1932

Abstract

Strong electronic correlations are often associated with the proximity of a Mott-insulating state. In recent years however, it has become increasingly clear that the Hund’s rule coupling (intra-atomic exchange) is responsible for strong correlations in multiorbital metallic materials that are not close to a Mott insulator. Hund’s coupling has two effects: It influences the energetics of the Mott gap and strongly suppresses the coherence scale for the formation of a Fermi liquid. A global picture has emerged recently, which emphasizes the importance of the average occupancy of the shell as a control parameter. The most dramatic effects occur away from half-filling or single occupancy. We review the theoretical understanding and physical properties of these Hund’s metals, together with the relevance of this concept to transition-metal oxides (TMOs) of the 3d, and especially 4d, series (such as ruthenates), as well as to the iron-based superconductors (iron pnictides and chalcogenides).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-020911-125045
2013-04-01
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/4/1/annurev-conmatphys-020911-125045.html?itemId=/content/journals/10.1146/annurev-conmatphys-020911-125045&mimeType=html&fmt=ahah

Literature Cited

  1. Imada M, Fujimori A, Tokura Y. 1998. Rev. Mod. Phys. 70:1039–263 [Google Scholar]
  2. Tokura Y, Nagaosa N. 2000. Science 288:462–68 [Google Scholar]
  3. Hund F. 1925. Z. Phys. 33:345–71 [Google Scholar]
  4. Yin ZP, Haule K, Kotliar G. 2011. Nat. Mater. 10:932–35 [Google Scholar]
  5. van der Marel D, Sawatzky GA. 1988. Phys. Rev. B 37:10674–84 [Google Scholar]
  6. van der Marel D. 1985. The electronic structure of embedded transition-metal atoms. PhD thesis. Rijkuniversiteit Groningen. 170 pp [Google Scholar]
  7. Okada I, Yosida K. 1973. Prog. Theor. Phys. 49:1483–502 [Google Scholar]
  8. Jayaprakash C, Krishna-murthy HR, Wilkins JW. 1981. Phys. Rev. Lett. 47:737–40 [Google Scholar]
  9. Jones BA, Varma CM. 1987. Phys. Rev. Lett. 58:843–46 [Google Scholar]
  10. Kusunose H, Miyake K. 1997. J. Phys. Soc. Jpn. 66:1180–86 [Google Scholar]
  11. Yotsuhashi S, Kusunose H, Miyake K. 2001. J. Phys. Soc. Jpn. 70:186–91 [Google Scholar]
  12. Pruschke T, Bulla R. 2005. Eur. Phys. J. B 44:217–24 [Google Scholar]
  13. Nevidomskyy AH, Coleman P. 2009. Phys. Rev. Lett. 103:147205 [Google Scholar]
  14. Schrieffer JR. 1967. J. Appl. Phys. 38:1143–50 [Google Scholar]
  15. Blandin A. 1968. J. Appl. Phys. 39:1285–94 [Google Scholar]
  16. Daybell MD, Steyert WA. 1968. Rev. Mod. Phys. 40:380–89 [Google Scholar]
  17. Haule K, Kotliar G. 2009. New J. Phys. 11:025021 [Google Scholar]
  18. Werner P, Gull E, Troyer M, Millis AJ. 2008. Phys. Rev. Lett. 101:166405 [Google Scholar]
  19. Mravlje J, Aichhorn M, Miyake T, Haule K, Kotliar G, Georges A. 2011. Phys. Rev. Lett. 106:096401 [Google Scholar]
  20. Werner P, Gull E, Millis AJ. 2009. Phys. Rev. B 79:115119 [Google Scholar]
  21. de’ Medici L. 2011. Phys. Rev. B 83:205112 [Google Scholar]
  22. de’ Medici L, Mravlje J, Georges A. 2011. Phys. Rev. Lett. 107:256401 [Google Scholar]
  23. Georges A, Kotliar G, Krauth W, Rozenberg MJ. 1996. Rev. Mod. Phys. 68:13–125 [Google Scholar]
  24. Kotliar G, Vollhardt D. 2004. Phys. Today 57:353–59 [Google Scholar]
  25. Slater JC. 1929. Phys. Rev. 34:1293–322 [Google Scholar]
  26. Levine IN. 1991. Quantum Chemistry. Upper Saddle River NJ: Prentice Hall: [Google Scholar]
  27. Boyd R. 1984. Nature 310:480–81 [Google Scholar]
  28. Oyamada T, Hongo K, Kawazoe Y, Yasuhara H. 2010. J. Chem. Phys. 133:164113 [Google Scholar]
  29. Kanamori J. 1963. Prog. Theor. Phys. 30:275–89 [Google Scholar]
  30. Sugano S, Tanabe Y, Kamimura H. 1970. Multiplets of transition-metal ions in crystals. New York: Academic [Google Scholar]
  31. Haverkort M. 2005. Spin and orbital degrees of freedom in transition metal oxides and oxide thin films studied by soft x-ray absorption spectroscopy. PhD thesis, Universität Koeln. 214 pp [Google Scholar]
  32. Aryasetiawan F, Imada M, Georges A, Kotliar G, Biermann S, Lichtenstein AI. 2004. Phys. Rev. B 70:195104 [Google Scholar]
  33. Nganba Meetei O, Erten O, Randeria M, Trivedi N, Woodward P. 2012. arXiv:1205.1811. http://arxiv.org/abs/1205.1811
  34. Han JE, Jarrell M, Cox DL. 1998. Phys. Rev. B 58:R4199–202 [Google Scholar]
  35. Bünemann J, Weber W, Gebhard F. 1998. Phys. Rev. B 67:6896 [Google Scholar]
  36. Koga A, Imai Y, Kawakami N. 2002. Phys. Rev. B 66:165107 [Google Scholar]
  37. Werner P, Millis AJ. 2007. Phys. Rev. Lett. 99:126405 [Google Scholar]
  38. Frésard R, Kotliar G. 1997. Phys. Rev. B 56:12909–15 [Google Scholar]
  39. Lombardo P, Daré AM, Hayn R. 2005. Phys. Rev. B 72:245115 [Google Scholar]
  40. Lu JP. 1994. Phys. Rev. B 49:5687–90 [Google Scholar]
  41. Gunnarsson O, Koch E, Martin RM. 1997. Phys. Rev. B 56:1146–52 [Google Scholar]
  42. Florens S, Georges A, Kotliar G, Parcollet O. 2002. Phys. Rev. B 66:205102 [Google Scholar]
  43. Inaba K, Koga A, Suga SI, Kawakami N. 2005. Phys. Rev. B 72:085112 [Google Scholar]
  44. Fujimori A, Saeki M, Nozaki H. 1991. Phys. Rev. B 44:163–69 [Google Scholar]
  45. Dworin L, Narath A. 1970. Phys. Rev. Lett. 25:1287–91 [Google Scholar]
  46. Anderson PW. 1961. Phys. Rev. 124:41–53 [Google Scholar]
  47. Caroli B, Lederer P, Saint-James D. 1969. Phys. Rev. Lett. 23:700–4 [Google Scholar]
  48. Coqblin B, Schrieffer JR. 1969. Phys. Rev. 185:847–53 [Google Scholar]
  49. Hewson A. 1993. The Kondo Problem to Heavy Fermions. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  50. Nishikawa Y, Crow DJG, Hewson AC. 2010. Phys. Rev. B 82:245109 [Google Scholar]
  51. Borda L, Zaránd G, Hofstetter W, Halperin BI, von Delft J. 2003. Phys. Rev. Lett. 90:026602 [Google Scholar]
  52. Le Hur K, Simon P. 2003. Phys. Rev. B 67:201308 [Google Scholar]
  53. Zarand G, Brataas A, Goldhaber-Gordon D. 2003. Solid State Commun. 126:463–66 [Google Scholar]
  54. Galpin MR, Logan DE, Krishnamurthy HR. 2005. Phys. Rev. Lett. 94:186406 [Google Scholar]
  55. Mravlje J, Ramšak A, Rejec T. 2006. Phys. Rev. B 73:241305 [Google Scholar]
  56. Jarillo-Herrero P, Kong J, van der Zant HSJ, Dekker C, Kouwenhoven LP, Franceschi SD. 2005. Nature 434:484–88 [Google Scholar]
  57. Žitko R. 2010. J. Phys. Condens. Matter 22:026002 [Google Scholar]
  58. Yanase Y, Yamada K. 1997. J. Phys. Soc. Jpn. 66:3551–57 [Google Scholar]
  59. Nishikawa Y, Crow DJG, Hewson AC. 2010. Phys. Rev. B 82:115123 [Google Scholar]
  60. Kotliar G, Savrasov SY, Haule K, Oudovenko VS, Parcollet O, Marianetti CA. 2006. Rev. Mod. Phys. 78:865–951 [Google Scholar]
  61. Held K. 2007. Adv. Phys. 56:829–926 [Google Scholar]
  62. Georges A. 2004.. In Lectures on the Physics of Highly Correlated Electron Systems. Vol. 3 Avella A, Mancini F. 3–74 College Park, MD: AIP Press [Google Scholar]
  63. Imada M, Miyake T. 2010. J. Phys. Soc. Jpn. 79:112001 [Google Scholar]
  64. Fujimori A. 1992. J. Phys. Chem. Solids 53:1595–602 [Google Scholar]
  65. Mravlje J, Aichhorn M, Georges A. 2012. Phys. Rev. Lett. 108:197202 [Google Scholar]
  66. Torrance J, Lacorre P, Asavaroengchai C, Metzeger R. 1991. Physica C 182:351–64 [Google Scholar]
  67. Chamberland BL. 1967. Solid State Commun. 5:663–66 [Google Scholar]
  68. Zhou JS, Jin CQ, Long YW, Yang LX, Goodenough JB. 2006. Phys. Rev. Lett. 96:046408 [Google Scholar]
  69. Rodriguez EE, Poineau F, Llobet A, Kennedy BJ, Avdeev M et al. 2011. Phys. Rev. Lett. 106:067201 [Google Scholar]
  70. Liebsch A, Ishida H. 2007. Phys. Rev. Lett. 98:216403 [Google Scholar]
  71. Gorelov E, Karolak M, Wehling TO, Lechermann F, Lichtenstein AI, Pavarini E. 2010. Phys. Rev. Lett. 104:226401 [Google Scholar]
  72. Ikeda SI, Shirakawa N, Bando H, Ootuka Y. 2000. J. Phys. Soc. Jpn. 69:3162–65 [Google Scholar]
  73. Mackenzie AP, Maeno Y. 2003. Rev. Mod. Phys. 75:657–712 [Google Scholar]
  74. Perry RS, Baumberger F, Balicas L, Kikugawa N, Ingle NJC et al. 2006. New J. Phys. 8:1–14 [Google Scholar]
  75. Baumberger F, Ingle NJC, Meevasana W, Shen KM, Lu DH et al. 2006. Phys. Rev. Lett. 96:246402 [Google Scholar]
  76. Martins C, Aichhorn M, Vaugier L, Biermann S. 2011. Phys. Rev. Lett. 107:266404 [Google Scholar]
  77. Yamaura K, Takayama-Muromachi E. 2001. Phys. Rev. B 64:224424 [Google Scholar]
  78. Yamaura K, Huang Q, Young DP, Noguchi Y, Takayama-Muromachi E. 2002. Phys. Rev. B 66:134431 [Google Scholar]
  79. Ishida H, Liebsch A. 2010. Phys. Rev. B 81:054513 [Google Scholar]
  80. Biermann S, de’ Medici L, Georges A. 2005. Phys. Rev. Lett. 95:206401 [Google Scholar]
  81. de Leo L. 2004. Non-Fermi liquid behavior in multi-orbital Anderson impurity models and possible relevance for strongly correlated lattice models. PhD thesis, SISSA. 148 pp [Google Scholar]
  82. Yin ZP, Haule K, Kotliar G. 2012. arXiv:1206.0801. http://arxiv.org/abs/1206.0801
  83. Ong TT, Coleman P. 2012. Phys. Rev. Lett. 108:107201 [Google Scholar]
  84. Carlo JP, Goko T, Gat-Malureanu IM, Russo PL, Savici AT et al. 2012. Nat. Mater.11:323–28 [Google Scholar]
  85. Chan CK, Werner P, Millis AJ. 2009. Phys. Rev. B 80:235114 [Google Scholar]
  86. Okamoto S, Millis AJ. 2004. Phys. Rev. B 70:195120 [Google Scholar]
  87. Lechermann F, Biermann S, Georges A. 2005. Prog. Theor. Phys. 160:Suppl.233–52 [Google Scholar]
  88. Pavarini E, Biermann S, Poteryaev A, Lichtenstein AI, Georges A, Andersen OK. 2004. Phys. Rev. Lett. 92:176403 [Google Scholar]
  89. Pavarini E, Yamasaki A, Nuss J, Andersen OK. 2005. New J. Phys. 7:188 [Google Scholar]
  90. Manini N, Santoro GE, Dal Corso A, Tosatti E. 2002. Phys. Rev. B 66:115107 [Google Scholar]
  91. Poteryaev AI, Ferrero M, Georges A, Parcollet O. 2008. Phys. Rev. B 78:045115 [Google Scholar]
  92. Lechermann F, Biermann S, Georges A. 2005. Phys. Rev. Lett. 94:166402 [Google Scholar]
  93. Bari RA, Sivardière J. 1972. Phys. Rev. B 5:4466–71 [Google Scholar]
  94. Kuneš J, Lukoyanov AV, Anisimov VI, Scalettar RT, Pickett WE. 2008. Nat. Mater. 7:198–202 [Google Scholar]
  95. Kuneš J, Korotin DM, Korotin MA, Anisimov VI, Werner P. 2009. Phys. Rev. Lett. 102:146402 [Google Scholar]
  96. Kuneš J, Leonov I, Kollar M, Byczuk K, Anisimov VI, Vollhardt D. 2009. Eur. Phys. J. Spec. Top. 180:5–28 [Google Scholar]
  97. Kuneš J, Křápek V. 2011. Phys. Rev. Lett. 106:256401 [Google Scholar]
  98. Kita T, Ohashi T, Kawakami N. 2011. Phys. Rev. B 84:195130 [Google Scholar]
  99. Quan YM, Zou LJ, Liu DY, Lin HQ. 2012. Eur. Phys. J. B 85:55 [Google Scholar]
  100. Koyama Y, Koga A, Kawakami N, Werner P. 2009. Physica B 404:3267–70 [Google Scholar]
  101. Peters R, Kawakami N, Pruschke T. 2011. Phys. Rev. B 83:125110 [Google Scholar]
  102. Kita T, Ohashi T, Suga S. 2010. J. Phys. Soc. Jpn. 79:014713 [Google Scholar]
  103. Ko WH, Lee PA. 2011. Phys. Rev. B 83:134515 [Google Scholar]
  104. Anisimov V, Nekrasov I, Kondakov D, Rice T, Sigrist M. 2002. Eur. Phys. J. B 25:191–201 [Google Scholar]
  105. Inaba K, Koga A. 2007. J. Phys. Soc. Jpn. 76:094712 [Google Scholar]
  106. de’Medici L, Georges A, Biermann S. 2005. Phys. Rev. B 72:205124 [Google Scholar]
  107. Ferrero M, Becca F, Fabrizio M, Capone M. 2005. Phys. Rev. B 72:205126 [Google Scholar]
  108. de’ Medici L, Hassan SR, Capone M, Dai X. 2009. Phys. Rev. Lett. 102:126401 [Google Scholar]
  109. Koga A, Kawakami N, Rice TM, Sigrist M. 2004. Phys. Rev. Lett. 92:216402 [Google Scholar]
  110. Koga A, Kawakami N, Rice TM, Sigrist M. 2005. Phys. Rev. B 72:045128 [Google Scholar]
  111. Jakobi E, Blümer N, van Dongen P. 2009. Phys. Rev. B 80:115109 [Google Scholar]
  112. Greger M, Kollar M, Vollhardt D. 2012. arXiv:1205.5782. http://arxiv.org/abs/1205.5782
  113. Costi T, Liebsch A. 2006. Eur. Phys. J. B 51:523–36 [Google Scholar]
  114. de’ Medici L, Georges A, Kotliar G, Biermann S. 2005. Phys. Rev. Lett. 95:066402 [Google Scholar]
  115. Nakatsuji S, Maeno Y. 2000. Phys. Rev. B 62:6458–66 [Google Scholar]
  116. Nakatsuji S, Maeno Y. 2000. Phys. Rev. Lett. 84:2666–69 [Google Scholar]
  117. Nakatsuji S, Hall D, Balicas L, Fisk Z, Sugahara K et al. 2003. Phys. Rev. Lett. 90:137202 [Google Scholar]
  118. Anisimov VI, Korotin MA, Zölfl M, Pruschke T, Le Hur K, Rice TM. 1999. Phys. Rev. Lett. 83:364–67 [Google Scholar]
  119. Singh DJ, Blaha P, Schwarz K, Mazin II. 1999. Phys. Rev. B 60:16359–63 [Google Scholar]
  120. Laad MS, Craco L, Müller-Hartmann E. 2006. Phys. Rev. B 73:045109 [Google Scholar]
  121. Poteryaev AI, Tomczak JM, Biermann S, Georges A, Lichtenstein AI et al. 2007. Phys. Rev. B 76:085127 [Google Scholar]
  122. Craco L, Laad MS, Leoni S, Rosner H. 2009. Phys. Rev. B 79:075125 [Google Scholar]
  123. Huang L, Wang Y, Dai X. 2012. Phys. Rev. B 85:245110 [Google Scholar]
  124. Goodenough JB. 1960. Phys. Rev. 120:67–83 [Google Scholar]
  125. Katanin AA, Poteryaev AI, Efremov AV, Shorikov AO, Skornyakov SL et al. 2010. Phys. Rev. B 81:045117 [Google Scholar]
  126. Shorikov AO, Pchelkina ZV, Anisimov VI, Skornyakov SL, Korotin MA. 2010. Phys. Rev. B 82:195101 [Google Scholar]
  127. Ohta K, Cohen RE, Hirose K, Haule K, Shimizu K, Ohishi Y. 2012. Phys. Rev. Lett. 108:026403 [Google Scholar]
  128. Vojta M. 2010. J. Low Temp. Phys. 161:203–32 [Google Scholar]
  129. Bergemann C, Mackenzie AP, Julian SR, Forsythe D, Ohmichi E. 2003. Adv. Phys. 52:639–725 [Google Scholar]
  130. Mackenzie AP, Reiner JW, Tyler AW, Galvin LM, Julian SR et al. 1998. Phys. Rev. B 58:R13318–21 [Google Scholar]
  131. Koster G, Klein L, Siemons W, Rijnders G, Dodge JS et al. 2012. Rev. Mod. Phys. 84:253–98 [Google Scholar]
  132. Zayak AT, Huang X, Neaton JB, Rabe KM. 2006. Phys. Rev. B 74:094104 [Google Scholar]
  133. Kostic P, Okada Y, Collins NC, Schlesinger Z, Reiner JW et al. 1998. Phys. Rev. Lett. 81:2498–501 [Google Scholar]
  134. Dodge JS, Weber CP, Corson J, Orenstein J, Schlesinger Z et al. 2000. Phys. Rev. Lett. 85:4932–35 [Google Scholar]
  135. Capogna L, Mackenzie AP, Perry RS, Grigera SA, Galvin LM et al. 2002. Phys. Rev. Lett. 88:076602 [Google Scholar]
  136. Allen PB, Berger H, Chauvet O, Forro L, Jarlborg T et al. 1996. Phys. Rev. B 53:4393–98 [Google Scholar]
  137. Okamoto J, Mizokawa T, Fujimori A, Hase I, Nohara M et al. 1999. Phys. Rev. B 60:2281–85 [Google Scholar]
  138. Grigera SA, Perry RS, Schofield AJ, Chiao M, Julian SR et al. 2001. Science 294:329–32 [Google Scholar]
  139. Fradkin E, Kivelson SA, Lawler MJ, Eisenstein JP, Mackenzie AP. 2010. Annu. Rev. Condens. Matter Phys. 1:153–78 [Google Scholar]
  140. Shepard M, McCall S, Cao G, Crow JE. 1997. J. Appl. Phys. 81:4978–80 [Google Scholar]
  141. Lee JS, Lee YS, Noh TW, Char K, Park J et al. 2001. Phys. Rev. B 64:245107 [Google Scholar]
  142. Lee YS, Yu J, Lee JS, Noh TW, Gimm TH et al. 2002. Phys. Rev. B 66:041104 [Google Scholar]
  143. Alexander CS, Cao G, Dobrosavljevic V, McCall S, Crow JE et al. 1999. Phys. Rev. B 60:R8422–25 [Google Scholar]
  144. Cao G, McCall S, Shepard M, Crow JE, Guertin RP. 1997. Phys. Rev. B 56:R2916–19 [Google Scholar]
  145. Steffens P, Friedt O, Alireza P, Marshall WG, Schmidt W et al. 2005. Phys. Rev. B 72:094104 [Google Scholar]
  146. Qi TF, Korneta OB, Parkin S, De Long LE, Schlottmann P, Cao G. 2010. Phys. Rev. Lett. 105:177203 [Google Scholar]
  147. Morikawa K, Mizokawa T, Kobayashi K, Fujimori A, Eisaki H et al. 1995. Phys. Rev. B 52:13711–14 [Google Scholar]
  148. Sekiyama A, Fujiwara H, Imada S, Suga S, Eisaki H et al. 2004. Phys. Rev. Lett. 93:156402 [Google Scholar]
  149. Okuda T, Daimon H, Kotsugi M, Nakatsuji K, Fujikawa M et al. 1998. J. Electron Spectrosc. Relat. Phenom. 88--91:473–77 [Google Scholar]
  150. Pchelkina ZV, Nekrasov IA, Pruschke T, Sekiyama A, Suga S et al. 2007. Phys. Rev. B 76035122 [Google Scholar]
  151. Kurmaev EZ, Stadler S, Ederer DL, Harada Y, Shin S et al. 1998. Phys. Rev. B 57:1558–62 [Google Scholar]
  152. Konik RM, Rice TM. 2007. Phys. Rev. B 76:104501 [Google Scholar]
  153. Hussey NE, Mackenzie AP, Cooper JR, Maeno Y, Nishizaki S, Fujita T. 1998. Phys. Rev. B 57:5505–11 [Google Scholar]
  154. Tyler AW, Mackenzie AP, NishiZaki S, Maeno Y. 1998. Phys. Rev. B 58:R10107–10 [Google Scholar]
  155. Wang SC, Yang HB, Sekharan AKP, Ding H, Engelbrecht JR et al. 2004. Phys. Rev. Lett. 92:137002 [Google Scholar]
  156. Kidd TE, Valla T, Fedorov AV, Johnson PD, Cava RJ, Haas MK. 2005. Phys. Rev. Lett. 94:107003 [Google Scholar]
  157. Imai T, Hunt AW, Thurber KR, Chou FC. 1998. Phys. Rev. Lett. 81:3006–9 [Google Scholar]
  158. Cao G, Song W, Sun Y, Lin X. 2004. Solid State Commun. 131:331–36 [Google Scholar]
  159. Kamal S, Kim DM, Eom CB, Dodge JS. 2006. Phys. Rev. B 74:165115 [Google Scholar]
  160. Cao G, Korneta O, Chikara S, DeLong L, Schlottmann P. 2008. Solid State Commun. 148:305–9 [Google Scholar]
  161. Steffens P, Friedt O, Sidis Y, Link P, Kulda J et al. 2011. Phys. Rev. B 83:054429 [Google Scholar]
  162. Wang SC, Yang HB, Sekharan AKP, Souma S, Matsui H et al. 2004. Phys. Rev. Lett. 93:177007 [Google Scholar]
  163. Lee JS, Moon SJ, Noh TW, Nakatsuji S, Maeno Y. 2006. Phys. Rev. Lett. 96:057401 [Google Scholar]
  164. Gukasov A, Braden M, Papoular RJ, Nakatsuji S, Maeno Y. 2002. Phys. Rev. Lett. 89:087202 [Google Scholar]
  165. Shimoyamada A, Ishizaka K, Tsuda S, Nakatsuji S, Maeno Y, Shin S. 2009. Phys. Rev. Lett. 102:086401 [Google Scholar]
  166. Neupane M, Richard P, Pan ZH, Xu YM, Jin R et al. 2009. Phys. Rev. Lett. 103:097001 [Google Scholar]
  167. Fang Z, Terakura K. 2001. Phys. Rev. B 64:020509 [Google Scholar]
  168. Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H et al. 2006. J. Am. Chem. Soc. 128:10012–13 [Google Scholar]
  169. Kamihara Y, Watanabe T, Hirano M, Hosono H. 2008. J. Am. Chem. Soc. 130:3296–97 [Google Scholar]
  170. Wen HH, Li S. 2011. Annu. Rev.Condens. Matter Phys. 2:121–40 [Google Scholar]
  171. Stewart GR. 2011. Rev. Mod. Phys. 83:1589–652 [Google Scholar]
  172. Mazin II, Singh DJ, Johannes MD, Du MH. 2008. Phys. Rev. Lett. 101:057003 [Google Scholar]
  173. Xu C, Müller M, Sachdev S. 2008. Phys. Rev. B 78:020501 [Google Scholar]
  174. Si Q, Abrahams E. 2008. Phys. Rev. Lett. 101:076401 [Google Scholar]
  175. Haule K, Shim JH, Kotliar G. 2008. Phys. Rev. Lett. 100:226402 [Google Scholar]
  176. Tamai A, Ganin AY, Rozbicki E, Bacsa J, Meevasana W et al. 2010. Phys. Rev. Lett. 104:097002 [Google Scholar]
  177. Kutepov A, Haule K, Savrasov SY, Kotliar G. 2010. Phys. Rev. B 82:045105 [Google Scholar]
  178. Miyake T, Nakamura K, Arita R, Imada M. 2010. J. Phys. Soc. Jpn. 79:044705 [Google Scholar]
  179. Miyake T, Pourovskii L, Vildosola V, Biermann S, Georges A. 2008. J. Phys. Soc. Jpn. 77:Suppl. C99–102 [Google Scholar]
  180. Aichhorn M, Pourovskii L, Vildosola V, Ferrero M, Parcollet O et al. 2009. Phys. Rev. B 80:085101 [Google Scholar]
  181. Aichhorn M, Biermann S, Miyake T, Georges A, Imada M. 2010. Phys. Rev. B 82:064504 [Google Scholar]
  182. Liebsch A, Ishida H. 2010. Phys. Rev. B 82:155106 [Google Scholar]
  183. Liu M, Harriger LW, Luo H, Wang M, Ewings RA et al. 2012. Nat. Phys. 8:376–81 [Google Scholar]
  184. Werner P, Casula M, Miyake T, Aryasetiawan F, Millis AJ, Biermann S. 2012. Nat. Phys. 8:331–37 [Google Scholar]
  185. Johannes MD, Mazin II. 2009. Phys. Rev. B 79:220510 [Google Scholar]
  186. Yang WL, Sorini AP, Chen CC, Moritz B, Lee WS et al. 2009. Phys. Rev. B 80:014508 [Google Scholar]
  187. Hansmann P, Arita R, Toschi A, Sakai S, Sangiovanni G, Held K. 2010. Phys. Rev. Lett. 104:197002 [Google Scholar]
  188. Toschi A, Arita R, Hansmann P, Sangiovanni G, Held K. 2012. Phys. Rev. B 86:064411 [Google Scholar]
  189. Aichhorn M, Pourovskii L, Georges A. 2011. Phys. Rev. B 84:054529 [Google Scholar]
  190. Bondino F, Magnano E, Malvestuto M, Parmigiani F, McGuire MA et al. 2008. Phys. Rev. Lett. 101:267001 [Google Scholar]
  191. Kroll T, Bonhommeau S, Kachel T, Dürr HA, Werner J et al. 2008. Phys. Rev. B 78:220502 [Google Scholar]
  192. Vilmercati P, Fedorov A, Bondino F, Offi F, Panaccione G et al. 2012. Phys. Rev. B 85:220503 [Google Scholar]
  193. Zhou S, Wang Z. 2010. Phys. Rev. Lett. 105:096401 [Google Scholar]
  194. Yin WG, Lee CC, Ku W. 2010. Phys. Rev. Lett. 105:107004 [Google Scholar]
  195. Raghuvanshi N, Singh A. 2011. J. Phys. Condens. Matter 23:312201 [Google Scholar]
  196. Ferber J, Foyevtsova K, Valentí R, Jeschke HO. 2012. Phys. Rev. B 85:094505 [Google Scholar]
  197. Liebsch A. 2011. Phys. Rev. B 84:180505 [Google Scholar]
  198. Misawa T, Nakamura K, Imada M. 2012. Phys. Rev. Lett. 108:177007 [Google Scholar]
  199. Pandey A, Dhaka RS, Lamsal J, Lee Y, Anand VK et al. 2012. Phys. Rev. Lett. 108:087005 [Google Scholar]
  200. Park J-H, Tjeng L-H, Tanaka A, Allen JW, Chen CT et al. 2000. Phys. Rev. B 61:11506 [Google Scholar]
  201. Qazilbash MM, Hamlin JJ, Baumbach RE, Zhang L, Singh DJ et al. 2009. Nat. Phys. 5:647–50 [Google Scholar]
  202. Hu WZ, Dong J, Li G, Li Z, Zheng P et al. 2008. Phys. Rev. Lett. 101:257005 [Google Scholar]
  203. Wang NL, Hu WZ, Chen ZG, Yuan RH, Li G et al. 2012. J. Phys. Condens. Matter 24:294202 [Google Scholar]
  204. Schafgans AA, Moon SJ, Pursley BC, LaForge AD, Qazilbash MM et al. 2012. Phys. Rev. Lett. 108:147002 [Google Scholar]
  205. de’ Medici L, Hassan S, Capone M. 2009. J. Supercond. Magn. 22:535–38 [Google Scholar]
  206. Laad M, Craco L. 2009. arXiv:0903.3732. http://arxiv.org/abs/0903.3732
  207. Craco L, Laad MS, Leoni S. 2009. arXiv:0910.3828. http://arxiv.org/abs/0910.3828
  208. Yu R, Si Q. 2012. Phys. Rev. B 86:085104 [Google Scholar]
  209. Yu R, Si Q. 2011. Phys. Rev. B 84:235115 [Google Scholar]
  210. Shorikov A, Korotin M, Streltsov S, Skornyakov S, Korotin D, Anisimov V. 2009. J. Exp. Theor. Phys. 108:121–25 [Google Scholar]
  211. Kou SP, Li T, Weng ZY. 2009. Europhys. Lett. 88:17010 [Google Scholar]
  212. Hackl A, Vojta M. 2009. New J. Phys. 11:055064 [Google Scholar]
  213. Skornyakov SL, Katanin AA, Anisimov VI. 2011. Phys. Rev. Lett. 106:047007 [Google Scholar]
  214. Xu Z, Wen J, Xu G, Chi S, Ku W et al. 2011. Phys. Rev. B 84:052506 [Google Scholar]
  215. Arčon D, Jeglič P, Zorko A, Potočnik A, Ganin AY et al. 2010. Phys. Rev. B 82:140508 [Google Scholar]
  216. Ding H, Nakayama K, Richard P, Souma S, Sato T et al. 2011. J. Phys. Condens. Matter 23:135701 [Google Scholar]
  217. Yuan HQ, Jiao L, Balakirev FF, Singleton J, Setty C et al. 2011. arXiv:1102.5476. http://arxiv.org/abs/1102.5476
  218. van Acker JF, Stadnik ZM, Fuggle JC, Hoekstra HJWM, Buschow KHJ, Stroink G. 1988. Phys. Rev. B 37:6827–34 [Google Scholar]
  219. Arita M, Shimada K, Takeda Y, Nakatake M, Namatame H et al. 2008. Phys. Rev. B 77:205117 [Google Scholar]
  220. Tomczak JM, Haule K, Kotliar G. 2012. Proc. Natl. Acad. Sci. USA 109:3243–46 [Google Scholar]
  221. Van Vleck JH. 1953. Rev. Mod. Phys. 25:220–27 [Google Scholar]
  222. Held K, Vollhardt D. 1998. Eur. Phys. J. B 5:473–78 [Google Scholar]
  223. Sakai S, Arita R, Aoki H. 2007. Phys. Rev. Lett. 99:216402 [Google Scholar]
  224. Sakai S. 2006. Theoretical study of multi-orbital correlated electron systems with Hund's coupling. PhD thesis, Univ. Tokyo. 111 pp [Google Scholar]
  225. Capone M, Fabrizio M, Castellani C, Tosatti E. 2009. Rev. Mod. Phys. 81:943–58 [Google Scholar]
  226. Norman MR. 1994. Phys. Rev. Lett. 72:2077–80 [Google Scholar]
  227. Han JE. 2004. Phys. Rev. B 70:054513 [Google Scholar]
  228. Sakai S, Arita R, Aoki H. 2004. Phys. Rev. B 70:172504 [Google Scholar]
  229. de Leo L, Fabrizio M. 2004. Phys. Rev. B 69:245114 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-020911-125045
Loading
/content/journals/10.1146/annurev-conmatphys-020911-125045
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error