1932

Abstract

Chirality, a fundamental attribute of asymmetry, pervades in both nature and functional soft materials. In chiral material systems design, achieving global symmetry breaking of building blocks during assembly, with or without the aid of additives, has emerged as a promising strategy across domains including chiral sensing, electronics, photonics, spintronics, and biomimetics. We first introduce the fundamental aspects of chirality, including its structural basis and symmetry-breaking mechanisms considering free energy minimization. We particularly emphasize supramolecular assembly, such as through the formation of chiral liquid crystal phases. Next, we summarize processing strategies to control chiral symmetry breaking, exploiting external fields such as flow, magnetic fields, and templates. The final section discusses interactions between chiral molecular assemblies with circularly polarized (CP) light and electronic spin and their applications in CP light detectors, CP-spin-organic light-emitting diodes, CP displays, and spintronic devices based on the chirality-induced spin selectivity effect.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-100722-104224
2025-06-09
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/16/1/annurev-chembioeng-100722-104224.html?itemId=/content/journals/10.1146/annurev-chembioeng-100722-104224&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Caldwell J, Wainer IW. 2001.. Stereochemistry: definitions and a note on nomenclature. . Hum. Psychopharmacol. Clin. Exp. 16::S105S7
    [Crossref] [Google Scholar]
  2. 2.
    Pasteur L. 1848.. Memoires sur la relation qui peut exister entre la forme crystalline et al composition chimique, et sur la cause de la polarization rotatoire. . Compt. Rend. 26::53538
    [Google Scholar]
  3. 3.
    Kim JH, Scialli AR. 2011.. Thalidomide: the tragedy of birth defects and the effective treatment of disease. . Toxicol. Sci. 122::16
    [Crossref] [Google Scholar]
  4. 4.
    Langeveld-Voss BMW, Waterval RJM, Janssen RAJ, Meijer EW. 1999.. Principles of “majority rules” and “sergeants and soldiers” applied to the aggregation of optically active polythiophenes: evidence for a multichain phenomenon. . Macromolecules 32::22730
    [Crossref] [Google Scholar]
  5. 5.
    Mio MJ, Prince RB, Moore JS, Kuebel C, Martin DC. 2000.. Hexagonal packing of oligo(m-phenylene ethynylene)s in the solid state: helical nanotubules. . J. Am. Chem. Soc. 122::613435
    [Crossref] [Google Scholar]
  6. 6.
    Kübel C, Mio MJ, Moore JS, Martin DC. 2002.. Molecular packing and morphology of oligo(m-phenylene ethynylene) foldamers. . J. Am. Chem. Soc. 124::860510
    [Crossref] [Google Scholar]
  7. 7.
    Deng M, Yu J, Blackmond DG. 2024.. Kinetic resolution as a general approach to enantioenrichment in prebiotic chemistry. . Acc. Chem. Res. 57::223444
    [Crossref] [Google Scholar]
  8. 8.
    Noorduin WL, Izumi T, Millemaggi A, Leeman M, Meekes H, et al. 2008.. Emergence of a single solid chiral state from a nearly racemic amino acid derivative. . J. Am. Chem. Soc. 130::115859
    [Crossref] [Google Scholar]
  9. 9.
    Klussmann M, Iwamura H, Mathew SP, Wells DH, Pandya U, et al. 2006.. Thermodynamic control of asymmetric amplification in amino acid catalysis. . Nature 441::62123
    [Crossref] [Google Scholar]
  10. 10.
    Bedi A, Manor Armon A, Diskin-Posner Y, Bogosalvsky B, Gidron O. 2022.. Controlling the helicity of π-conjugated oligomers by tuning the aromatic backbone twist. . Nat. Commun. 13::451
    [Crossref] [Google Scholar]
  11. 11.
    Jiang W, Qu Z-B, Kumar P, Vecchio D, Wang Y, et al. 2020.. Emergence of complexity in hierarchically organized chiral particles. . Science 368::64248
    [Crossref] [Google Scholar]
  12. 12.
    Kumar P, Vo T, Cha M, Visheratina A, Kim J-Y, et al. 2023.. Photonically active bowtie nanoassemblies with chirality continuum. . Nature 615::41824
    [Crossref] [Google Scholar]
  13. 13.
    Zhang W, Yoshida K, Fujiki M, Zhu X. 2011.. Unpolarized-light-driven amplified chiroptical modulation between chiral aggregation and achiral disaggregation of an azobenzene-alt-fluorene copolymer in limonene. . Macromolecules 44::510511
    [Crossref] [Google Scholar]
  14. 14.
    Yao L, Lu X, Chen S, Watkins JJ. 2014.. Formation of helical phases in achiral block copolymers by simple addition of small chiral additives. . Macromolecules 47::654753
    [Crossref] [Google Scholar]
  15. 15.
    Song I, Ahn J, Ahn H, Lee SH, Mei J, et al. 2023.. Helical polymers for dissymmetric circularly polarized light imaging. . Nature 617::9299
    [Crossref] [Google Scholar]
  16. 16.
    Wan L, Zhang R, Cho E, Li H, Coropceanu V, et al. 2023.. Sensitive near-infrared circularly polarized light detection via non-fullerene acceptor blends. . Nat. Photon. 17::64955
    [Crossref] [Google Scholar]
  17. 17.
    Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H. 2020.. Charge transport in high-mobility conjugated polymers and molecular semiconductors. . Nat. Mater. 19::491502
    [Crossref] [Google Scholar]
  18. 18.
    Cui Y, Yang C, Yao H, Zhu J, Wang Y, et al. 2017.. Efficient semitransparent organic solar cells with tunable color enabled by an ultralow-bandgap nonfullerene acceptor. . Adv. Mater. 29::1703080
    [Crossref] [Google Scholar]
  19. 19.
    Wang C, Dong H, Hu W, Liu Y, Zhu D. 2012.. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. . Chem. Rev. 112::220867
    [Crossref] [Google Scholar]
  20. 20.
    Shang X, Song I, Ohtsu H, Lee YH, Zhao T, et al. 2017.. Supramolecular nanostructures of chiral perylene diimides with amplified chirality for high-performance chiroptical sensing. . Adv. Mater. 29:: 1605828
    [Crossref] [Google Scholar]
  21. 21.
    Josse P, Favereau L, Shen C, Dabos-Seignon S, Blanchard P, et al. 2017.. Enantiopure versus racemic naphthalimide end-capped helicenic non-fullerene electron acceptors: impact on organic photovoltaics performance. . Chemistry 23::627781
    [Crossref] [Google Scholar]
  22. 22.
    Park KS, Xue Z, Patel BB, An H, Kwok JJ, et al. 2022.. Chiral emergence in multistep hierarchical assembly of achiral conjugated polymers. . Nat. Commun. 13::2738
    [Crossref] [Google Scholar]
  23. 23.
    Li Y, Zhang Z, Li T, Liang Y, Si W, Lin Y. 2023.. Highly-active chiral organic photovoltaic catalysts with suppressed charge recombination. . Angew. Chem. Int. Ed. 62::e202307466
    [Crossref] [Google Scholar]
  24. 24.
    Greenfield JL, Wade J, Brandt JR, Shi X, Penfold TJ, Fuchter MJ. 2021.. Pathways to increase the dissymmetry in the interaction of chiral light and chiral molecules. . Chem. Sci. 12::8589602
    [Crossref] [Google Scholar]
  25. 25.
    Bloom BP, Paltiel Y, Naaman R, Waldeck DH. 2024.. Chiral induced spin selectivity. . Chem. Rev. 124::195091
    [Crossref] [Google Scholar]
  26. 26.
    Song I, You L, Chen K, Lee W-J, Mei J. 2024.. Chiroptical switching of electrochromic polymer thin films. . Adv. Mater. 36::2307057
    [Crossref] [Google Scholar]
  27. 27.
    Lee D-M, Song J-W, Lee Y-J, Yu C-J, Kim J-H. 2017.. Control of circularly polarized electroluminescence in induced twist structure of conjugate polymer. . Adv. Mater. 29::1700907
    [Crossref] [Google Scholar]
  28. 28.
    Ma W, Xu L, Wang L, Xu C, Kuang H. 2019.. Chirality-based biosensors. . Adv. Funct. Mater. 29::1805512
    [Crossref] [Google Scholar]
  29. 29.
    Kim Y-H, Zhai Y, Lu H, Pan X, Xiao C, et al. 2021.. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. . Science 371::112933
    [Crossref] [Google Scholar]
  30. 30.
    Wan L, Liu Y, Fuchter MJ, Yan B. 2023.. Anomalous circularly polarized light emission in organic light-emitting diodes caused by orbital–momentum locking. . Nat. Photon. 17::19399
    [Crossref] [Google Scholar]
  31. 31.
    Ahn J, Lee SH, Song I, Chidchob P, Kwon Y, Oh JH. 2023.. Chiral organic semiconducting materials for next-generation optoelectronic sensors. . Device 1::100176
    [Crossref] [Google Scholar]
  32. 32.
    Cahn RS, Ingold C, Prelog V. 1966.. Specification of molecular chirality. . Angew. Chem. Int. Ed. 5::385415
    [Crossref] [Google Scholar]
  33. 33.
    Wade J, Hilfiker JN, Brandt JR, Liirò-Peluso L, Wan L, et al. 2020.. Natural optical activity as the origin of the large chiroptical properties in π-conjugated polymer thin films. . Nat. Commun. 11::6137
    [Crossref] [Google Scholar]
  34. 34.
    Schlögl K. 1984.. Planar chiral molecular structures. . Top. Curr. Chem. 125::2762
    [Crossref] [Google Scholar]
  35. 35.
    Morisaki Y, Inoshita K, Shibata S, Chujo Y. 2015.. Synthesis of optically active through-space conjugated polymers consisting of planar chiral [2.2]paracyclophane and quaterthiophene. . Polym. J. 47::27881
    [Crossref] [Google Scholar]
  36. 36.
    Tan B. 2021.. Axially Chiral Compounds: Asymmetric Synthesis and Applications. Weinheim, Ger:.: WILEY-VCH GmbH
    [Google Scholar]
  37. 37.
    Meng F, Li Y, Zhang W, Li S, Quan Y, Cheng Y. 2017.. Circularly polarized luminescence based chirality transfer of the chiral BINOL moiety via rigid π-conjugation chain backbone structures. . Polym. Chem. 8::155561
    [Crossref] [Google Scholar]
  38. 38.
    He S, Jiang Z, Dou X, Gao L, Feng C. 2023.. Chiral supramolecular assemblies: controllable construction and biological activity. . ChemPlusChem 88::e202300226
    [Crossref] [Google Scholar]
  39. 39.
    Peterca M, Imam MR, Ahn C-H, Balagurusamy VSK, Wilson DA, et al. 2011.. Transfer, amplification, and inversion of helical chirality mediated by concerted interactions of C3-supramolecular dendrimers. . J. Am. Chem. Soc. 133::231128
    [Crossref] [Google Scholar]
  40. 40.
    Du C, Li Z, Zhu X, Ouyang G, Liu M. 2022.. Hierarchically self-assembled homochiral helical microtoroids. . Nat. Nanotechnol. 17::1294302
    [Crossref] [Google Scholar]
  41. 41.
    Shen Z, Jiang Y, Wang T, Liu M. 2015.. Symmetry breaking in the supramolecular gels of an achiral gelator exclusively driven by π–π stacking. . J. Am. Chem. Soc. 137::1610915
    [Crossref] [Google Scholar]
  42. 42.
    van Gorp JJ, Vekemans JAJM, Meijer EW. 2002.. C3-symmetrical supramolecular architectures: fibers and organic gels from discotic trisamides and trisureas. . J. Am. Chem. Soc. 124::1475969
    [Crossref] [Google Scholar]
  43. 43.
    Rahman MDA, Mohd Said S, Balamurugan S. 2015.. Blue phase liquid crystal: strategies for phase stabilization and device development. . Sci. Technol. Adv. Mater. 16::033501
    [Crossref] [Google Scholar]
  44. 44.
    Henrich O, Stratford K, Cates ME, Marenduzzo D. 2011.. Structure of blue phase III of cholesteric liquid crystals. . Phys. Rev. Lett. 106::107801
    [Crossref] [Google Scholar]
  45. 45.
    Hiremath US, Menezes HM, Nair GG, Rao DSS, Prasad SK. 2013.. Observation of a chiral smectic C phase over a wide thermal range with novel phase sequences in rigid, bulky chiral dimers. . J. Mater. Chem. C 1::5799806
    [Crossref] [Google Scholar]
  46. 46.
    Tuchband MR, Paterson DA, Salamończyk M, Norman VA, Scarbrough AN, et al. 2019.. Distinct differences in the nanoscale behaviors of the twist–bend liquid crystal phase of a flexible linear trimer and homologous dimer. . PNAS 116::10698704
    [Crossref] [Google Scholar]
  47. 47.
    Andrienko D. 2018.. Introduction to liquid crystals. . J. Mol. Liq. 267::52041
    [Crossref] [Google Scholar]
  48. 48.
    Bagchi K, Emeršič T, Martínez-González JA, de Pablo JJ, Nealey PF. 2023.. Functional soft materials from blue phase liquid crystals. . Sci. Adv. 9::eadh9393
    [Crossref] [Google Scholar]
  49. 49.
    Stephen MJ, Straley JP. 1974.. Physics of liquid crystals. . Rev. Modern Phys. 46::617704
    [Crossref] [Google Scholar]
  50. 50.
    Abberley JP, Killah R, Walker R, Storey JMD, Imrie CT, et al. 2018.. Heliconical smectic phases formed by achiral molecules. . Nat. Commun. 9::228
    [Crossref] [Google Scholar]
  51. 51.
    Forsyth E, Paterson DA, Cruickshank E, Strachan GJ, Gorecka E, et al. 2020.. Liquid crystal dimers and the twist-bend nematic phase: on the role of spacers and terminal alkyl chains. . J. Mol. Liquids 320::114391
    [Crossref] [Google Scholar]
  52. 52.
    Goodby JW. 1991.. Chirality in liquid crystals. . J. Mater. Chem. 1::30718
    [Crossref] [Google Scholar]
  53. 53.
    Randall DK, Jonathan VS. 2001.. Order and frustration in chiral liquid crystals. . J. Phys. 13::R1
    [Google Scholar]
  54. 54.
    Chen D, Nakata M, Shao R, Tuchband MR, Shuai M, et al. 2014.. Twist-bend heliconical chiral nematic liquid crystal phase of an achiral rigid bent-core mesogen. . Phys. Rev. E 89::022506
    [Crossref] [Google Scholar]
  55. 55.
    Yang Y, Pei H, Chen G, Webb KT, Martinez-Miranda LJ, et al. Phase behaviors of colloidal analogs of bent-core liquid crystals. . Sci. Adv. 4::eaas8829
    [Crossref] [Google Scholar]
  56. 56.
    Crooker PP, Kitzerow H, Bahr C. 2001.. Chirality in Liquid Crystals. New York:: Springer
    [Google Scholar]
  57. 57.
    Green MM, Reidy MP, Johnson RD, Darling G, O'Leary DJ, Willson G. 1989.. Macromolecular stereochemistry: the out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. The sergeants and soldiers experiment. . J. Am. Chem. Soc. 111::645254
    [Crossref] [Google Scholar]
  58. 58.
    van Gestel J, Palmans AR, Titulaer B, Vekemans JA, Meijer E. 2005.. “ Majority-rules” operative in chiral columnar stacks of C3-symmetrical molecules. . J. Am. Chem. Soc. 127::549094
    [Crossref] [Google Scholar]
  59. 59.
    Markvoort AJ, Ten Eikelder HM, Hilbers PA, De Greef TF, Meijer E. 2011.. Theoretical models of nonlinear effects in two-component cooperative supramolecular copolymerizations. . Nat. Commun. 2::509
    [Crossref] [Google Scholar]
  60. 60.
    Kleman M, Lavrentovich OD. 2003.. Soft Matter Physics: An Introduction. New York:: Springer
    [Google Scholar]
  61. 61.
    Li Y, Jun-Yan Suen J, Prince E, Larin EM, Klinkova A, et al. 2016.. Colloidal cholesteric liquid crystal in spherical confinement. . Nat. Commun. 7::12520
    [Crossref] [Google Scholar]
  62. 62.
    Tortora L, Lavrentovich OD. 2011.. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals. . PNAS 108::516368
    [Crossref] [Google Scholar]
  63. 63.
    Nayani K, Chang R, Fu J, Ellis PW, Fernandez-Nieves A, et al. 2015.. Spontaneous emergence of chirality in achiral lyotropic chromonic liquid crystals confined to cylinders. . Nat. Commun. 6::8067
    [Crossref] [Google Scholar]
  64. 64.
    Revignas D, Ferrarini A. 2023.. On the elusive saddle–splay and splay–bend elastic constants of nematic liquid crystals. . J. Chem. Phys. 159::034905
    [Crossref] [Google Scholar]
  65. 65.
    Selinger JV. 2018.. Interpretation of saddle-splay and the Oseen-Frank free energy in liquid crystals. . Liquid Cryst. Rev. 6::12942
    [Crossref] [Google Scholar]
  66. 66.
    Pergamenshchik VM. 1998.. K13 term and effective boundary condition for the nematic director. . Phys. Rev. E 58::R16R19
    [Crossref] [Google Scholar]
  67. 67.
    Dietrich CF, Rudquist P, Collings PJ, Giesselmann F. 2021.. Interplay between confinement, twist elasticity, and intrinsic chirality in micellar lyotropic nematic liquid crystals. . Langmuir 37::274958
    [Crossref] [Google Scholar]
  68. 68.
    Ribó JM, Crusats J, Sagués F, Claret J, Rubires R. 2001.. Chiral sign induction by vortices during the formation of mesophases in stirred solutions. . Science 292::206366
    [Crossref] [Google Scholar]
  69. 69.
    Sun J, Li Y, Yan F, Liu C, Sang Y, et al. 2018.. Control over the emerging chirality in supramolecular gels and solutions by chiral microvortices in milliseconds. . Nat. Commun. 9::2599
    [Crossref] [Google Scholar]
  70. 70.
    Sevim S, Sorrenti A, Vale JP, El-Hachemi Z, Pané S, et al. 2022.. Chirality transfer from a 3D macro shape to the molecular level by controlling asymmetric secondary flows. . Nat. Commun. 13::1766
    [Crossref] [Google Scholar]
  71. 71.
    Park KS, Kwok JJ, Dilmurat R, Qu G, Kafle P, et al. 2019.. Tuning conformation, assembly, and charge transport properties of conjugated polymers by printing flow. . Sci. Adv. 5::eaaw7757
    [Crossref] [Google Scholar]
  72. 72.
    Hu Y, Yuan H, Liu S, Ni J, Lao Z, et al. 2020.. Chiral assemblies of laser-printed micropillars directed by asymmetrical capillary force. . Adv. Mater. 32::2002356
    [Crossref] [Google Scholar]
  73. 73.
    Li Z, Fan Q, Ye Z, Wu C, Wang Z, Yin Y. 2023.. A magnetic assembly approach to chiral superstructures. . Science 380::138490
    [Crossref] [Google Scholar]
  74. 74.
    Kim J-Y, Yeom J, Zhao G, Calcaterra H, Munn J, et al. 2019.. Assembly of gold nanoparticles into chiral superstructures driven by circularly polarized light. . J. Am. Chem. Soc. 141::1173944
    [Crossref] [Google Scholar]
  75. 75.
    Ugras TJ, Carson RB, Lynch RP, Li H, Yao Y, . 2025.. Transforming achiral semiconductors into chiral domains with exceptional circular dichroism. . Science 387:(6733):eado7201
    [Crossref] [Google Scholar]
  76. 76.
    Zhang Q, Wang W, Zhou S, Zhang R, Bischofberger I. 2024.. Flow-induced periodic chiral structures in an achiral nematic liquid crystal. . Nat. Commun. 15::7
    [Crossref] [Google Scholar]
  77. 77.
    Morrow SM, Bissette AJ, Fletcher SP. 2017.. Transmission of chirality through space and across length scales. . Nat. Nanotechnol. 12::41019
    [Crossref] [Google Scholar]
  78. 78.
    Popa R. 1997.. A sequential scenario for the origin of biological chirality. . J. Mol. Evol. 44::12127
    [Crossref] [Google Scholar]
  79. 79.
    Nagata Y, Takeda R, Suginome M. 2019.. Asymmetric catalysis in chiral solvents: chirality transfer with amplification of homochirality through a helical macromolecular scaffold. . ACS Central Sci. 5::123540
    [Crossref] [Google Scholar]
  80. 80.
    Thomas R, Tamaoki N. 2011.. Chirality transfer from chiral solvents and its memory in an azobenzene derivative exhibiting photo-switchable racemization. . Org. Biomol. Chem. 9::538993
    [Crossref] [Google Scholar]
  81. 81.
    Wilson MR, Earl DJ. 2001.. Calculating the helical twisting power of chiral dopants. . J. Mater. Chem. 11::267277
    [Crossref] [Google Scholar]
  82. 82.
    Zhao D, Qiu Y, Cheng W, Bi S, Wang H, et al. 2018.. Precisely tuning helical twisting power via photoisomerization kinetics of dopants in chiral nematic liquid crystals. . Langmuir 34::7008
    [Crossref] [Google Scholar]
  83. 83.
    Snir Y, Kamien RD. 2005.. Entropically driven helix formation. . Science 307::1067
    [Crossref] [Google Scholar]
  84. 84.
    Neal MP, Solymosi M, Wilson MR, Earl DJ. 2003.. Helical twisting power and scaled chiral indices. . J. Chem. Phys. 119::356773
    [Crossref] [Google Scholar]
  85. 85.
    Zola RS, Yang Y-C, Yang D-K. 2011.. Limonene as a chiral dopant for liquid crystals: characterization and potential applications. . J. Soc. Inf. Display 19::41016
    [Crossref] [Google Scholar]
  86. 86.
    Kulkarni C, Meskers SCJ, Palmans ARA, Meijer EW. 2018.. Amplifying chiroptical properties of conjugated polymer thin-film using an achiral additive. . Macromolecules 51::588390
    [Crossref] [Google Scholar]
  87. 87.
    Rubio-Magnieto J, Thomas A, Richeter S, Mehdi A, Dubois P, et al. 2013.. Chirality in DNA–π-conjugated polymer supramolecular structures: insights into the self-assembly. . Chem. Commun. 49::548385
    [Crossref] [Google Scholar]
  88. 88.
    Bagiński M, Tupikowska M, González-Rubio G, Wójcik M, Lewandowski W. 2020.. Shaping liquid crystals with gold nanoparticles: helical assemblies with tunable and hierarchical structures via thin-film cooperative interactions. . Adv. Mater. 32::1904581
    [Crossref] [Google Scholar]
  89. 89.
    Kwon J, Park KH, Choi WJ, Kotov NA, Yeom J. 2023.. Chiral spectroscopy of nanostructures. . Acc. Chem. Res. 56::135972
    [Crossref] [Google Scholar]
  90. 90.
    Yin X, Schäferling M, Metzger B, Giessen H. 2013.. Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model. . Nano Lett. 13::623843
    [Crossref] [Google Scholar]
  91. 91.
    Lu J, Xue Y, Bernardino K, Zhang N-N, Gomes WR, et al. 2021.. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. . Science 371::136874
    [Crossref] [Google Scholar]
  92. 92.
    Emeis CA, Oosterhoff LJ, Vries GD, Nyholm RS. 1967.. Numerical evaluation of Kramers—Kronig relations. . Proc. R. Soc. Lond. A 297::5465
    [Crossref] [Google Scholar]
  93. 93.
    Albano G, Pescitelli G, Di Bari L. 2020.. Chiroptical properties in thin films of π-conjugated systems. . Chem. Rev. 120::10145243
    [Crossref] [Google Scholar]
  94. 94.
    Korevaar PA, de Greef TFA, Meijer EW. 2014.. Pathway complexity in π-conjugated materials. . Chem. Mater. 26::57686
    [Crossref] [Google Scholar]
  95. 95.
    Magyarfalvi G, Tarczay G, Vass E. 2011.. Vibrational circular dichroism. . WIREs Comput. Mol. Sci. 1::40325
    [Crossref] [Google Scholar]
  96. 96.
    Nafie LA. 2011.. Infrared vibrational optical activity: measurement and instrumentation. . In Comprehensive Chiroptical Spectroscopy: Instrumentation, Methodologies, and Theoretical Simulations, ed. N Berova, PL Polavarapu, K Nakanishi, RW Woody , pp. 11546. Hoboken, NJ:: John Wiley & Sons
    [Google Scholar]
  97. 97.
    Barron LD, Hecht L, McColl IH, Blanch EW. 2004.. Raman optical activity comes of age. . Mol. Phys. 102::73144
    [Crossref] [Google Scholar]
  98. 98.
    Barron LD, Zhu F, Hecht L. 2006.. Raman optical activity: an incisive probe of chirality, and of biomolecular structure and behaviour. . Vib. Spectrosc. 42::1524
    [Crossref] [Google Scholar]
  99. 99.
    Choi WJ, Lee SH, Park BC, Kotov NA. 2022.. Terahertz circular dichroism spectroscopy of molecular assemblies and nanostructures. . J. Am. Chem. Soc. 144::22789804
    [Crossref] [Google Scholar]
  100. 100.
    Riehl JP, Richardson FS. 1986.. Circularly polarized luminescence spectroscopy. . Chem. Rev. 86::116
    [Crossref] [Google Scholar]
  101. 101.
    Wu Z-G, Han H-B, Yan Z-P, Luo X-F, Wang Y, et al. 2019.. Chiral octahydro-binaphthol compound-based thermally activated delayed fluorescence materials for circularly polarized electroluminescence with superior EQE of 32.6% and extremely low efficiency roll-off. . Adv. Mater. 31::1900524
    [Crossref] [Google Scholar]
  102. 102.
    Sun R, Park KS, Comstock AH, McConnell A, Chen Y-C, et al. 2024.. Inverse chirality-induced spin selectivity effect in chiral assemblies of π-conjugated polymers. . Nat. Mater. 23::78289
    [Crossref] [Google Scholar]
  103. 103.
    Ren H, Chen J-D, Li Y-Q, Tang J-X. 2021.. Recent progress in organic photodetectors and their applications. . Adv. Sci. 8::2002418
    [Crossref] [Google Scholar]
  104. 104.
    Ward MD, Shi W, Gasparini N, Nelson J, Wade J, Fuchter MJ. 2022.. Best practices in the measurement of circularly polarised photodetectors. . J. Mater. Chem. C 10::1045263
    [Crossref] [Google Scholar]
  105. 105.
    Yang Y, da Costa RC, Fuchter MJ, Campbell AJ. 2013.. Circularly polarized light detection by a chiral organic semiconductor transistor. . Nat. Photon. 7::63438
    [Crossref] [Google Scholar]
  106. 106.
    Zhang L, Song I, Ahn J, Han M, Linares M, et al. 2021.. π-Extended perylene diimide double-heterohelicenes as ambipolar organic semiconductors for broadband circularly polarized light detection. . Nat. Commun. 12::142
    [Crossref] [Google Scholar]
  107. 107.
    Zhu D, Jiang W, Ma Z, Feng J, Zhan X, et al. 2022.. Organic donor-acceptor heterojunctions for high performance circularly polarized light detection. . Nat. Commun. 13::3454
    [Crossref] [Google Scholar]
  108. 108.
    Yang Y, Rice B, Shi X, Brandt JR, Correa da Costa R, et al. 2017.. Emergent properties of an organic semiconductor driven by its molecular chirality. . ACS Nano 11::832938
    [Crossref] [Google Scholar]
  109. 109.
    Lee H, Hwang JH, Song SH, Han H, Han S-J, et al. 2023.. Chiroptical synaptic heterojunction phototransistors based on self-assembled nanohelix of π-conjugated molecules for direct noise-reduced detection of circularly polarized light. . Adv. Sci. 10::2304039
    [Crossref] [Google Scholar]
  110. 110.
    Shi W, Salerno F, Ward MD, Santana-Bonilla A, Wade J, et al. 2021.. Fullerene desymmetrization as a means to achieve single-enantiomer electron acceptors with maximized chiroptical responsiveness. . Adv. Mater. 33::2004115
    [Crossref] [Google Scholar]
  111. 111.
    Rocha AR, García-Suárez VM, Bailey SW, Lambert CJ, Ferrer J, Sanvito S. 2005.. Towards molecular spintronics. . Nat. Mater. 4::33539
    [Crossref] [Google Scholar]
  112. 112.
    Göhler B, Hamelbeck V, Markus TZ, Kettner M, Hanne GF, et al. 2011.. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. . Science 331::89497
    [Crossref] [Google Scholar]
  113. 113.
    Naaman R, Waldeck DH. 2012.. Chiral-induced spin selectivity effect. . J. Phys. Chem. Lett. 3::217887
    [Crossref] [Google Scholar]
  114. 114.
    Evers F, Aharony A, Bar-Gill N, Entin-Wohlman O, Hedegård P, et al. 2022.. Theory of chirality induced spin selectivity: progress and challenges. . Adv. Mater. 34::2106629
    [Crossref] [Google Scholar]
  115. 115.
    Clever C, Wierzbinski E, Bloom BP, Lu Y, Grimm HM, et al. 2022.. Benchmarking chiral induced spin selectivity measurements—towards meaningful comparisons of chiral biomolecule spin polarizations. . Israel J. Chem. 62::e202200045
    [Crossref] [Google Scholar]
  116. 116.
    Kumar A, Capua E, Kesharwani MK, Martin JML, Sitbon E, et al. 2017.. Chirality-induced spin polarization places symmetry constraints on biomolecular interactions. . PNAS 114::247478
    [Crossref] [Google Scholar]
  117. 117.
    Long G, Jiang C, Sabatini R, Yang Z, Wei M, et al. 2018.. Spin control in reduced-dimensional chiral perovskites. . Nat. Photon. 12::52833
    [Crossref] [Google Scholar]
  118. 118.
    Nakajima R, Hirobe D, Kawaguchi G, Nabei Y, Sato T, et al. 2023.. Giant spin polarization and a pair of antiparallel spins in a chiral superconductor. . Nature 613::47984
    [Crossref] [Google Scholar]
  119. 119.
    Adhikari Y, Liu T, Wang H, Hua Z, Liu H, et al. 2023.. Interplay of structural chirality, electron spin and topological orbital in chiral molecular spin valves. . Nat. Commun. 14::5163
    [Crossref] [Google Scholar]
  120. 120.
    Banerjee-Ghosh K, Ben Dor O, Tassinari F, Capua E, Yochelis S, et al. 2018.. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. . Science 360::133134
    [Crossref] [Google Scholar]
  121. 121.
    Kim K, Vetter E, Yan L, Yang C, Wang Z, et al. 2023.. Chiral-phonon-activated spin Seebeck effect. . Nat. Mater. 22::32228
    [Crossref] [Google Scholar]
  122. 122.
    Mishra S, Mondal AK, Pal S, Das TK, Smolinsky EZB, et al. 2020.. Length-dependent electron spin polarization in oligopeptides and DNA. . J. Phys. Chem. C 124::1077682
    [Crossref] [Google Scholar]
  123. 123.
    Kiran V, Mathew SP, Cohen SR, Hernández Delgado I, Lacour J, Naaman R. 2016.. Helicenes—a new class of organic spin filter. . Adv. Mater. 28::195762
    [Crossref] [Google Scholar]
  124. 124.
    Suda M, Thathong Y, Promarak V, Kojima H, Nakamura M, et al. 2019.. Light-driven molecular switch for reconfigurable spin filters. . Nat. Commun. 10::2455
    [Crossref] [Google Scholar]
  125. 125.
    Jia L, Wang C, Zhang Y, Yang L, Yan Y. 2020.. Efficient spin selectivity in self-assembled superhelical conducting polymer microfibers. . ACS Nano 14::660715
    [Crossref] [Google Scholar]
  126. 126.
    Qian Q, Ren H, Zhou J, Wan Z, Zhou J, et al. 2022.. Chiral molecular intercalation superlattices. . Nature 606::9028
    [Crossref] [Google Scholar]
  127. 127.
    Huizi-Rayo U, Gutierrez J, Seco JM, Mujica V, Diez-Perez I, et al. 2020.. An ideal spin filter: long-range, high-spin selectivity in chiral helicoidal 3-dimensional metal organic frameworks. . Nano Lett. 20::847682
    [Crossref] [Google Scholar]
  128. 128.
    Lu H, Xiao C, Song R, Li T, Maughan AE, et al. 2020.. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. . J. Am. Chem. Soc. 142::1303040
    [Crossref] [Google Scholar]
  129. 129.
    Kulkarni C, Mondal AK, Das TK, Grinbom G, Tassinari F, et al. 2020.. Highly efficient and tunable filtering of electrons' spin by supramolecular chirality of nanofiber-based materials. . Adv. Mater. 32::1904965
    [Crossref] [Google Scholar]
  130. 130.
    Garcia AM, Martínez G, Ruiz-Carretero A. 2021.. The importance of spin state in chiral supramolecular electronics. . Front. Chem. 9::722727
    [Crossref] [Google Scholar]
  131. 131.
    Mondal AK, Preuss MD, Ślęczkowski ML, Das TK, Vantomme G, et al. 2021.. Spin filtering in supramolecular polymers assembled from achiral monomers mediated by chiral solvents. . J. Am. Chem. Soc. 143::718995
    [Crossref] [Google Scholar]
  132. 132.
    Rösch AT, Zhu Q, Robben J, Tassinari F, Meskers SCJ, et al. 2021.. Helicity control in the aggregation of achiral squaraine dyes in solution and thin films. . Chemistry 27::298306
    [Crossref] [Google Scholar]
  133. 133.
    Ko C-H, Zhu Q, Tassinari F, Bullard G, Zhang P, et al. 2022.. Twisted molecular wires polarize spin currents at room temperature. . PNAS 119::e2116180119132
    [Crossref] [Google Scholar]
  134. 134.
    Peer N, Dujovne I, Yochelis S, Paltiel Y. 2015.. Nanoscale charge separation using chiral molecules. . ACS Photonics 2::147681
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-100722-104224
Loading
/content/journals/10.1146/annurev-chembioeng-100722-104224
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error