. Chem. Eng. 176::108315
    [Crossref] [Google Scholar]
  41. 41.
    Ceccon F, Jalving J, Haddad J, Thebelt A, Tsay C, et al. 2022.. OMLT: optimization & machine learning toolkit. . J. Mach. Learn. Res. 23:(1):1582936
    [Google Scholar]
  42. 42.
    Bradley W, Kim J, Kilwein Z, Blakely L, Eydenberg M, et al. 2022.. Perspectives on the integration between first-principles and data-driven modeling. . Comput. Chem. Eng. 166::107898
    [Crossref] [Google Scholar]
  43. 43.
    Chen Y, Ierapetritou M. 2020.. A framework of hybrid model development with identification of plant-model mismatch. . AIChE J. 66:(10):e16996
    [Crossref] [Google Scholar]
  44. 44.
    Raissi M, Perdikaris P, Karniadakis GE. 2019.. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. . J. Comput. Phys. 378::686707
    [Crossref] [Google Scholar]
  45. 45.
    Golkarnarenji G, Naebe M, Badii K, Milani AS, Jazar RN, Khayyam H. 2019.. A machine learning case study with limited data for prediction of carbon fiber mechanical properties. . Comput. Ind. 105::12332
    [Crossref] [Google Scholar]
  46. 46.
    Liu X, Xu Y, Li J, Ong X, Ibrahim SA, et al. 2021.. A robust low data solution: dimension prediction of semiconductor nanorods. . Comput. Chem. Eng. 150::107315
    [Crossref] [Google Scholar]
  47. 47.
    Bakshi BR. 2019.. Toward sustainable chemical engineering: the role of process systems engineering. . Annu. Rev. Chem. Biomol. Eng. 10::26588
    [Crossref] [Google Scholar]
  48. 48.
    Martin M, Gani R, Mujtaba IM. 2022.. Sustainable process synthesis, design, and analysis: challenges and opportunities. . Sustain. Prod. Consum. 30::686705
    [Crossref] [Google Scholar]
  49. 49.
    Nikolopoulou A, Ierapetritou MG. 2012.. Optimal design of sustainable chemical processes and supply chains: a review. . Comput. Chem. Eng. 44::94103
    [Crossref] [Google Scholar]
  50. 50.
    Klemeš JJ, ed. 2022.. Handbook of Process Integration (PI): Minimisation of Energy and Water Use, Waste and Emissions. Sawston, UK:: Woodhead
    [Google Scholar]
  51. 51.
    López-Guajardo EA, Delgado-Licona F, Àlvare AJ, Nigam KD, Montesinos-Castellanos A, Morales-Menendez R. 2022.. Process intensification 4.0: a new approach for attaining new, sustainable and circular processes enabled by machine learning. . Chem. Eng. Proc. 180::108671
    [Crossref] [Google Scholar]
  52. 52.
    Mukherjee C, Denney J, Mbonimpa EG, Slagley J, Bhowmik R. 2020.. A review on municipal solid waste-to-energy trends in the USA. . Renew. Sustain. Energy Rev. 119::109512
    [Crossref] [Google Scholar]
  53. 53.
    Palys MJ, Wang H, Zhang Q, Daoutidis P. 2021.. Renewable ammonia for sustainable energy and agriculture: vision and systems engineering opportunities. . Curr. Opin. Chem. Eng. 31::100667
    [Crossref] [Google Scholar]
  54. 54.
    Avraamidou S, Baratsas SG, Tian Y, Pistikopoulos EN. 2020.. Circular economy—a challenge and an opportunity for process systems engineering. . Comput. Chem. Eng. 133::106629
    [Crossref] [Google Scholar]
  55. 55.
    Plazas-Niño FA, Ortiz-Pimiento NR, Montes-Páez EG. 2022.. National energy system optimization modelling for decarbonization pathways analysis: a systematic literature review. . Renew. Sustain. Energy Rev. 162::112406
    [Crossref] [Google Scholar]
  56. 56.
    Garcia D, You F. 2017.. Systems engineering opportunities for agricultural and organic waste management in the food–water–energy nexus. . Curr. Opin. Chem. Eng. 18::2331
    [Crossref] [Google Scholar]
  57. 57.
    Peña-Torres D, Boix M, Montastruc L. 2022.. Optimization approaches to design water–energy–food nexus: a literature review. . Comput. Chem. Eng. 167::108025
    [Crossref] [Google Scholar]
  58. 58.
    Chung W, Jeong W, Lee J, Kim J, Roh K, Lee JH. 2023.. Electrification of CO2 conversion into chemicals and fuels: gaps and opportunities in process systems engineering. . Comput. Chem. Eng. 170::108106
    [Crossref] [Google Scholar]
  59. 59.
    Smit DJ, Powell JB. 2023.. Role of international oil companies in the net-zero emission energy transition. . Annu. Rev. Chem. Biomol. Eng. 14::30122
    [Crossref] [Google Scholar]
  60. 60.
    Grossmann IE, Morari M. 1983.. Operability, resiliency, and flexibility—process design objectives for a changing world. Tech. Rep. DRC-O6-55-83 , Carnegie Mellon Univ., Pittsburgh, PA:. http://shelf2.library.cmu.edu/Tech/14911087.pdf
    [Google Scholar]
  61. 61.
    Swaney RE, Grossmann IE. 1985.. An index for operational flexibility in chemical process design. Part I: Formulation and theory. . AIChE J. 31:(4):62130
    [Crossref] [Google Scholar]
  62. 62.
    Bhosekar A, Ierapetritou M. 2018.. Advances in surrogate based modeling, feasibility analysis, and optimization: a review. . Comput. Chem. Eng. 108::25067
    [Crossref] [Google Scholar]
  63. 63.
    Yang W, Qian W, Yuan Z, Chen B. 2022.. Perspectives on the flexibility analysis for continuous pharmaceutical manufacturing processes. . Chin. J. Chem. Eng. 41::29-41
    [Crossref] [Google Scholar]
  64. 64.
    Zhang Q, Grossmann IE. 2016.. Enterprise-wide optimization for industrial demand side management: fundamentals, advances, and perspectives. . Chem. Eng. Res. Des. 116::11431
    [Crossref] [Google Scholar]
  65. 65.
    Riese J, Grünewald M. 2020.. Challenges and opportunities to enhance flexibility in design and operation of chemical processes. . Chem. Ing. Tech. 92:(12):188797
    [Crossref] [Google Scholar]
  66. 66.
    Park S, Xu S, Rogers W, Pasman H, El-Halwagi MM. 2020.. Incorporating inherent safety during the conceptual process design stage: a literature review. . J. Loss Prev. Process Ind. 63::104040
    [Crossref] [Google Scholar]
  67. 67.
    Amyotte PR, Khan FI. 2021.. The role of inherently safer design in process safety. . Can J. Chem. Eng. 99:(4):85371
    [Crossref] [Google Scholar]
  68. 68.
    Roy N, Eljack F, Jiménez-Gutiérrez A, Zhang B, Thiruvenkataswamy P, et al. 2016.. A review of safety indices for process design. . Curr. Opin. Chem. Eng. 14::4248
    [Crossref] [Google Scholar]
  69. 69.
    Wu Z, Christofides PD. 2021.. Process Operational Safety and Cybersecurity. Berlin:: Springer
    [Google Scholar]
  70. 70.
    Medina-Herrera N, Grossmann IE, Mannan MS, Jiménez-Gutiérrez A. 2014.. An approach for solvent selection in extractive distillation systems including safety considerations. . Ind. Eng. Chem. Res. 53:(30):1202331
    [Crossref] [Google Scholar]
  71. 71.
    Tian Y, Pistikopoulos EN. 2018.. Synthesis of operable process intensification systems—steady-state design with safety and operability considerations. . Ind. Eng. Chem. Res. 58:(15):604968
    [Crossref] [Google Scholar]
  72. 72.
    Etchells JC. 2005.. Process intensification: safety pros and cons. . Process Saf. Environ. Prot. 83:(2):8589
    [Crossref] [Google Scholar]
  73. 73.
    Chrisandina NJ, Vedant S, Iakovou E, Pistikopoulos EN, El-Halwagi MM. 2022.. Multi-scale integration for enhanced resilience of sustainable energy supply chains: perspectives and challenges. . Comput. Chem. Eng. 164::107891
    [Crossref] [Google Scholar]
  74. 74.
    Ribeiro JP, Barbosa-Povoa A. 2018.. Supply chain resilience: definitions and quantitative modelling approaches—a literature review. . Comput. Ind. Eng. 115::10922
    [Crossref] [Google Scholar]
  75. 75.
    Allman A, Zhang Q. 2020.. Dynamic location of modular manufacturing facilities with relocation of individual modules. . Eur. J. Oper. Res. 286:(2):494507
    [Crossref] [Google Scholar]
  76. 76.
    Alarcon-Gerbier E, Buscher U. 2022.. Modular and mobile facility location problems: a systematic review. . Comput. Ind. Eng. 173::108734
    [Crossref] [Google Scholar]
  77. 77.
    Winston WL. 2022.. Operations Research: Applications and Algorithms. Boston:: Cengage Learn.
    [Google Scholar]
  78. 78.
    Bazaraa MS, Jarvis JJ, Sherali HD. 2009.. Linear Programming and Network Flows. New York:: Wiley. , 4th ed..
    [Google Scholar]
  79. 79.
    Makhorin A. 2000.. The GNU Linear Programming Kit (GLPK). Softw. Package , GNU Softw. Found. http://www.gnu.org/software/glpk/glpk.html
    [Google Scholar]
  80. 80.
    Berkelaar M, Eikland K, Notebaert P. n.d.. lp_solve 5.5: open source (mixed-integer) linear programming system. Softw. Package , SourceForge. http://lpsolve.sourceforge.net/5.5
    [Google Scholar]
  81. 81.
    Meindl B, Templ M. 2012.. Analysis of commercial and free and open source solvers for linear optimization problems. Work. Pap. , Eurostat Stat. Neth./Tech. Univ. Vienna:
    [Google Scholar]
  82. 82.
    Anand R, Aggarwal D, Kumar V. 2017.. A comparative analysis of optimization solvers. . J. Stat. Manag. Syst. 20:(4):62335
    [Google Scholar]
  83. 83.
    Bazaraa MS, Sherali HD, Shetty CM. 2009.. Nonlinear Programming: Theory and Algorithms. New York:: Wiley. , 3rd ed..
    [Google Scholar]
  84. 84.
    Biegler LT. 2010.. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. Philadelphia:: SIAM
    [Google Scholar]
  85. 85.
    Biegler LT. 2018.. New directions for nonlinear process optimization. . Curr. Opin. Chem. Eng. 21::3240
    [Crossref] [Google Scholar]
  86. 86.
    Drud A. 1985.. CONOPT: a GRG code for large sparse dynamic nonlinear optimization problems. . Math. Program. 31::15391
    [Crossref] [Google Scholar]
  87. 87.
    Biegler LT, Zavala VM. 2009.. Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide dynamic optimization. . Comput. Chem. Eng. 33:(3):57582
    [Crossref] [Google Scholar]
  88. 88.
    Murtagh BA, Saunders MA. 1983.. MINOS 5.0 user's guide. Tech. Rep. SOL 83-20 , Syst. Optim. Lab., Stanford Univ., Stanford, CA:
    [Google Scholar]
  89. 89.
    Byrd RH, Nocedal J, Waltz RA. 2006.. Knitro: an integrated package for nonlinear optimization. . In Large-Scale Nonlinear Optimization, ed. G Pillo, M Roma , pp. 3559. Berlin:: Springer
    [Google Scholar]
  90. 90.
    Gill PE, Murray W, Saunders MA. 2005.. SNOPT: an SQP algorithm for large-scale constrained optimization. . SIAM Rev. 47:(1):99131
    [Crossref] [Google Scholar]
  91. 91.
    Leyffer S, Mahajan A. 2010.. Software for nonlinearly constrained optimization. Tech. Rep. ANL/MCS-P1768-0610 , Argonne Natl. Lab., Argonne, IL:. https://www.mcs.anl.gov/uploads/cels/papers/P1768.pdf
    [Google Scholar]
  92. 92.
    Conforti M, Cornuéjols G, Zambelli G. 2014.. Integer programming models. . In Integer Programming, pp. 4584. Berlin:: Springer
    [Google Scholar]
  93. 93.
    Marchand H, Martin A, Weismantel R, Wolsey L. 2002.. Cutting planes in integer and mixed integer programming. . Discrete Appl. Math. 123:(1–3):397446
    [Crossref] [Google Scholar]
  94. 94.
    Linderoth JT, Lodi A. 2010.. MILP software. . In Wiley Encyclopedia of Operations Research and Management Science, Vol. 5, ed. JJ Cochran , pp. 323948. New York:: Wiley
    [Google Scholar]
  95. 95.
    Grossmann IE. 2002.. Review of nonlinear mixed-integer and disjunctive programming techniques. . Optim. Eng. 3::22752
    [Crossref] [Google Scholar]
  96. 96.
    Floudas CA. 1995.. Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  97. 97.
    Kocis GR, Grossmann IE. 1989.. Computational experience with DICOPT solving MINLP problems in process systems engineering. . Comput. Chem. Eng. 13:(3):30715
    [Crossref] [Google Scholar]
  98. 98.
    Lundell A, Kronqvist J, Westerlund T. 2017.. SHOT—a global solver for convex MINLP in Wolfram Mathematica. . Comput. Aided Chem. Eng. 40::213742
    [Crossref] [Google Scholar]
  99. 99.
    Westerlund T, Lundqvist K. 2001.. Alpha-ECP, Version 5.01: An Interactive MINLP-Solver Based on the Extended Cutting Plane Method. Turku, Finl.:: Åbo Akad.
    [Google Scholar]
  100. 100.
    Kronqvist J, Bernal DE, Lundell A, Grossmann IE. 2019.. A review and comparison of solvers for convex MINLP. . Optim. Eng. 20::397455
    [Crossref] [Google Scholar]
  101. 101.
    Boukouvala F, Misener R, Floudas CA. 2016.. Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization, CDFO. . Eur. J. Oper. Res. 252:(3):70127
    [Crossref] [Google Scholar]
  102. 102.
    Ruiz JP, Grossmann IE. 2017.. Global optimization of non-convex generalized disjunctive programs: a review on reformulations and relaxation techniques. . J. Glob. Optim. 67::4358
    [Crossref] [Google Scholar]
  103. 103.
    Tawarmalani M, Sahinidis NV. 2013.. Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. NOIA Vol. 65. Berlin:: Springer
    [Google Scholar]
  104. 104.
    Floudas CA. 2013.. Deterministic Global Optimization: Theory, Methods and Applications. NOIA Vol. 37. Berlin:: Springer
    [Google Scholar]
  105. 105.
    Misener R, Floudas CA. 2014.. ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations. . J. Glob. Optim. 59:(2/3):50326
    [Crossref] [Google Scholar]
  106. 106.
    Sahinidis NV. 1996.. BARON: a general purpose global optimization software package. . J. Glob. Optim. 8::2015
    [Crossref] [Google Scholar]
  107. 107.
    Cunningham K, Schrage L. 2004.. The LINGO algebraic modeling language. . In Modeling Languages in Mathematical Optimization, ed. J Kallrath , pp. 15971. Berlin:: Springer
    [Google Scholar]
  108. 108.
    Neumaier A, Shcherbina O, Huyer W, Vinkó T. 2005.. A comparison of complete global optimization solvers. . Math. Program. 103::33556
    [Crossref] [Google Scholar]
  109. 109.
    Locatelli M, Schoen F. 2021.. (Global) optimization: historical notes and recent developments. . EURO J. Comput. Optim. 9::100012
    [Crossref] [Google Scholar]
  110. 110.
    Boukouvala F, Floudas CA. 2017.. ARGONAUT: AlgoRithms for Global Optimization of coNstrAined grey-box compUTational problems. . Optim. Lett. 11::895913
    [Crossref] [Google Scholar]
  111. 111.
    Beykal B, Avraamidou S, Pistikopoulos IP, Onel M, Pistikopoulos EN. 2020.. Domino: data-driven optimization of bi-level mixed-integer nonlinear problems. . J. Glob. Optim. 78::136
    [Crossref] [Google Scholar]
  112. 112.
    Stops L, Leenhouts R, Gao Q, Schweidtmann AM. 2023.. Flowsheet generation through hierarchical reinforcement learning and graph neural networks. . AIChE J. 69:(1):e17938
    [Crossref] [Google Scholar]
  113. 113.
    Wang D, Bao J, Zamarripa-Perez M, Paul B, Chen Y, et al. 2022.. Reinforcement learning for automated conceptual design of advanced energy and chemical systems. . Research Square 2248780. https://doi.org/10.21203/rs.3.rs-2248780/v1
    [Google Scholar]
  114. 114.
    Martín-Guerrero JD, Lamata L. 2022.. Quantum machine learning: a tutorial. . Neurocomputing 470::45761
    [Crossref] [Google Scholar]
  115. 115.
    Ajagekar A, You F. 2019.. Quantum computing for energy systems optimization: challenges and opportunities. . Energy 179::7689
    [Crossref] [Google Scholar]
  116. 116.
    Sahinidis NV. 2004.. Optimization under uncertainty: state-of-the-art and opportunities. . Comput. Chem. Eng. 28:(6/7):97183
    [Crossref] [Google Scholar]
  117. 117.
    Pistikopoulos EN. 1995.. Uncertainty in process design and operations. . Comput. Chem. Eng. 19::55363
    [Crossref] [Google Scholar]
  118. 118.
    Zakaria A, Ismail FB, Lipu MH, Hannan MA. 2020.. Uncertainty models for stochastic optimization in renewable energy applications. . Renew. Energy 145::154371
    [Crossref] [Google Scholar]
  119. 119.
    Grossmann IE, Apap RM, Calfa BA, Garcia-Herreros P, Zhang Q. 2017.. Mathematical programming techniques for optimization under uncertainty and their application in process systems engineering. . Theor. Found. Chem. Eng. 51::893909
    [Crossref] [Google Scholar]
  120. 120.
    Li C, Grossmann IE. 2021.. A review of stochastic programming methods for optimization of process systems under uncertainty. . Front. Chem. Eng. 2::34
    [Crossref] [Google Scholar]
  121. 121.
    Torres JJ, Li C, Apap RM, Grossmann IE. 2022.. A review on the performance of linear and mixed integer two-stage stochastic programming software. . Algorithms 15:(4):103
    [Crossref] [Google Scholar]
  122. 122.
    Parnianifard A, Azfanizam A, Ariffin MKAM, Ismail MIS. 2018.. An overview on robust design hybrid metamodeling: advanced methodology in process optimization under uncertainty. . Int. J. Ind. Eng. Comput. 9::132
    [Google Scholar]
  123. 123.
    Ning C, You F. 2019.. Optimization under uncertainty in the era of big data and deep learning: when machine learning meets mathematical programming. . Comput. Chem. Eng. 125::43448
    [Crossref] [Google Scholar]
  124. 124.
    Chen Q, Liu Y, Seastream G, Siirola JD, Grossmann IE. 2021.. Pyosyn: a new framework for conceptual design modeling and optimization. . Comput. Chem. Eng. 153::107414
    [Crossref] [Google Scholar]
  125. 125.
    Bogataj M, Kravanja Z, Soršak A, Slemnik B, Klemencic U, Juric S. 2021.. MIPSYN-Global: process synthesis enabled by graphical modelling. . Chem. Eng. Trans. 88::63136
    [Google Scholar]
  126. 126.
    Bertran MO, Frauzem R, Sanchez-Arcilla AS, Zhang L, Woodley JM, Gani R. 2017.. A generic methodology for processing route synthesis and design based on superstructure optimization. . Comput. Chem. Eng. 106::892910
    [Crossref] [Google Scholar]
  127. 127.
    Kalakul S, Zhang L, Fang Z, Choudhury HA, Intikhab S, et al. 2018.. Computer aided chemical product design—ProCAPD and tailor-made blended products. . Comput. Chem. Eng. 116::3755
    [Crossref] [Google Scholar]
  128. 128.
    Bynum M, Ammari M, Grossmann IE, Kim T, Laird CD, et al. 2022.. Software and advanced solution methods for flexibility analysis. Paper presented at AIChE 2022 Annual Meeting, Phoenix, AZ:, Novemb. 13–18
    [Google Scholar]
  129. 129.
    Pulsipher JL, Rios D, Zavala VM. 2019.. A computational framework for quantifying and analyzing system flexibility. . Comput. Chem. Eng. 126::34255
    [Crossref] [Google Scholar]
  130. 130.
    Gazzaneo V, Carrasco JC, Vinson DR, Lima FV. 2019.. Process operability algorithms: past, present, and future developments. . Ind. Eng. Chem. Res. 59:(6):245770
    [Crossref] [Google Scholar]
  131. 131.
    Pistikopoulos EN, Diangelakis NA, Oberdieck R, Papathanasiou MM, Nascu I, Sun M. 2015.. PAROC—an integrated framework and software platform for the optimisation and advanced model-based control of process systems. . Chem. Eng. Sci. 136::11538
    [Crossref] [Google Scholar]
  132. 132.
    Tula AK, Wang J, Chen X, Mansouri SS, Gani R. 2020.. ProCACD: a computer-aided versatile tool for process control. . Comput. Chem. Eng. 136::106771
    [Crossref] [Google Scholar]
  133. 133.
    Lee A, Ghouse JH, Eslick JC, Laird CD, Siirola JD, et al. 2021.. The IDAES process modeling framework and model library—flexibility for process simulation and optimization. . J. Adv. Manuf. Proc. 3:(3):e10095
    [Crossref] [Google Scholar]
  134. 134.
    Kakodkar R, Ali M, Vedant S, Pistikopoulos EN. 2022.. Energiapy—a decision-making and risk management tool for multi-scale modeling and optimization. Paper presented at AIChE 2022 Annual Meeting, Phoenix, AZ:, Novemb. 13–18
    [Google Scholar]
  135. 135.
    Langiu M, Shu DY, Baader FJ, Hering D, Bau U, et al. 2021.. COMANDO: a next-generation open-source framework for energy systems optimization. . Comput. Chem. Eng. 152::107366
    [Crossref] [Google Scholar]
  136. 136.
    Vedant S, Atencio MR, Tian Y, Meduri V, Pistikopoulos EN. 2021.. Towards a software prototype for synthesis of operable process intensification systems. . Comput. Aided Chem. Eng. 50::76772
    [Crossref] [Google Scholar]
  137. 137.
    Tula AK, Eden MR, Gani R. 2019.. ProCAFD: computer-aided tool for sustainable process synthesis, intensification and hybrid solutions. . Comput. Aided Chem. Eng. 46::48186
    [Crossref] [Google Scholar]
  138. 138.
    Monjur MS, Demirel SE, Li J, Hasan MF. 2021.. A computer-aided platform for simultaneous process synthesis and intensification. . Comput. Aided Chem. Eng. 50::28793
    [Crossref] [Google Scholar]
  139. 139.
    Kim T, Scott JK. 2023.. Dynamic modeling and simulation of pressure swing adsorption processes using toPSAil. . Comput. Chem. Eng. 176::108309
    [Crossref] [Google Scholar]
  140. 140.
    Ng RT, Patchin S, Wu W, Sheth N, Maravelias CT. 2018.. An optimization-based web application for synthesis and analysis of biomass-to-fuel strategies. . Biofuels Bioprod. Biorefining 12:(2):17076
    [Crossref] [Google Scholar]
  141. 141.
    Hasan MF, Zantye MS, Kazi MK. 2022.. Challenges and opportunities in carbon capture, utilization and storage: a process systems engineering perspective. . Comput. Chem. Eng. 166::107925
    [Crossref] [Google Scholar]
  142. 142.
    Wang K, Dowling AW. 2022.. Bayesian optimization for chemical products and functional materials. . Curr. Opin. Chem. Eng. 36::100728
    [Crossref] [Google Scholar]
  143. 143.
    Zhou T, Gani R, Sundmacher K. 2021.. Hybrid data-driven and mechanistic modeling approaches for multiscale material and process design. . Engineering 7:(9):123138
    [Crossref] [Google Scholar]
  144. 144.
    Baldea M, Edgar TF. 2018.. Dynamic process intensification. . Curr. Opin. Chem. Eng. 22::4853
    [Crossref] [Google Scholar]
  145. 145.
    Pistikopoulos EN, Akundi SA, Kenefake D, Diangelakis NA. 2024.. The quest towards the integration of process control, process operations and process operability—industrial need or academic curiosity?. Comput. Chem. Eng. 180::108470
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-100522-112139
Loading
/content/journals/10.1146/annurev-chembioeng-100522-112139
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error