1932

Abstract

Polymer-infiltrated nanoparticle films (PINFs) are a new class of nanocomposites that offer synergistic properties and functionality derived from unusually high fractions of nanomaterials. Recently, two versatile techniques,capillary rise infiltration (CaRI) and solvent-driven infiltration of polymer (SIP), have been introduced that exploit capillary forces in films of densely packed nanoparticles. In CaRI, a highly loaded PINF is produced by thermally induced wicking of polymer melt into the nanoparticle packing pores. In SIP, exposure of a polymer–nanoparticle bilayer to solvent vapor atmosphere induces capillary condensation of solvent in the pores of nanoparticle packing, leading to infiltration of polymer into the solvent-filled pores. CaRI/SIP PINFs show superior properties compared with polymer nanocomposite films made using traditional methods, including superb mechanical properties, thermal stability, heat transfer, and optical properties. This review discusses fundamental aspects of the infiltration process and highlights potential applications in separations, structural coatings, and polymer upcycling—a process to convert polymer wastes into useful chemicals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101220-093836
2021-06-07
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-101220-093836.html?itemId=/content/journals/10.1146/annurev-chembioeng-101220-093836&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Odegard GM, Clancy TC, Gates TS. 2005. Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46:2553–62
    [Google Scholar]
  2. 2. 
    Sen S, Thomin JD, Kumar SK, Keblinski P. 2007. Molecular underpinnings of the mechanical reinforcement in polymer nanocomposites. Macromolecules 40:114059–67
    [Google Scholar]
  3. 3. 
    Bockstaller MR, Thomas EL 2003. Optical properties of polymer-based photonic nanocomposite materials. J. Phys. Chem. B 107:3710017–24
    [Google Scholar]
  4. 4. 
    Flory F. 2011. Optical properties of nanostructured materials: a review. J. Nanophotonics 5:1052502
    [Google Scholar]
  5. 5. 
    Chandra A, Turng L-S, Gopalan P, Rowell RM, Gong S. 2008. Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties. Compos. Sci. Technol. 68:3–4768–76
    [Google Scholar]
  6. 6. 
    Winey KI, Kashiwagi T, Mu M. 2007. Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bull 32:4348–53
    [Google Scholar]
  7. 7. 
    Qin S, Pour MG, Lazar S, Köklükaya O, Gerringer J et al. 2019. Super gas barrier and fire resistance of nanoplatelet/nanofibril multilayer thin films. Adv. Mater. Interfaces 6:21801424
    [Google Scholar]
  8. 8. 
    Holder KM, Cain AA, Plummer MG, Stevens BE, Odenborg PK et al. 2016. Carbon nanotube multilayer nanocoatings prevent flame spread on flexible polyurethane foam. Macromol. Mater. Eng. 301:6665–73
    [Google Scholar]
  9. 9. 
    Liu X, Qin S, Li H, Sun J, Gu X et al. 2019. Combination intumescent and kaolin-filled multilayer nanocoatings that reduce polyurethane flammability. Macromol. Mater. Eng. 304:21800531
    [Google Scholar]
  10. 10. 
    Holder KM, Smith RJ, Grunlan JC. 2017. A review of flame retardant nanocoatings prepared using layer-by-layer assembly of polyelectrolytes. J. Mater. Sci. 52:2212923–59
    [Google Scholar]
  11. 11. 
    Farrokhnia M, Safekordi A, Rashidzadeh M, Khanbabaei G, Akbari Anari R, Rahimpour M 2016. Development of porous nanocomposite membranes for gas separation by identifying the effective fabrication parameters with Plackett-Burman experimental design. J. Porous Mater. 23:51279–95
    [Google Scholar]
  12. 12. 
    Jeong B-H, Hoek EMV, Yan Y, Subramani A, Huang X et al. 2007. Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Membr. Sci. 294:1–21–7
    [Google Scholar]
  13. 13. 
    Müller K, Bugnicourt E, Latorre M, Jorda M, Echegoyen Sanz Y et al. 2017. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 7:474
    [Google Scholar]
  14. 14. 
    Harito C, Bavykin DV, Yuliarto B, Dipojono HK, Walsh FC. 2019. Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale 11:114653–82
    [Google Scholar]
  15. 15. 
    Parveen N, Ansari MO, Cho MH. 2016. Route to high surface area, mesoporosity of polyaniline-titanium dioxide nanocomposites via one pot synthesis for energy storage applications. Ind. Eng. Chem. Res. 55:1116–24
    [Google Scholar]
  16. 16. 
    Lu L, Luo Z, Xu T, Yu L 2013. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett 13:159–64
    [Google Scholar]
  17. 17. 
    Wu J-L, Chen F-C, Hsiao Y-S, Chien F-C, Chen P et al. 2011. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 5:2959–67
    [Google Scholar]
  18. 18. 
    Rajesh, Ahuja T, Kumar D. 2009. Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens. Actuators B 136:1275–86
    [Google Scholar]
  19. 19. 
    Tjong SC. 2012. Polymer nanocomposites for sensor applications. Polymer Composites with Carbonaceous Nanofillers351–79 Weinheim, Ger: Wiley-VCH Verlag GmbH & Co. KGaA
    [Google Scholar]
  20. 20. 
    Bonnet P, Sireude D, Garnier B, Chauvet O. 2007. Thermal properties and percolation in carbon nanotube-polymer composites. Appl. Phys. Lett. 91:20201910
    [Google Scholar]
  21. 21. 
    Song DP, Li C, Li W, Watkins JJ 2016. Block copolymer nanocomposites with high refractive index contrast for one-step photonics. ACS Nano 10:11216–23
    [Google Scholar]
  22. 22. 
    Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. 2008. Tough, bio-inspired hybrid materials. Science 322:59071516–20
    [Google Scholar]
  23. 23. 
    Bonderer LJ, Studart AR, Gauckler LJ. 2008. Bioinspired design and assembly of platelet reinforced polymer films. Science 319:58661069–73
    [Google Scholar]
  24. 24. 
    Sellinger A, Weiss PM, Nguyen A, Lu Y, Assink RA et al. 1998. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. Nature 394:6690256–60
    [Google Scholar]
  25. 25. 
    Chen Q, Gong S, Moll J, Zhao D, Kumar SK, Colby RH. 2015. Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network. ACS Macro Lett 4:4398–402
    [Google Scholar]
  26. 26. 
    de Jongh PE, Eggenhuisen TM. 2013. Melt infiltration: an emerging technique for the preparation of novel functional nanostructured materials. Adv. Mater. 25:466672–90
    [Google Scholar]
  27. 27. 
    Gopakumar TG, Lee JA, Kontopoulou M, Parent JS. 2002. Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer 43:205483–91
    [Google Scholar]
  28. 28. 
    Jouault N, Vallat P, Dalmas F, Said S, Jestin J, Boueé F. 2009. Well-dispersed fractal aggregates as filler in polymer−silica nanocomposites: long-range effects in rheology. Macromolecules 42:62031–40
    [Google Scholar]
  29. 29. 
    Novak BM. 1993. Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Adv. Mater. 5:6422–33
    [Google Scholar]
  30. 30. 
    Qiang Y, Manohar N, Stebe KJ, Lee D. 2018. Polymer blend-filled nanoparticle films: via monomer-driven infiltration of polymer and photopolymerization. Mol. Syst. Des. Eng. 3:96–102
    [Google Scholar]
  31. 31. 
    Srivastava S, Kotov NA. 2008. Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc. Chem. Res. 41:121831–41
    [Google Scholar]
  32. 32. 
    Kulkarni DD, Choi I, Singamaneni SS, Tsukruk VV. 2010. Graphene oxide−polyelectrolyte nanomembranes. ACS Nano 4:84667–76
    [Google Scholar]
  33. 33. 
    Zhu Y, Wang H, Yan L, Wang R, Zhu Y 2016. Preparation and tribological properties of 3D network polymer-based nanocomposites reinforced by carbon nanofibers. Wear 356:101–9
    [Google Scholar]
  34. 34. 
    Wu Y, Ye K, Liu Z, Wang M, Chee KWA et al. 2018. Effective thermal transport highway construction within dielectric polymer composites via a vacuum-assisted infiltration method. J. Mater. Chem. C 6:246494–501
    [Google Scholar]
  35. 35. 
    Alshammary B, Walsh FC, Herrasti P, Ponce de Leon C. 2016. Electrodeposited conductive polymers for controlled drug release: polypyrrole. J. Solid State Electrochem. 20:4839–59
    [Google Scholar]
  36. 36. 
    Nejati S, Lau KKS. 2011. Pore filling of nanostructured electrodes in dye sensitized solar cells by initiated chemical vapor deposition. Nano Lett 11:2419–23
    [Google Scholar]
  37. 37. 
    Bradford PD, Wang X, Zhao H, Maria JP, Jia Q, Zhu YT. 2010. A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Compos. Sci. Technol. 70:131980–85
    [Google Scholar]
  38. 38. 
    Huang YR, Jiang Y, Hor JL, Gupta R, Zhang L et al. 2015. Polymer nanocomposite films with extremely high nanoparticle loadings via capillary rise infiltration (CaRI). Nanoscale 7:2798–805
    [Google Scholar]
  39. 39. 
    Hor JL, Jiang Y, Ring DJ, Riggleman RA, Turner KT, Lee D. 2017. Nanoporous polymer-infiltrated nanoparticle films with uniform or graded porosity via undersaturated capillary rise infiltration. ACS Nano 11:33229–36
    [Google Scholar]
  40. 40. 
    Venkatesh RB, Han SH, Lee D. 2019. Patterning polymer-filled nanoparticle films via leaching-enabled capillary rise infiltration (LeCaRI). Nanoscale Horizons 4:4933–39
    [Google Scholar]
  41. 41. 
    Venkatesh RB, Zhang T, Manohar N, Stebe KJ, Riggleman RA, Lee D. 2020. Effect of polymer-nanoparticle interactions on solvent-driven infiltration of polymer (SIP) into nanoparticle packings: a molecular dynamics study. Mol. Syst. Des. Eng. 5:3666–74
    [Google Scholar]
  42. 42. 
    Manohar N, Stebe KJ, Lee D. 2017. Solvent-driven infiltration of polymer (SIP) into nanoparticle packings. ACS Macro Lett 6:101104–8
    [Google Scholar]
  43. 43. 
    Manohar N, Stebe KJ, Lee D. 2020. Effect of confinement on solvent-driven infiltration of the polymer into nanoparticle packings. Macromolecules 53:156740–46
    [Google Scholar]
  44. 44. 
    Bertei A, Nucci B, Nicolella C. 2013. Effective transport properties in random packings of spheres and agglomerates. Chem. Eng. Trans. 32:1531–36
    [Google Scholar]
  45. 45. 
    Shin K, Obukhov S, Chen JT, Huh J, Hwang Y et al. 2007. Enhanced mobility of confined polymers. Nat. Mater. 6:12961–65
    [Google Scholar]
  46. 46. 
    Yao Y, Butt HJ, Zhou J, Doi M, Floudas G. 2018. Capillary imbibition of polymer mixtures in nanopores. Macromolecules 51:83059–65
    [Google Scholar]
  47. 47. 
    Yao Y, Alexandris S, Henrich F, Auernhammer G, Steinhart M et al. 2017. Complex dynamics of capillary imbibition of poly(ethylene oxide) melts in nanoporous alumina. J. Chem. Phys. 146:20203320
    [Google Scholar]
  48. 48. 
    Martín J, Nogales A, Martín-González M. 2013. The smectic-isotropic transition of P3HT determines the formation of nanowires or nanotubes into porous templates. Macromolecules 46:41477–83
    [Google Scholar]
  49. 49. 
    Whiteside PJD, Chininis JA, Hunt HK. 2016. Techniques and challenges for characterizing metal thin films with applications in photonics. Coatings 6:335
    [Google Scholar]
  50. 50. 
    Campoy-Quiles M, Alonso MI, Bradley DDC, Richter LJ. 2014. Advanced ellipsometric characterization of conjugated polymer films. Adv. Funct. Mater. 24:152116–34
    [Google Scholar]
  51. 51. 
    Hor JL, Wang H, Fakhraai Z, Lee D. 2018. Effects of polymer-nanoparticle interactions on the viscosity of unentangled polymers under extreme nanoconfinement during capillary rise infiltration. Soft Matter 14:132438–46
    [Google Scholar]
  52. 52. 
    Hor JL, Wang H, Fakhraai Z, Lee D. 2018. Effect of physical nanoconfinement on the viscosity of unentangled polymers during capillary rise infiltration. Macromolecules 51:145069–78
    [Google Scholar]
  53. 53. 
    Washburn EW. 1921. The dynamics of capillary flow. Phys. Rev. 17:3273–83
    [Google Scholar]
  54. 54. 
    Dimitrov DI, Milchev A, Binder K. 2007. Capillary rise in nanopores: molecular dynamics evidence for the Lucas-Washburn equation. Phys. Rev. Lett. 99:5054501
    [Google Scholar]
  55. 55. 
    Zhmud BV, Tiberg F, Hallstensson K. 2000. Dynamics of capillary rise. J. Colloid Interface Sci. 228:2263–69
    [Google Scholar]
  56. 56. 
    Kimmich R, Fatkullin N, Mattea C, Fischer E. 2005. Polymer chain dynamics under nanoscopic confinements. Magn. Reson. Imaging 23:2191–96
    [Google Scholar]
  57. 57. 
    Mangal R, Srivastava S, Archer LA. 2015. Phase stability and dynamics of entangled polymer-nanoparticle composites. Nat. Commun. 6:7198
    [Google Scholar]
  58. 58. 
    Tu CH, Steinhart M, Butt HJ, Floudas G. 2019.. In situ monitoring of the imbibition of poly(n-butyl methacrylates) in nanoporous alumina by dielectric spectroscopy. Macromolecules 52:218167–76
    [Google Scholar]
  59. 59. 
    Keddie JL, Jones RAL, Cory RA. 1994. Size-dependent depression of the glass transition temperature in polymer films. EPL 27:59–64
    [Google Scholar]
  60. 60. 
    Choi J, Clarke N, Winey KI, Composto RJ. 2014. Fast polymer diffusion through nanocomposites with anisotropic particles. ACS Macro Lett 3:9886–91
    [Google Scholar]
  61. 61. 
    Tarnacka M, Talik A, Kamińska E, Geppert-Rybczyńska M, Kaminski K, Paluch M. 2019. The impact of molecular weight on the behavior of poly(propylene glycol) derivatives confined within alumina templates. Macromolecules 52:93516–29
    [Google Scholar]
  62. 62. 
    Ediger MD, Forrest JA. 2014. Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future. Macromolecules 47:2471–78
    [Google Scholar]
  63. 63. 
    Schneider GJ, Nusser K, Willner L, Falus P, Richter D. 2011. Dynamics of entangled chains in polymer nanocomposites. Macromolecules 44:155857–60
    [Google Scholar]
  64. 64. 
    Lange F, Judeinstein P, Franz C, Hartmann-Azanza B, Ok S et al. 2015. Large-scale diffusion of entangled polymers along nanochannels. ACS Macro Lett 4:5561–65
    [Google Scholar]
  65. 65. 
    Roth C, Dutcher J. 2004. Mobility on different length scales in thin polymer films. Soft Materials JR Dutcher, AG Marangoni 1–38 Boca Raton, FL: CRC Press, 1st ed..
    [Google Scholar]
  66. 66. 
    Choi J, Hore MJA, Meth JS, Clarke N, Winey KI, Composto RJ. 2013. Universal scaling of polymer diffusion in nanocomposites. ACS Macro Lett 2:6485–90
    [Google Scholar]
  67. 67. 
    Askar S, Wei T, Tan AW, Torkelson JM. 2017. Molecular weight dependence of the intrinsic size effect on Tg in AAO template-supported polymer nanorods: a DSC study. J. Chem. Phys. 146:20203323
    [Google Scholar]
  68. 68. 
    Schneider GJ. 2017. Dynamics of nanocomposites. Curr. Opin. Chem. Eng. 16:65–77
    [Google Scholar]
  69. 69. 
    Gam S, Meth JS, Zane SG, Chi C, Wood BA et al. 2011. Macromolecular diffusion in a crowded polymer nanocomposite. Macromolecules 44:93494–501
    [Google Scholar]
  70. 70. 
    Bocquet L. 2020. Nanofluidics coming of age. Nat. Mater. 19:3254–56
    [Google Scholar]
  71. 71. 
    Frank B, Gast AP, Russell TP, Brown HR, Hawker C. 1996. Polymer mobility in thin films. Macromolecules 29:206531–34
    [Google Scholar]
  72. 72. 
    Bansal A, Yang H, Li C, Cho K, Benicewicz BC et al. 2005. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat. Mater. 4:9693–98
    [Google Scholar]
  73. 73. 
    Ring DJ, Riggleman RA, Lee D. 2019. Critical contact angle to induce capillary rise of polymers in nanopores does not depend on chain length. ACS Macro Lett 8:131–35
    [Google Scholar]
  74. 74. 
    Jin S, McKenna GB 2020. Effect of nanoconfinement on polymer chain dynamics. Macromolecules 53:2210212–16
    [Google Scholar]
  75. 75. 
    Muthukumar M. 1991. Entropic barrier model for polymer diffusion in concentrated polymer solutions and random media. J. Non-Cryst. Solids 131–133:2654–66
    [Google Scholar]
  76. 76. 
    Lin CC, Gam S, Meth JS, Clarke N, Winey KI, Composto RJ. 2013. Do attractive polymer-nanoparticle interactions retard polymer diffusion in nanocomposites?. Macromolecules 46:114502–9
    [Google Scholar]
  77. 77. 
    Tung WS, Griffin PJ, Meth JS, Clarke N, Composto RJ, Winey KI. 2016. Temperature-dependent suppression of polymer diffusion in polymer nanocomposites. ACS Macro Lett 5:6735–39
    [Google Scholar]
  78. 78. 
    Wang H, Hor JL, Zhang Y, Liu T, Lee D, Fakhraai Z. 2018. Dramatic increase in polymer glass transition temperature under extreme nanoconfinement in weakly interacting nanoparticle films. ACS Nano 12:65580–87
    [Google Scholar]
  79. 79. 
    Forrest JA, Dalnoki-Veress K, Stevens JR, Dutcher JR. 1996. Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77:102002–5
    [Google Scholar]
  80. 80. 
    Keddie JL, Jones RAL. 1995. Glass transition behavior in ultra-thin polystyrene films. Isr. J. Chem. 35:121–26
    [Google Scholar]
  81. 81. 
    Serghei A, Huth H, Schick C, Kremer F. 2008. Glassy dynamics in thin polymer layers having a free upper interface. Macromolecules 41:103636–39
    [Google Scholar]
  82. 82. 
    Wang H, Qiang Y, Shamsabadi AA, Mazumder P, Turner KT et al. 2019. Thermal degradation of polystyrene under extreme nanoconfinement. ACS Macro Lett 8:111413–18
    [Google Scholar]
  83. 83. 
    Glasmästar K, Gold J, Andersson A-S, Sutherland DS, Kasemo B. 2003. Silicone transfer during microcontact printing. Langmuir 19:135475–83
    [Google Scholar]
  84. 84. 
    Millet L, Jain A, Gillette M. 2017. Less is more: Oligomer extraction and hydrothermal annealing increase PDMS bonding forces for new microfluidics assembly and for biological studies. bioRxiv 150953. https://doi.org/10.1101/150953
    [Crossref]
  85. 85. 
    Sanchez W, Evans J, George G 2005. Silicone polymers in scar remediation: the role of migration of oligomers through stratum corneum. Aust. J. Chem. 58:6447–50
    [Google Scholar]
  86. 86. 
    Hourlier-Fargette A, Dervaux J, Antkowiak A, Neukirch S. 2018. Extraction of silicone uncrosslinked chains at air-water-polydimethylsiloxane triple lines. Langmuir 34:4112244–50
    [Google Scholar]
  87. 87. 
    Berthier E, Young EWK, Beebe D. 2012. Engineers are from PDMS-land, biologists are from Polystyrenia. Lab Chip 12:71224–37
    [Google Scholar]
  88. 88. 
    Kim JH, Hwang HS, Hahm SW, Khang DY. 2010. Hydrophobically recovered and contact printed siloxane oligomers for general-purpose surface patterning. Langmuir 26:1513015–19
    [Google Scholar]
  89. 89. 
    Gemici Z, Schwachulla PI, Williamson EH, Rubner MF, Cohen RE. 2009. Targeted functionalization of nanoparticle thin films via capillary condensation. Nano Lett 9:31064–70
    [Google Scholar]
  90. 90. 
    Kim BQ, Qiang Y, Turner KT, Choi SQ, Lee D. 2020. Heterostructured polymer-infiltrated nanoparticle films with cavities via capillary rise infiltration. Adv. Mater. Interfaces 8:32001421
    [Google Scholar]
  91. 91. 
    Teraoka I, Langley KH, Karasz FE. 1993. Diffusion of polystyrene in controlled pore glasses: transition from the dilute to the semidilute regime. Macromolecules 26:2287–97
    [Google Scholar]
  92. 92. 
    Bishop MT, Langley KH, Karasz FE. 1989. Dynamic light-scattering studies of polymer diffusion in porous materials: linear polystyrene in porous glass. Macromolecules 22:31220–31
    [Google Scholar]
  93. 93. 
    Park JY, McKenna GB. 2000. Size and confinement effects on the glass transition behavior of polystyrene/o-terphenyl polymer solutions. Phys. Rev. B 61:106667–76
    [Google Scholar]
  94. 94. 
    Bezrukov SM, Vodyanoy I, Brutyan RA, Kasianowicz JJ. 1996. Dynamics and free energy of polymers partitioning into a nanoscale pore. Macromolecules 29:268517–22
    [Google Scholar]
  95. 95. 
    Byrne MT, McCarthy JE, Bent M, Blake R, Gun'ko YK et al. 2007. Chemical functionalisation of titania nanotubes and their utilisation for the fabrication of reinforced polystyrene composites. J. Mater. Chem. 17:222351–58
    [Google Scholar]
  96. 96. 
    Selvin TP, Kuruvilla J, Sabu T. 2004. Mechanical properties of titanium dioxide-filled polystyrene microcomposites. Mater. Lett. 58:3–4281–89
    [Google Scholar]
  97. 97. 
    Thomas SP, Thomas S, Bandyopadhyay S. 2009. Mechanical, atomic force microscopy and focused ion beam studies of isotactic polystyrene/titanium dioxide composites. Composites A 40:136–44
    [Google Scholar]
  98. 98. 
    Zhang J, Wang X, Lu L, Li D, Yang X 2003. Preparation and performance of high-impact polystyrene (HIPS)/nano-TiO2 nanocomposites. J. Appl. Polym. Sci. 87:3381–85
    [Google Scholar]
  99. 99. 
    Lin EY, Frischknecht AL, Riggleman RA. 2020. Origin of mechanical enhancement in polymer nanoparticle (NP) composites with ultrahigh NP loading. Macromolecules 53:82976–82
    [Google Scholar]
  100. 100. 
    Jiang Y, Hor JL, Lee D, Turner KT 2018. Toughening nanoparticle films via polymer infiltration and confinement. ACS Appl. Mater. Interfaces 10:5044011–17
    [Google Scholar]
  101. 101. 
    Ast J, Ghidelli M, Durst K, Göken M, Sebastiani M, Korsunsky AM. 2019. A review of experimental approaches to fracture toughness evaluation at the micro-scale. Mater. Des. 173:107762
    [Google Scholar]
  102. 102. 
    Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P et al. 2010. Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 51:153321–43
    [Google Scholar]
  103. 103. 
    Kumar SK, Benicewicz BC, Vaia RA, Winey KI. 2017. 50th anniversary perspective: Are polymer nanocomposites practical for applications?. Macromolecules 50:3714–31
    [Google Scholar]
  104. 104. 
    Donovan BF, Warzoha RJ, Venkatesh RB, Vu NT, Wallen J, Lee D. 2019. Elimination of extreme boundary scattering via polymer thermal bridging in silica nanoparticle packings: implications for thermal management. ACS Appl. Nano Mater. 2:106662–69
    [Google Scholar]
  105. 105. 
    Tran HH, Venkatesh RB, Kim Y, Lee D, Riassetto D. 2019. Multifunctional composite films with vertically aligned ZnO nanowires by leaching-enabled capillary rise infiltration. Nanoscale 11:4522099–107
    [Google Scholar]
  106. 106. 
    Zeng X, Xu S, Pi P, Cheng J, Wang L et al. 2018. Polymer-infiltrated approach to produce robust and easy repairable superhydrophobic mesh for high-efficiency oil/water separation. J. Mater. Sci. 53:1410554–68
    [Google Scholar]
  107. 107. 
    Zhang J, Zhang L. 2019. Polystyrene/TiO2 nanocomposite coatings to inhibit corrosion of aluminum alloy 2024-T3. ACS Appl. Nano Mater. 2:106368–77
    [Google Scholar]
  108. 108. 
    Shavit A, Riggleman RA. 2015. The dynamics of unentangled polymers during capillary rise infiltration into a nanoparticle packing. Soft Matter 11:428285–95
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-101220-093836
Loading
/content/journals/10.1146/annurev-chembioeng-101220-093836
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error