1932

Abstract

Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth of possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. We describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle–particle interactions, and nondissipative effects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031016-025522
2017-03-31
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/8/1/annurev-conmatphys-031016-025522.html?itemId=/content/journals/10.1146/annurev-conmatphys-031016-025522&mimeType=html&fmt=ahah

Literature Cited

  1. Reichhardt C, Reichhardt CJO. 1.  2017. Rep. Prog. Phys. In press. arXiv:1602.03798 [Google Scholar]
  2. Reimann P. 2.  2002. Phys. Rep. 361:57–265 [Google Scholar]
  3. Derényi I, Vicsek T. 3.  1995. Phys. Rev. Lett. 75:374–77 [Google Scholar]
  4. de Souza Silva CC, Van de Vondel J, Morelle M, Moshchalkov VV. 4.  2006. Nature 440:651–54 [Google Scholar]
  5. Lu Q, Reichhardt CJO, Reichhardt C. 5.  2007. Phys. Rev. B 75:054502 [Google Scholar]
  6. Lee CS, Jankó B, Derényi I, Barabási AL. 6.  1999. Nature 400:337–40 [Google Scholar]
  7. Galajda P, Keymer J, Chaikin P, Austin R. 7.  2007. J. Bacteriol. 189:8704–7 [Google Scholar]
  8. Reichhardt C, Ray D, Reichhardt CJO. 8.  2015. Phys. Rev. B 91:184502 [Google Scholar]
  9. Van Oudenaarden A, Boxer SG. 9.  1999. Science 285:1046–48 [Google Scholar]
  10. Ertas D. 10.  1998. Phys. Rev. Lett. 80:1548–51 [Google Scholar]
  11. Duke TAJ, Austin RH. 11.  1998. Phys. Rev. Lett. 80:1552–55 [Google Scholar]
  12. Reichhardt CJO, Reichhardt C. 12.  2005. Physica C 432:125–32 [Google Scholar]
  13. Dinis L, Perez de Lara D, Gonzalez EM, Anguita JV, Parrondo JMR, Vicent JL. 13.  2009. New J. Phys. 11:073046 [Google Scholar]
  14. Reichhardt C, Reichhardt CJO. 14.  2016. Phys. Rev. B 93:064508 [Google Scholar]
  15. Lindner B, Schimansky-Geier L, Reimann P, Hänggi P, Nagaoka M. 15.  1999. Phys. Rev. E 59:1417–24 [Google Scholar]
  16. Reichhardt C, Ray D, Reichhardt CJO. 16.  2015. New J. Phys. 17:073034 [Google Scholar]
  17. Rousselet J, Salome L, Ajdari A, Prost J. 17.  1994. Nature 370:446–48 [Google Scholar]
  18. Farkas Z, Tegzes P, Vukics A, Vicsek T. 18.  1999. Phys. Rev. E 60:7022–31 [Google Scholar]
  19. Wambaugh JF, Reichhardt C, Olson CJ. 19.  2002. Phys. Rev. E 65:031308 [Google Scholar]
  20. Jones PH, Goonasekera M, Renzoni F. 20.  2004. Phys. Rev. Lett. 93:073904 [Google Scholar]
  21. Salger T, Kling S, Hecking T, Geckeler C, Morales-Molina L, Weitz M. 21.  2009. Science 326:1241–43 [Google Scholar]
  22. Linke H, Humphrey TE, Löfgren A, Sushkov AO, Newbury R. 22.  et al. 1999. Science 286:2314–17 [Google Scholar]
  23. Roeling EM, Germs WC, Smalbrugge B, Geluk EJ, de Vries T. 23.  et al. 2011. Nat. Mater. 10:51–55 [Google Scholar]
  24. Pérez-Junquera A, Marconi VI, Kolton AB, Álvarez-Prado LM, Souche Y. 24.  et al. 2008. Phys. Rev. Lett. 100:037203 [Google Scholar]
  25. Franken JH, Swagten HJM, Koopmans B. 25.  2012. Nat. Nanotechnol. 7:499–503 [Google Scholar]
  26. Chat'e H, Ginelli F, Grégoire G, Peruani F, Raynaud F. 26.  2008. Eur. Phys. J. B 64:451–56 [Google Scholar]
  27. Ramaswamy S. 27.  2010. Annu. Rev. Condens. Matter Phys. 1:323–45 [Google Scholar]
  28. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J. 28.  et al. 2013. Rev. Mod. Phys. 85:1143–89 [Google Scholar]
  29. Bechinger C. Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G. 29. , Di 2016. Rev. Mod. Phys. 88045006 [Google Scholar]
  30. Cates ME, Marenduzzo D, Pagonabarraga I, Tailleur J. 30.  2010. PNAS 107:11715–20 [Google Scholar]
  31. Fily Y, Marchetti MC. 31.  2012. Phys. Rev. Lett. 108:235702 [Google Scholar]
  32. Redner GS, Hagan MF, Baskaran A. 32.  2013. Phys. Rev. Lett. 110:055701 [Google Scholar]
  33. Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM. 33.  2013. Science 339:936–40 [Google Scholar]
  34. Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C, Speck T. 34.  2013. Phys. Rev. Lett. 110:238301 [Google Scholar]
  35. Reichhardt C, Reichhardt CJO. 35.  2014. Soft Matter 10:7502–10 [Google Scholar]
  36. Wan MB, Reichhardt CJO, Nussinov Z, Reichhardt C. 36.  2008. Phys. Rev. Lett. 101:018102 [Google Scholar]
  37. Reichhardt CJO, Drocco J, Mai T, Wan MB, Reichhardt C. 37.  2011. Proc. SPIE 8097:80970A [Google Scholar]
  38. Tailleur J, Cates ME. 38.  2009. Europhys. Lett. 86:60002 [Google Scholar]
  39. Fily Y, Baskaran A, Hagan MF. 39.  2014. Soft Matter 10:5609–17 [Google Scholar]
  40. Fily Y, Baskaran A, Hagan MF. 40.  2015. Phys. Rev. E 91:012125 [Google Scholar]
  41. Berdakin I, Jeyaram Y, Moshchalkov VV, Venken L, Dierckx S. 41.  et al. 2013. Phys. Rev. E 87:052702 [Google Scholar]
  42. Galajda P, Keymer J, Dalland J, Park S, Kou S, Austin R. 42.  2008. J. Mod. Opt. 55:3413–22 [Google Scholar]
  43. Hulme E, DiLuzio WR, Shevkoplyas SS, Turner L, Mayer M. 43.  et al. 2008. Lab Chip 8:1888–95 [Google Scholar]
  44. Kaehr B, Shear JB. 44.  2009. Lab Chip 9:2632–37 [Google Scholar]
  45. Kim SY, Lee ES, Lee HJ, Lee SY, Lee SK, Kim T. 45.  2010. J. Micromech. Microeng. 20:085007 [Google Scholar]
  46. Chen Y-F, Xiao S, Chen H-Y, Sheng Y-J, Tsao H-K. 46.  2015. Nanoscale 7:16451–59 [Google Scholar]
  47. Angelani L, Costanzo A, Di Leonardo R. 47.  2011. Europhys. Lett. 96:68002 [Google Scholar]
  48. Yariv E, Schnitzer O. 48.  2014. Phys. Rev. E 90:032115 [Google Scholar]
  49. Potiguar FQ, Farias GA, Ferreira WP. 49.  2014. Phys. Rev. E 90:012307 [Google Scholar]
  50. Berg HC, Brown DA. 50.  1972. Nature 239:500–4 [Google Scholar]
  51. Berdakin I, Silhanek AV, Cortéz HNM, Marconi VI, Condat CA. 51.  2013. Cent. Eur. J. Phys. 11:1653–61 [Google Scholar]
  52. Kantsler V, Dunkel J, Polin M, Goldstein RE. 52.  2013. PNAS 110:1187–92 [Google Scholar]
  53. Guidobaldi A, Jeyaram Y, Berdakin I, Moshchalkov VV, Condat CA. 53.  et al. 2014. Phys. Rev. E 89:032720 [Google Scholar]
  54. Nam S-W, Qian C, Kim SH, van Noort D, Chiam K-H, Park S. 54.  2013. Sci. Rep. 3:3247 [Google Scholar]
  55. Ai B-Q, Chen Q-Y, He Y-F, Li F-G, Zhong W-R. 55.  2013. Phys. Rev. E 88:062129 [Google Scholar]
  56. Wu JC, Chen Q, Wang R, Ai BQ. 56.  2014. J. Phys. A: Math. Theor. 47:325001 [Google Scholar]
  57. Ai B-Q, Wu J-C. 57.  2014. J. Chem. Phys. 140:094103 [Google Scholar]
  58. Reichhardt C, Reichhardt CJO. 58.  2013. Phys. Rev. E 88:062310 [Google Scholar]
  59. Kulic IM, Mani M, Mohrbach H, Thaokar R, Mahadevan L. 59.  2009. Proc. R. Soc. B 276:2243–47 [Google Scholar]
  60. Pototsky A, Hahn AM, Stark H. 60.  2013. Phys. Rev. E 87:042124 [Google Scholar]
  61. Stenhammar J, Wittkowski R, Marenduzzo D, Cates ME. 61.  2016. Sci. Adv. 2:4e1501850 [Google Scholar]
  62. Nikola N, Solon AP, Kafri Y, Kardar M, Tailleur J, Voituriez R. 62.  2016. Phys. Rev. Lett. 117:098001 [Google Scholar]
  63. Weitz S, Blanco S, Fournier R, Gautrais J, Jost C, Theraulaz G. 63.  2014. Phys. Rev. E 89:052715 [Google Scholar]
  64. Wu J-C, Chen Q, Wang R, Ai B-Q. 64.  2015. Physica A 428:273–78 [Google Scholar]
  65. Mijalkov M, McDaniel A, Wehr J, Volpe G. 65.  2016. Phys. Rev. X 6:011008 [Google Scholar]
  66. Drocco JA, Reichhardt CJO, Reichhardt C. 66.  2012. Phys. Rev. E 85:056102 [Google Scholar]
  67. Mahmud G, Campbell CJ, Bishop KJM, Komarova YA, Chaga O. 67.  et al. 2009. Nat. Phys. 5:606–12 [Google Scholar]
  68. Sun X, Driscoll MK, Guven C, Das S, Parent CA. 68.  et al. 2015. PNAS 112:12557–62 [Google Scholar]
  69. Ghosh PK, Misko VR, Marchesoni F, Nori F. 69.  2013. Phys. Rev. Lett. 110:268301 [Google Scholar]
  70. Koumakis N, Lepore A, Maggi C, Di Leonardo R. 70.  2013. Nat. Commun. 4:2588 [Google Scholar]
  71. Lambert G, Liao D, Austin RH. 71.  2010. Phys. Rev. Lett. 104:168102 [Google Scholar]
  72. Reichhardt C, Reichhardt CJO. 72.  2014. Phys. Rev. E 90:012701 [Google Scholar]
  73. Maass CC, Krüger C, Herminghaus S, Bahr C. 73.  2016. Annu. Rev. Condens. Matter Phys. 7:171–93 [Google Scholar]
  74. Wan M-B, Jho Y-S. 74.  2013. Soft Matter 9:3255–61 [Google Scholar]
  75. Narayan V, Ramaswamy S, Menon N. 75.  2007. Science 317:105–8 [Google Scholar]
  76. Sanchez T, Chen DTN, DeCamp SJ, Heymann M, Dogic Z. 76.  2012. Nature 491:431–34 [Google Scholar]
  77. Giomi L, Bowick MJ, Ma X, Marchetti MC. 77.  2013. Phys. Rev. Lett. 110:228101 [Google Scholar]
  78. DeCamp SJ, Redner GS, Baskaran A, Hagan MF, Dogic Z. 78.  2015. Nat. Mater. 14:1110–15 [Google Scholar]
  79. DiLuzio WR, Turner L, Mayer M, Garstecki P, Weibel DB. 79.  et al. 2005. Nature 435:1271–74 [Google Scholar]
  80. Riedel IH, Kruse K, Howard J. 80.  2005. Science 309:300–3 [Google Scholar]
  81. Li G, Tam L-K, Tang JX. 81.  2008. PNAS 105:18355–59 [Google Scholar]
  82. Tierno P, Johansen TH, Fischer TM. 82.  2007. Phys. Rev. Lett. 99:038303 [Google Scholar]
  83. Kümmel F, ten Hagen B, Wittkowski R, Buttinoni I, Eichhorn R. 83.  et al. 2013. Phys. Rev. Lett. 110:198302 [Google Scholar]
  84. ten Hagen B, Kümmel F, Wittkowski R, Takagi D, Löwen H, Bechinger C. 84.  2014. Nat. Commun. 5:4829 [Google Scholar]
  85. Reichhardt C, Reichhardt CJO. 85.  2003. Phys. Rev. E 68:046102 [Google Scholar]
  86. Speer D, Eichhorn R, Reimann P. 86.  2009. Phys. Rev. Lett. 102:124101 [Google Scholar]
  87. Tierno P, Johansen TH, Fischer TM. 87.  2007. Phys. Rev. Lett. 99:038303 [Google Scholar]
  88. Nourhani A, Crespi VH, Lammert PE. 88.  2015. Phys. Rev. Lett. 115:118101 [Google Scholar]
  89. Reichhardt C, Reichhardt CJO. 89.  2013. Phys. Rev. E 88:042306 [Google Scholar]
  90. Mijalkova M, Volpe G. 90.  2013. Soft Matter 9:6376–81 [Google Scholar]
  91. Ai B, He Y, Zhong W. 91.  2015. Soft Matter 11:3852–59 [Google Scholar]
  92. Ai B. 92.  2016. Sci. Rep. 6:18740 [Google Scholar]
  93. Angelani L, Di Leonardo R, Ruocco G. 93.  2009. Phys. Rev. Lett. 102:048104 [Google Scholar]
  94. Di Leonardo R, Angelani L, Dell'Arciprete D, Ruocco G, Iebba V. 94.  et al. 2010. PNAS 107:9541–45 [Google Scholar]
  95. Sokolov A, Apodaca MM, Grzyboswki BA, Aranson IS. 95.  2010. PNAS 107:969–74 [Google Scholar]
  96. Kojima M, Miyamoto T, Nakajima M, Homma M, Arai T, Fukuda T. 96.  2016. Sens. Actuators B 222:1220–25 [Google Scholar]
  97. Li H, Zhang HP. 97.  2013. Europhys. Lett. 102:50007 [Google Scholar]
  98. Angelani L, Di Leonardo R. 98.  2010. New J. Phys. 12:113017 [Google Scholar]
  99. Kaiser A, Peshkov A, Sokolov A, ten Hagen B, Löwen H, Aranson IS. 99.  2014. Phys. Rev. Lett. 112:158101 [Google Scholar]
  100. Mallory SA, Valeriani C, Cacciuto A. 100.  2014. Phys. Rev. E 90:032309 [Google Scholar]
  101. Kaiser A, Wensink HH, Löwen H. 101.  2012. Phys. Rev. Lett. 108:268307 [Google Scholar]
  102. Kaiser A, Popowa K, Wensink HH, Löwen H. 102.  2013. Phys. Rev. E 88:022311 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031016-025522
Loading
/content/journals/10.1146/annurev-conmatphys-031016-025522
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error