1932

Abstract

The theory of constructed emotion is a systems neuroscience approach to understanding the nature of emotion. It is also a general theoretical framework to guide hypothesis generation for how actions and experiences are constructed as the brain continually anticipates metabolic needs and attempts to meet those needs before they arise (termed allostasis). In this review, we introduce this framework and hypothesize that allostatic dysregulation is a trans-disorder vulnerability for mental and physical illness. We then review published findings consistent with the hypothesis that several symptoms in major depressive disorder (MDD), such as fatigue, distress, context insensitivity, reward insensitivity, and motor retardation, are associated with persistent problems in energy regulation. Our approach transforms the current understanding of MDD as resulting from enhanced emotional reactivity combined with reduced cognitive control and, in doing so, offers novel hypotheses regarding the development, progression, treatment, and prevention of MDD.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-clinpsy-081219-115627
2022-05-09
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/clinpsy/18/1/annurev-clinpsy-081219-115627.html?itemId=/content/journals/10.1146/annurev-clinpsy-081219-115627&mimeType=html&fmt=ahah

Literature Cited

  1. Abdallah CG, Averill CL, Salas R, Averill LA, Baldwin PR et al. 2017. Prefrontal connectivity and glutamate transmission: relevance to depression pathophysiology and ketamine treatment. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2:7566–74
    [Google Scholar]
  2. Adolphs R. 2017. How should neuroscience study emotions? By distinguishing emotion states, concepts, and experiences. Soc. Cogn. Affect. Neurosci. 12:124–31
    [Google Scholar]
  3. Allen J, Romay-Tallon R, Brymer KJ, Caruncho HJ, Kalynchuk LE. 2018. Mitochondria and mood: mitochondrial dysfunction as a key player in the manifestation of depression. Front. Neurosci. 12:386
    [Google Scholar]
  4. Ashby WR. 1960. Design for a Brain: The Origin of Adaptive Behavior London: Chapman & Hall
    [Google Scholar]
  5. Atzil S, Gao W, Fradkin I, Barrett LF 2018. Growing a social brain. Nat. Hum. Behav. 2:9624–36
    [Google Scholar]
  6. Avery JA, Kerr KL, Ingeholm JE, Burrows K, Bodurka J, Simmons WK. 2015. A common gustatory and interoceptive representation in the human mid-insula. Hum. Brain Mapp. 36:82996–3006
    [Google Scholar]
  7. Bansal Y, Kuhad A. 2016. Mitochondrial dysfunction in depression. Curr. Neuropharmacol. 14:6610–18
    [Google Scholar]
  8. Bär K-J, de la Cruz F, Schumann A, Koehler S, Sauer H et al. 2016. Functional connectivity and network analysis of midbrain and brainstem nuclei. NeuroImage 134:53–63
    [Google Scholar]
  9. Barbas H. 1986. Pattern in the laminar origin of corticocortical connections. J. Comp. Neurol. 252:3415–22
    [Google Scholar]
  10. Barbas H. 2015. General cortical and special prefrontal connections: principles from structure to function. Annu. Rev. Neurosci. 38:269–89
    [Google Scholar]
  11. Barrett LF. 2006. Solving the emotion paradox: categorization and the experience of emotion. Personal. Soc. Psychol. Rev. 10:120–46
    [Google Scholar]
  12. Barrett LF. 2012. Emotions are real. Emotion 12:3413–29
    [Google Scholar]
  13. Barrett LF. 2013. Psychological construction: the Darwinian approach to the science of emotion. Emot. Rev. 5:4379–89
    [Google Scholar]
  14. Barrett LF. 2017a. How Emotions Are Made: The Secret Life of the Brain London: Palgrave Macmillan
    [Google Scholar]
  15. Barrett LF. 2017b. The theory of constructed emotion: an active inference account of interoception and categorization. Soc. Cogn. Affect. Neurosci. 12:11–23
    [Google Scholar]
  16. Barrett LF, Adolphs R, Marsella S, Martinez AM, Pollak SD. 2019. Emotional expressions reconsidered: challenges to inferring emotion from human facial movements. Psychol. Sci. Public Interest 20:11–68
    [Google Scholar]
  17. Barrett LF, Bliss-Moreau E. 2009. Affect as a psychological primitive. Adv. Exp. Soc. Psychol. 41:167–218
    [Google Scholar]
  18. Barrett LF, Finlay BL. 2018. Concepts, goals, and the control of survival-related behaviors. Curr. Opin. Behav. Sci. 24:172–79
    [Google Scholar]
  19. Barrett LF, Quigley KS, Hamilton P. 2016. An active inference theory of allostasis and interoception in depression. Philos. Trans. R. Soc. B 371:170820160011
    [Google Scholar]
  20. Barrett LF, Mesquita B, Ochsner KN, Gross JJ. 2007. The experience of emotion. Annu. Rev. Psychol. 58:373–403
    [Google Scholar]
  21. Barrett LF, Satpute AB. 2013. Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Curr. Opin. Neurobiol. 23:3361–72
    [Google Scholar]
  22. Barrett LF, Simmons WK. 2015. Interoceptive predictions in the brain. Nat. Rev. Neurosci. 16:7419–29
    [Google Scholar]
  23. Barsalou LW. 1983. Ad hoc categories. Mem. Cogn. 11:3211–27
    [Google Scholar]
  24. Barsalou LW. 2003. Situated simulation in the human conceptual system. Lang. Cogn. Proc. 18:5/6513–62
    [Google Scholar]
  25. Barsalou LW. 2008. Grounded cognition. Annu. Rev. Psychol. 59:61745
    [Google Scholar]
  26. Barsalou LW, Simmons KW, Barbey AK, Wilson CD 2003. Grounding conceptual knowledge in modality-specific systems. Trends Cogn. Sci. 7:284–91
    [Google Scholar]
  27. Bayer S, Altman J 2004. Development of the telencephalon neural stem cells, neurogenesis, and neuronal migration. The Rat Nervous System G Paxinos 27–73 San Diego, CA: Elsevier. , 3rd ed..
    [Google Scholar]
  28. Bechtel W, Bich L. 2021. Grounding cognition: heterarchical control mechanisms in biology. Philos. Trans. R. Soc. B 376:182020190751
    [Google Scholar]
  29. Beeler JA, Frazier CRM, Zhuang X. 2012. Putting desire on a budget: dopamine and energy expenditure, reconciling reward and resources. Front. Integr. Neurosci. 6:49
    [Google Scholar]
  30. Bennett D, Davidson G, Niv Y 2021. A model of mood as integrated advantage. Psychol. Rev. In press . https://doi.org/10.1037/rev0000294
    [Crossref] [Google Scholar]
  31. Berkes P, Orbán G, Lengyel M, Fiser J. 2011. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331:601383–87
    [Google Scholar]
  32. Bezerra de Pontes AL, Engelberth RCGJ, da Silva Nascimento E Jr., Cavalcante JC, de Oliveira Costa MSM et al. 2010. Serotonin and circadian rhythms. Psychol. Neurosci. 3:2217–28
    [Google Scholar]
  33. Blessing WW. 1997. Inadequate frameworks for understanding bodily homeostasis. Trends Neurosci 20:6235–39
    [Google Scholar]
  34. Brand JG, Cagan RH, Naim M. 1982. Chemical senses in the release of gastric and pancreatic secretions. Annu. Rev. Nutr. 2:249–76
    [Google Scholar]
  35. Buckner RL. 2012. The serendipitous discovery of the brain's default network. NeuroImage 62:21137–45
    [Google Scholar]
  36. Cacciola A, Bertino S, Basile GA, Di Mauro D, Calamuneri A et al. 2019. Mapping the structural connectivity between the periaqueductal gray and the cerebellum in humans. Brain Struct. Funct. 224:62153–65
    [Google Scholar]
  37. Cai X, Padoa-Schioppa C. 2012. Neuronal encoding of subjective value in dorsal and ventral anterior cingulate cortex. J. Neurosci. 32:113791–808
    [Google Scholar]
  38. Cavada C, Goldman-Rakic PS. 1989. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J. Comp. Neurol. 287:4393–421
    [Google Scholar]
  39. Cavalieri M, Ropele S, Petrovic K, Pluta-Fuerst A, Homayoon N et al. 2010. Metabolic syndrome, brain magnetic resonance imaging, and cognition. Diabetes Care 33:122489–95
    [Google Scholar]
  40. Chan O, Inouye K, Akirav E, Park E, Riddell MC et al. 2005. Insulin alone increases hypothalamo-pituitary-adrenal activity, and diabetes lowers peak stress responses. Endocrinology 146:31382–90
    [Google Scholar]
  41. Chanes L, Barrett LF. 2016. Redefining the role of limbic areas in cortical processing. Trends Cogn. Sci. 20:296–106
    [Google Scholar]
  42. Clore GL, Ortony A 2008. Appraisal theories: how cognition shapes affect into emotion. Handbook of Emotions M Lewis, JM Haviland-Jones, LF Barrett 628–42 New York: Guilford. , 3rd ed..
    [Google Scholar]
  43. Cohen AH. 1992. The role of heterarchical control in the evolution of central pattern generators. Brain Behav. Evol. 40:2/3112–24
    [Google Scholar]
  44. Cohen MX, Elger CE, Weber B. 2008. Amygdala tractography predicts functional connectivity and learning during feedback-guided decision-making. NeuroImage 39:31396–407
    [Google Scholar]
  45. Conant RC, Ashby WR. 1970. Every good regulator of a system must be a model of that system. Int. J. Syst. Sci. 1:289–97
    [Google Scholar]
  46. Cowen AS, Keltner D. 2017. Self-report captures 27 distinct categories of emotion bridged by continuous gradients. PNAS 114:38E7900–9
    [Google Scholar]
  47. Craig ADB. 2003. Interoception: The sense of the physiological condition of the body. Curr. Opin. Neurobiol. 13:4500–5
    [Google Scholar]
  48. Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT et al. 2014. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137:Part 82382–95
    [Google Scholar]
  49. Dantzer R, Capuron L, eds. 2017. Inflammation-Associated Depression: Evidence, Mechanisms and Implications Cham, Switz: Springer
    [Google Scholar]
  50. Dantzer R, Heijnen CJ, Kavelaars A, Laye S, Capuron L 2014. The neuroimmune basis of fatigue. Trends Neurosci 37:139–46
    [Google Scholar]
  51. Denève S. 2008. Bayesian spiking neurons. I: Inference. Neural Comput 20:191–117
    [Google Scholar]
  52. Denève S, Alemi A, Bourdoukan R 2017. The brain as an efficient and robust adaptive learner. Neuron 94:5969–77
    [Google Scholar]
  53. DeRubeis RJ, Siegle GJ, Hollon SD. 2008. Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms. Nat. Rev. Neurosci. 9:10788–96
    [Google Scholar]
  54. Disner SG, Beevers CG, Haigh EAP, Beck AT. 2011. Neural mechanisms of the cognitive model of depression. Nat. Rev. Neurosci. 12:8467–77
    [Google Scholar]
  55. Edelman GM, Gally JA. 2001. Degeneracy and complexity in biological systems. PNAS 98:2413763–68
    [Google Scholar]
  56. Everson-Rose SA, Meyer PM, Powell LH, Pandey D, Torrens JI et al. 2004. Depressive symptoms, insulin resistance, and risk of diabetes in women at midlife. Diabetes Care 27:122856–62
    [Google Scholar]
  57. Fattal O, Link J, Quinn K, Cohen BH, Franco K. 2007. Psychiatric comorbidity in 36 adults with mitochondrial cytopathies. CNS Spectr 12:6429–38
    [Google Scholar]
  58. Feillet CA. 2010. Food for thoughts: feeding time and hormonal secretion. J. Neuroendocrinol. 22:6620–28
    [Google Scholar]
  59. Felger JC, Alagbe O, Hu F, Mook D, Freeman AA et al. 2007. Effects of interferon-α on rhesus monkeys: a nonhuman primate model of cytokine-induced depression. Biol. Psychiatry 62:111324–33
    [Google Scholar]
  60. Fernandino L, Binder JR, Desai RH, Pendl SL, Humphries CJ et al. 2016. Concept representation reflects multimodal abstraction: a framework for embodied semantics. Cereb. Cortex 26:52018–34
    [Google Scholar]
  61. Fried E. 2017. Moving forward: how depression heterogeneity hinders progress in treatment and research. Expert Rev. Neurother. 17:5423–25
    [Google Scholar]
  62. Frijda NH. 1986. The Emotions Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  63. Friston K. 2003. Learning and inference in the brain. Neural Netw 16:91325–52
    [Google Scholar]
  64. Friston K. 2010. The free-energy principle: a unified brain theory?. Nat. Rev. Neurosci. 11:2127–38
    [Google Scholar]
  65. Gans ROB. 2006. The metabolic syndrome, depression, and cardiovascular disease: interrelated conditions that share pathophysiologic mechanisms. Med. Clin. N. Am. 90:4573–91
    [Google Scholar]
  66. García-Cabezas , Zikopoulos B, Barbas H 2019. The structural model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct. Funct. 224:3985–1008
    [Google Scholar]
  67. Gee H. 2018. Across the Bridge: Understanding the Origin of the Vertebrates Chicago: Univ. Chicago Press. Illus ed .
    [Google Scholar]
  68. Gendron M, Mesquita B, Barrett LF 2020. The brain as a cultural artifact. Culture, Mind, and Brain: Emerging Concepts, Models, and Applications LJ Kirmayer, CM Worthman, S Kitayama, R Lemelson, CA Cummings 188–222 New York: Cambridge Univ. Press
    [Google Scholar]
  69. Goldberg D. 2011. The heterogeneity of “major depression. .” World Psychiatry 10:3226–22
    [Google Scholar]
  70. Haber SN. 2003. The primate basal ganglia: parallel and integrative networks. J. Chem. Neuroanat. 26:4317–30
    [Google Scholar]
  71. Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC. 2007. Reduced prefrontal glutamate/glutamine and γ-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry 64:2193–200
    [Google Scholar]
  72. Hassabis D, Maguire EA. 2009. The construction system of the brain. Philos. Trans. R. Soc. B 364:15211263–71
    [Google Scholar]
  73. Hillhouse TM, Porter JH. 2015. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp. Clin. Psychopharmacol. 23:11–21
    [Google Scholar]
  74. Hoemann K, Gendron M, Barrett LF. 2017. Mixed emotions in the predictive brain. Curr. Opin. Behav. Sci. 15:51–57
    [Google Scholar]
  75. Hoemann K, Khan Z, Feldman MJ, Nielson C, Devlin M et al. 2020. Context-aware experience sampling reveals the scale of variation in affective experience. Sci. Rep. 10:12459
    [Google Scholar]
  76. Hroudová J, Fišar Z, Kitzlerová E, Zvěřová M, Raboch J 2013. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion 13:6795–800
    [Google Scholar]
  77. Hutchinson JB, Barrett LF. 2019. The power of predictions: an emerging paradigm for psychological research. Curr. Dir. Psychol. Sci. 28:3280–91
    [Google Scholar]
  78. Insausti R, Amaral DG 2012. Hippocampal formation. The Human Nervous System JK Mai, G Paxinos 896–942 Amsterdam: Elsevier. , 3rd ed..
    [Google Scholar]
  79. Kan C, Silva N, Golden SH, Rajala U, Timonen M et al. 2013. A systematic review and meta-analysis of the association between depression and insulin resistance. Diabetes Care 36:2480–89
    [Google Scholar]
  80. Kanai R, Komura Y, Shipp S, Friston K. 2015. Cerebral hierarchies: predictive processing, precision and the pulvinar. Philos. Trans. R. Soc. B 370:166820140169
    [Google Scholar]
  81. Karmiloff-Smith A. 2009. Preaching to the converted? From constructivism to neuroconstructivism. Child Dev. Perspect. 3:299–102
    [Google Scholar]
  82. Katsumi Y, Kamona N, Zhang J, Bunce JG, Hutchinson JB et al. 2021. Functional connectivity gradients as a common neural architecture for predictive processing in the human brain. bioRxiv 456844 . https://doi.org/10.1101/2021.09.01.456844
    [Crossref]
  83. Kessler RC, Nelson CB, McGonagle KA, Liu J, Swartz M, Blazer DG. 1996. Comorbidity of DSM-III-R major depressive disorder in the general population: results from the US national comorbidity survey. Br. J. Psychiatry 168:Suppl. 3017–30
    [Google Scholar]
  84. Kleckner IR, Zhang J, Touroutoglou A, Chanes L, Xia C et al. 2017. Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nat. Hum. Behav. 1:50069
    [Google Scholar]
  85. Kleinridders A, Cai W, Cappellucci L, Ghazarian A, Collins WR et al. 2015. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. PNAS 112:113463–68
    [Google Scholar]
  86. Kober H, Barrett LF, Joseph J, Bliss-Moreau E, Lindquist K, Wager TD. 2008. Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. NeuroImage 42:2998–1031
    [Google Scholar]
  87. Kolling N, Wittmann MK, Behrens TEJ, Boorman ED, Mars RB, Rushworth MFS. 2016. Value, search, persistence, and model updating in anterior cingulate cortex. Nat. Neurosci. 19:101280–85
    [Google Scholar]
  88. Koren T, Yifa R, Amer M, Krot M, Boshnak N et al. 2021. Insular cortex neurons encode and retrieve specific immune responses. Cell 184:245902–15.e17
    [Google Scholar]
  89. Kragel PA, Bianciardi M, Hartley L, Matthewson G, Choi J-K et al. 2019. Functional involvement of human periaqueductal gray and other midbrain nuclei in cognitive control. J. Neurosci. 39:316180–89
    [Google Scholar]
  90. Kumaran D, Hassabis D, McClelland JL. 2016. What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends Cogn. Sci. 20:7512–34
    [Google Scholar]
  91. Kurby CA, Zacks JM. 2008. Segmentation in the perception and memory of events. Trends Cogn. Sci. 12:272–79
    [Google Scholar]
  92. Lazarus RS. 1993. From psychological stress to the emotions: a history of changing outlooks. Annu. Rev. Psychol. 44:1–22
    [Google Scholar]
  93. Lebrecht S, Bar M, Barrett L, Tarr M 2012. Micro-valences: perceiving affective valence in everyday objects. Front. Psychol. 3:107
    [Google Scholar]
  94. Lemaire LA, Cao C, Yoon PH, Long J, Levine M 2021. The hypothalamus predates the origin of vertebrates. Sci. Adv. 7:18eabf7452
    [Google Scholar]
  95. Le Mau T, Hoemann K, Lyons SH, Fugate JMB, Brown EN et al. 2021. Professional actors demonstrate variability, not stereotypical expressions, when portraying emotional states in photographs. Nat. Commun. 12:5037
    [Google Scholar]
  96. Leonard BE, Wegener G. 2020. Inflammation, insulin resistance and neuroprogression in depression. Acta Neuropsychiatr 32:11–9
    [Google Scholar]
  97. Li B-J, Friston K, Mody M, Wang H-N, Lu H-B, Hu D-W. 2018. A brain network model for depression: from symptom understanding to disease intervention. CNS Neurosci. Ther. 24:111004–19
    [Google Scholar]
  98. Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM et al. 2013. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. PNAS 110:249950–55
    [Google Scholar]
  99. Lindquist KA, Satpute AB, Wager TD, Weber J, Barrett LF 2016. The brain basis of positive and negative affect: evidence from a meta-analysis of the human neuroimaging literature. Cereb. Cortex 26:51910–22
    [Google Scholar]
  100. Liu X, Hairston J, Schrier M, Fan J. 2011. Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 35:51219–36
    [Google Scholar]
  101. Lustman PJ, Anderson RJ, Freedland KE, de Groot M, Carney RM, Clouse RE. 2000. Depression and poor glycemic control: a meta-analytic review of the literature. Diabetes Care 23:7934–42
    [Google Scholar]
  102. Lyra e Silva ND, Lam MP, Soares CN, Munoz DP, Milev R, De Felice FG. 2019. Insulin resistance as a shared pathogenic mechanism between depression and type 2 diabetes. Front. Psychiatry 10:57
    [Google Scholar]
  103. Maes M, Berk M, Goehler L, Song C, Anderson G et al. 2012. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med 10:66
    [Google Scholar]
  104. Mareschal D, Johnson MH, Sirois S, Spratling MW, Thomas MSC, Westermann G 2007. Neuroconstructivism: How the Brain Constructs Cognition Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  105. Martins-de-Souza D, Guest PC, Harris LW, Vanattou-Saifoudine N, Webster MJ et al. 2012. Identification of proteomic signatures associated with depression and psychotic depression in post-mortem brains from major depression patients. Transl. Psychiatry 2:e87
    [Google Scholar]
  106. Mayr E 1974. Teleological and teleonomic, a new analysis. Methodological and Historical Essays in the Natural and Social Sciences RS Cohen, MW Wartofsky 91–117 Berlin: Springer
    [Google Scholar]
  107. McIntyre RS, Soczynska JK, Konarski JZ, Woldeyohannes HO, Law CWY et al. 2007. Should depressive syndromes be reclassified as “Metabolic Syndrome Type II”?. Ann. Clin. Psychiatry 19:4257–64
    [Google Scholar]
  108. McKellar S, Loewy AD. 1981. Organization of some brain stem afferents to the paraventricular nucleus of the hypothalamus in the rat. Brain Res 217:2351–57
    [Google Scholar]
  109. Morán MA, Mufson EJ, Mesulam MM 1987. Neural inputs into the temporopolar cortex of the rhesus monkey. J. Comp. Neurol. 256:188–103
    [Google Scholar]
  110. Müller GB. 2017. Why an extended evolutionary synthesis is necessary. Interface Focus 7:520170015
    [Google Scholar]
  111. Oakley RH, Cidlowski JA. 2013. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J. Allergy Clin. Immunol. 132:51033–44
    [Google Scholar]
  112. Ochsner KN, Ray RR, Hughes B, McRae K, Cooper JC et al. 2009. Bottom-up and top-down processes in emotion generation: common and distinct neural mechanisms. Psychol. Sci. 20:111322–31
    [Google Scholar]
  113. O'Donnell J, Zeppenfeld D, McConnell E, Pena S, Nedergaard M. 2012. Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem. Res. 37:112496–512
    [Google Scholar]
  114. Onat F, Çavdar S. 2003. Cerebellar connections: hypothalamus. Cerebellum 2:4263–69
    [Google Scholar]
  115. Osgood CE, Miron MS, May WH. 1975. Cross-Cultural Universals of Affective Meaning Urbana: Univ. Ill. Press
    [Google Scholar]
  116. Ottowitz WE, Dougherty DD, Savage CR. 2002. The neural network basis for abnormalities of attention and executive function in major depressive disorder: implications for application of the medical disease model to psychiatric disorders. Harv. Rev. Psychiatry 10:286–99
    [Google Scholar]
  117. Papez JW. 1937. A proposed mechanism of emotion. Arch. Neurol. Psychiatry 38:4725–43
    [Google Scholar]
  118. Parent A. 1984. Functional anatomy and evolution of monoaminergic systems. Am. Zool. 24:3783–90
    [Google Scholar]
  119. Paus T. 2001. Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat. Rev. Neurosci. 2:6417–24
    [Google Scholar]
  120. Pavlov IP, Thompson WH. 1910. The Work of the Digestive Glands London: C. Griffin:
    [Google Scholar]
  121. Penninx BWJH, Lamers F, Milaneschi Y. 2018. Clinical heterogeneity in major depressive disorder. Eur. Neuropsychopharmacol. 28:Suppl.59–60
    [Google Scholar]
  122. Picard M, McManus MJ, Gray JD, Nasca C, Moffat C et al. 2015. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. PNAS 112:48E6614–23
    [Google Scholar]
  123. Pontzer H. 2015. Energy expenditure in humans and other primates: a new synthesis. Annu. Rev. Anthropol. 44:169–87
    [Google Scholar]
  124. Powley TL. 2000. Vagal input to the enteric nervous system. Gut 47:430–32
    [Google Scholar]
  125. Price JL, Drevets WC. 2010. Neurocircuitry of mood disorders. Neuropsychopharmacology 35:1192–216
    [Google Scholar]
  126. Pritchard TC, Hamilton RB, Norgren R 2000. Projections of the parabrachial nucleus in the old world monkey. Exp. Neurol. 165:1101–17
    [Google Scholar]
  127. Quigley KS, Kanoski S, Grill WM, Barrett LF, Tsakiris M. 2021. Functions of interoception: from energy regulation to experience of the self. Trends Neurosci 44:129–38
    [Google Scholar]
  128. Raeder MB, Bjelland I, Emil Vollset S, Steen VM 2006. Obesity, dyslipidemia, and diabetes with selective serotonin reuptake inhibitors: the Hordaland Health Study. J. Clin. Psychiatry 67:121974–82
    [Google Scholar]
  129. Richmond LL, Zacks JM. 2017. Constructing experience: event models from perception to action. Trends Cogn. Sci. 21:12962–80
    [Google Scholar]
  130. Riva-Posse P, Choi KS, Holtzheimer PE, McIntyre CC, Gross RE et al. 2014. Defining critical white matter pathways mediating successful subcallosal cingulate deep brain stimulation for treatment-resistant depression. Biol. Psychiatry 76:12963–69
    [Google Scholar]
  131. Rizzolatti G, Fadiga L, Gallese V, Fogassi L 1996. Premotor cortex and the recognition of motor actions. Brain Res. Cogn. 3:2131–41
    [Google Scholar]
  132. Rockland KS, Pandya DN. 1979. Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:13–20
    [Google Scholar]
  133. Rolls ET. 2015. Limbic systems for emotion and for memory, but no single limbic system. Cortex 62:119–57
    [Google Scholar]
  134. Rolls ET. 2019. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Struct. Funct. 224:93001–18
    [Google Scholar]
  135. Russell JA. 1991. In defense of a prototype approach to emotion concepts. J. Personal. Soc. Psychol. 60:37–47
    [Google Scholar]
  136. Saper CB. 2002. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci. 25:433–69
    [Google Scholar]
  137. Schiffer JA, Servello FA, Heath WR, Amrit FRG, Stumbur SV et al. 2020. Caenorhabditis elegans processes sensory information to choose between freeloading and self-defense strategies. eLife 9:e56186
    [Google Scholar]
  138. Schwartz TL, Nihalani N, Jindal S, Virk S, Jones N. 2004. Psychiatric medication-induced obesity: a review. Obes. Rev. 5:2115–21
    [Google Scholar]
  139. Seltzer B, Pandya DN. 1994. Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study. J. Comp. Neurol. 343:3445–63
    [Google Scholar]
  140. Sennesh E, Theriault J, Brooks D, van de Meent JW, Barrett LF, Quigley KS 2022. Interoception as modeling, allostasis as control. Biol. Psychol. 167:108242
    [Google Scholar]
  141. Shipp S, Adams RA, Friston KJ 2013. Reflections on agranular architecture: predictive coding in the motor cortex. Trends Neurosci 36:12706–16
    [Google Scholar]
  142. Siegel EH, Sands MK, Van den Noortgate W, Condon P, Chang Y et al. 2018. Emotion fingerprints or emotion populations? A meta-analytic investigation of autonomic features of emotion categories. Psychol. Bull. 144:4343–93
    [Google Scholar]
  143. Singh MK, Leslie SM, Packer MM, Zaiko YV, Phillips OR et al. 2019. Brain and behavioral correlates of insulin resistance in youth with depression and obesity. Horm. Behav. 108:73–83
    [Google Scholar]
  144. Sterling P. 2012. Allostasis: a model of predictive regulation. Physiol. Behav. 106:15–15
    [Google Scholar]
  145. Sterling P, Laughlin S. 2015. Principles of Neural Design Cambridge, MA: MIT Press
    [Google Scholar]
  146. Striedter GF, Northcutt RG. 2020. Brains Through Time: A Natural History of Vertebrates Oxford, UK: Oxford Univ.
    [Google Scholar]
  147. Suarez AN, Liu CM, Cortella AM, Noble EE, Kanoski SE 2020. Ghrelin and orexin interact to increase meal size through a descending hippocampus to hindbrain signaling pathway. Biol. Psychiatry 87:111001–11
    [Google Scholar]
  148. Tilg H, Moschen AR. 2006. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6:10772–83
    [Google Scholar]
  149. Tingley D, Buzsáki G. 2018. Transformation of a spatial map across the hippocampal-lateral septal circuit. Neuron 98:61229–42.e5
    [Google Scholar]
  150. Unger JW, Livingston JN, Moss AM. 1991. Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog. Neurobiol. 36:5343–62
    [Google Scholar]
  151. van den Heuvel MP, Sporns O. 2013. Network hubs in the human brain. Trends Cogn. Sci. 17:12683–96
    [Google Scholar]
  152. Versteeg RI, Koopman KE, Booij J, Ackermans MT, Unmehopa UA et al. 2017. Serotonin transporter binding in the diencephalon is reduced in insulin-resistant obese humans. Neuroendocrinology 105:2141–49
    [Google Scholar]
  153. Wager TD, Kang J, Johnson TD, Nichols TE, Satpute AB, Barrett LF. 2015. A Bayesian model of category-specific emotional brain responses. PLOS Comput. Biol. 11:4e1004066
    [Google Scholar]
  154. Werdermann M, Berger I, Scriba LD, Santambrogio A, Schlinkert P et al. 2021. Insulin and obesity transform hypothalamic-pituitary-adrenal axis stemness and function in a hyperactive state. Mol. Metab. 43:101112
    [Google Scholar]
  155. Whalen PJ. 1998. Fear, vigilance, and ambiguity: initial neuroimaging studies of the human amygdala. Curr. Dir. Psychol. Sci. 7:6177–88
    [Google Scholar]
  156. Witham E, Comunian C, Ratanpal H, Skora S, Zimmer M, Srinivasan S. 2016. C. elegans body cavity neurons are homeostatic sensors that integrate fluctuations in oxygen availability and internal nutrient reserves. Cell Rep 14:71641–54
    [Google Scholar]
  157. Yabut JM, Crane JD, Green AE, Keating DJ, Khan WI, Steinberg GR. 2019. Emerging roles for serotonin in regulating metabolism: new implications for an ancient molecule. Endocr. Rev. 40:41092–107
    [Google Scholar]
  158. Zacks JM, Tversky B. 2001. Event structure in perception and conception. Psychol. Bull. 127:13–21
    [Google Scholar]
  159. Zhang J, Abiose O, Katsumi Y, Touroutoglou A, Dickerson BC, Barrett LF. 2019. Intrinsic functional connectivity is organized as three interdependent gradients. Sci. Rep. 9:15976
    [Google Scholar]
  160. Zhang J, Scholtens LH, Wei Y, van den Heuvel MP, Chanes L, Barrett LF. 2020. Topography impacts topology: Anatomically central areas exhibit a “high-level connector” profile in the human cortex. Cereb. Cortex 30:31357–65
    [Google Scholar]
  161. Zhuo C, Li G, Lin X, Jiang D, Xu Y et al. 2019. The rise and fall of MRI studies in major depressive disorder. Transl. Psychiatry 9:335
    [Google Scholar]
/content/journals/10.1146/annurev-clinpsy-081219-115627
Loading
/content/journals/10.1146/annurev-clinpsy-081219-115627
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error