1932

Abstract

Turbulent motion of fluids is often thought of as a grand problem, but what exactly is this “turbulence problem”? Because it has often been proclaimed as very difficult and unsolved, when can we claim that it is solved? How does this situation in turbulence compare with other complex problems in physical sciences? Addressing these questions is not trivial because everyone has their favorite idea of what is required of the “solution.” The answers range from being able to calculate the pressure drop in turbulent pipe flow to being able to calculate anomalous scaling exponents to answering the regularity problem of the Navier–Stokes equations. Taking an absolute position on the basis of any of these, or other similar examples, is incomplete at best and potentially erroneous at worst. We believe that it is beneficial to have an open discussion of this topic for the advancement of the research agenda in turbulence. This article is an attempt to address the question of what constitutes the turbulence problem, its place in the scientific enterprise as a whole, and how and when one may declare it as solved.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031620-095842
2025-03-10
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/16/1/annurev-conmatphys-031620-095842.html?itemId=/content/journals/10.1146/annurev-conmatphys-031620-095842&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Heisenberg W. 1958.. Physics and Philosophy: The Revolution in Modern Science. Berlin:: Ullstein
    [Google Scholar]
  2. 2.
    D'Alembert J le R. 1752.. In Opuscules Mathématiques, Vol. 5, Memoir XXXIV , pp. 13238. Paris:: Briasson
    [Google Scholar]
  3. 3.
    Euler L. 1757.. Mem. Acad. Sci. Berl. 11::274315
    [Google Scholar]
  4. 4.
    Frisch U. 2008.. arXiv:0802.2383v1 [nlin.CD]
  5. 5.
    Lighthill MJ. 1963.. Laminar Boundary Layer, ed. L Rosenhead . Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  6. 6.
    Navier CLMH. 1822.. Mem. Acad. Sci. Inst. Fr. 6::389440
    [Google Scholar]
  7. 7.
    Stokes GG. 1845.. Trans. Cambr. Philos. Soc. 8::287305
    [Google Scholar]
  8. 8.
    Prandtl L. 1905.. In Verhandlungen des III. Internationalen Mathematiker Kongresses, Heidelberg, August 8–13, 1904, pp. 48491. Leipzig:: Teubner
    [Google Scholar]
  9. 9.
    Schlichting H. 1956.. Boundary Layer Theory. New York:: McGraw Hill
    [Google Scholar]
  10. 10.
    Lord Rayleigh OM. 1916.. Philos. Mag. J. Sci. 32::52946
    [Crossref] [Google Scholar]
  11. 11.
    Drazin PG. 1981.. Introduction to Hydrodynamic Stability. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  12. 12.
    Eckhardt B, Schneider TM, Hof B, Westerweel J. 2007.. Annu. Rev. Fluid Mech. 39::44768
    [Crossref] [Google Scholar]
  13. 13.
    Avila M, Barkley D, Hof B. 2023.. Annu. Rev. Fluid Mech. 55::575602
    [Crossref] [Google Scholar]
  14. 14.
    Ott E. 2002.. Chaos in Dynamical Systems. Cambridge, UK:: Cambridge University Press
    [Google Scholar]
  15. 15.
    Bodenschatz E, Pesch W, Ahlers G. 2000.. Annu. Rev. Fluid Mech. 32::70978
    [Crossref] [Google Scholar]
  16. 16.
    Hof B. 2022.. Nat. Rev. Phys. 5::6272
    [Crossref] [Google Scholar]
  17. 17.
    Smith FT. 1982.. IMA J. Appl. Math. 28::20781
    [Crossref] [Google Scholar]
  18. 18.
    Sreenivasan KR. 1991.. Proc. R. Soc. Lond. A 434::16582
    [Crossref] [Google Scholar]
  19. 19.
    Iyer KP, Schumacher J, Sreenivasan KR, Yeung PK. 2020.. Phys. Rev. Fluids 5::044501
    [Crossref] [Google Scholar]
  20. 20.
    Corrsin S. 1959.. J. Geophys. Res. 64::213450
    [Crossref] [Google Scholar]
  21. 21.
    Kolmogorov AN. 1941.. Dokl. Akad. Nauk. SSSR 30::913
    [Google Scholar]
  22. 22.
    Yakhot V, Sreenivasan KR. 2005.. J. Stat. Phys. 121::82341
    [Crossref] [Google Scholar]
  23. 23.
    Schumacher J, Yakhot V, Sreenivasan KR. 2007.. New J. Phys. 9::89
    [Crossref] [Google Scholar]
  24. 24.
    Schumacher J. 2007.. EPL 80::54001
    [Crossref] [Google Scholar]
  25. 25.
    Succi S, Itani W, Sreenivasan KR, Steijl R. 2023.. EPL 144::10001
    [Crossref] [Google Scholar]
  26. 26.
    Bandak D, Mailybaev AA, Eyink GL, Goldenfeld N. 2024.. Phys. Rev. Lett. 132::104002
    [Crossref] [Google Scholar]
  27. 27.
    Bernard D, Gawe¸dzki K, Kupiainen A. 1998.. J. Stat. Phys. 90::51969
    [Crossref] [Google Scholar]
  28. 28.
    Chaves M, Gawe¸dzki K, Horvai P, Kupiainen A, Vergassola M. 2003.. J. Stat. Phys. 113::64392
    [Crossref] [Google Scholar]
  29. 29.
    Feynman RP. 1963.. The Feynman Lectures on Physics, Vol. I, Sections 3–7. Boston:: Addison-Wesley
    [Google Scholar]
  30. 30.
    Clay Math. Inst. 2024.. Clay Mathematics Institute. https://www.claymath.org/millennium/navier-stokes-equation/
    [Google Scholar]
  31. 31.
    Fefferman CL. 2000.. In The Millennium Prize Problems, ed. J Carlson, A Jaffe, A Wiles , pp. 5767. Cambridge, MA:: Clay Math. Inst./Am. Math. Soc.
    [Google Scholar]
  32. 32.
    Doering CR. 2009.. Annu. Rev. Fluid Mech. 41::10928
    [Crossref] [Google Scholar]
  33. 33.
    Robinson JC. 2020.. Philos. Trans. R. Soc. A 378::20190526
    [Crossref] [Google Scholar]
  34. 34.
    Doering CR, Gibbon JD. 1995.. Applied Analysis of the Navier-Stokes Equations. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  35. 35.
    Leray J. 1934.. Acta Math. 63::193248
    [Crossref] [Google Scholar]
  36. 36.
    Hopf E. 1951.. Math. Nachr. 4::21331
    [Crossref] [Google Scholar]
  37. 37.
    Grossmann S. 1994.. In Fundamental Problems in Statistical Mechanics VIII, ed. H van Beijeren, MH Ernst , pp. 279303. Amsterdam:: Elsevier
    [Google Scholar]
  38. 38.
    Kaplan JL, Yorke JA. 1979.. In Functional Differential Equations and Approximation of Fixed Points, ed. H-O Peitgen, H-O Walther , Vol. 730, Lect. Notes Math., pp. 20427. Berlin:: Springer
    [Google Scholar]
  39. 39.
    Ruelle D. 1979.. Phys. Lett. A 72::8182
    [Crossref] [Google Scholar]
  40. 40.
    Orszag SA, Patterson DS. 1972.. Phys. Rev. Lett. 28::7679
    [Crossref] [Google Scholar]
  41. 41.
    Yeung PK, Ravikumar K, Uma-Vaideswaran R, Meneveau C, Sreenivasan KR, Nicholas S. 2023.. Paper presented at the 76th Annual Meeting of the Division of Fluid Dynamics, Washington, DC:, Nov. 19–21
    [Google Scholar]
  42. 42.
    Ishihara T, Kaneda Y, Yokokawa M, Itakura K, Uno A. 2005.. J. Phys. Soc. Jpn. 74::146471
    [Crossref] [Google Scholar]
  43. 43.
    Ishihara T, Morishita K, Yokokawa M, Uno A, Kaneda Y. 2016.. Phys. Rev. Fluids 1::082403(R)
    [Crossref] [Google Scholar]
  44. 44.
    Kerr RM. 1993.. Phys. Fluids A5::172546
    [Crossref] [Google Scholar]
  45. 45.
    Luo G, Hou TY. 2014.. PNAS 111::1296873
    [Crossref] [Google Scholar]
  46. 46.
    Hou TY. 2022.. Found. Comput. Math. 23::220349
    [Crossref] [Google Scholar]
  47. 47.
    Onsager L. 1949.. Nuovo Cim. 6::27986
    [Crossref] [Google Scholar]
  48. 48.
    De Lellis C, Székelyhidi L Jr. 2009.. Ann. Math. 170::141736
    [Crossref] [Google Scholar]
  49. 49.
    Isett P. 2018.. Ann. Math. 188::871963
    [Crossref] [Google Scholar]
  50. 50.
    Buckmaster T, De Lellis C, Székelyhidi L Jr., Vicol V. 2019.. Commun. Pure Appl. Math. 72::22974
    [Crossref] [Google Scholar]
  51. 51.
    Migdal AA. 2024.. Phys. Fluids 36::095161
    [Crossref] [Google Scholar]
  52. 52.
    Sreenivasan KR. 1984.. Phys. Fluids 27::104851
    [Crossref] [Google Scholar]
  53. 53.
    Kaneda Y, Ishihara T, Yokokawa M, Itakura K, Uno A. 2003.. Phys. Fluids 15::L2124
    [Crossref] [Google Scholar]
  54. 54.
    Drivas TD, Eyink GL. 2019.. Nonlinearity 32::446582
    [Crossref] [Google Scholar]
  55. 55.
    Iyer KP. 2023.. Phys. Rev. Fluids 8::L082601
    [Crossref] [Google Scholar]
  56. 56.
    Bedrossian J, Zelati MC, Punshon-Smith S, Weber F. 2019.. Commun. Math. Phys. 367::104575
    [Crossref] [Google Scholar]
  57. 57.
    Buckmaster T, Vicol V. 2019.. Ann. Math. 189::10144
    [Crossref] [Google Scholar]
  58. 58.
    Kolmogorov AN. 1941.. Dokl. Akad. Nauk. SSSR 32::1618
    [Google Scholar]
  59. 59.
    Eyink GL, Sreenivasan KR. 2006.. Rev. Mod. Phys. 78::87135
    [Crossref] [Google Scholar]
  60. 60.
    Shi JZ. 2024.. Atmosphere 15::494525
    [Crossref] [Google Scholar]
  61. 61.
    Sreenivasan KR, Antonia RA. 1997.. Annu. Rev. Fluid Mech. 29::43572
    [Crossref] [Google Scholar]
  62. 62.
    Sreenivasan KR. 1995.. Phys. Fluids 7::277884
    [Crossref] [Google Scholar]
  63. 63.
    Elsinga GE, Ishihara T, Hunt JCR. 2021.. J. Fluid Mech. 932::A17
    [Crossref] [Google Scholar]
  64. 64.
    Kraichnan RH. 1959.. J. Fluid Mech. 5::497543
    [Crossref] [Google Scholar]
  65. 65.
    Wilson KG. 1975.. Rev. Mod. Phys. 74::773840
    [Crossref] [Google Scholar]
  66. 66.
    Forster D, Nelson DR, Stephen MJ. 1977.. Phys. Rev. A 16::73249
    [Crossref] [Google Scholar]
  67. 67.
    McComb WD. 2004.. Renormalization Methods: A Guide for Beginners. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  68. 68.
    Yakhot V, Orszag SA. 1986.. Phys. Rev. Lett. 57::172225
    [Crossref] [Google Scholar]
  69. 69.
    Toschi F, Bodenschatz E. 2009.. Annu. Rev. Fluid Mech. 41::375404
    [Crossref] [Google Scholar]
  70. 70.
    Monin AS, Yaglom AM. 1975.. Statistical Fluid Mechanics. Cambridge, MA:: MIT Press
    [Google Scholar]
  71. 71.
    Meneveau C, Sreenivasan KR. 1991.. J. Fluid Mech. 224::42984
    [Crossref] [Google Scholar]
  72. 72.
    Sreenivasan KR, Bershadskii A. 2006.. J. Stat. Phys. 125::114153
    [Crossref] [Google Scholar]
  73. 73.
    Hunt JCR, Wray AA, Moin P. 1988.. In Studying Turbulence Using Numerical Simulation Databases—II, Proceedings of the 1988 Summer Program, pp. 193208. Stanford, CA:: Cent. Turbul. Res., Stanford Univ.
    [Google Scholar]
  74. 74.
    Schumacher J, Eckhardt B, Doering CR. 2010.. Phys. Lett. A 374::86165
    [Crossref] [Google Scholar]
  75. 75.
    Hamlington PE, Schumacher J, Dahm WJA. 2008.. Phys. Rev. E 77::026303
    [Crossref] [Google Scholar]
  76. 76.
    Samuel RJ, Bode M, Scheel JD, Sreenivasan KR, Schumacher J. 2024.. J. Fluid Mech. 996::A49
    [Crossref] [Google Scholar]
  77. 77.
    Frisch U. 1995.. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  78. 78.
    Caffarelli L, Kohn R, Nirenberg L. 1982.. Commun. Pure Appl. Math. 35::771831
    [Crossref] [Google Scholar]
  79. 79.
    Arneodo A, Baudet C, Belin F, Benzi R, Castaing B, et al. 1996.. EPL 34::41116
    [Crossref] [Google Scholar]
  80. 80.
    Iyer KP, Sreenivasan KR, Yeung PK. 2020.. Phys. Rev. Fluids 5::056405
    [Google Scholar]
  81. 81.
    Benzi R, Paladin G, Parisi G, Vulpiani A. 1984.. J. Phys. A 17::352131
    [Crossref] [Google Scholar]
  82. 82.
    Migdal A. 2022.. Phys. Rep. 1011::1117
    [Crossref] [Google Scholar]
  83. 83.
    Iyer KP, Sreenivasan KR, Yeung PK. 2019.. Phys. Rev. X 9::041006
    [Google Scholar]
  84. 84.
    Obukhov AM. 1962.. J. Fluid Mech. 13::7781
    [Crossref] [Google Scholar]
  85. 85.
    Kolmogorov AN. 1962.. J. Fluid Mech. 13::8285
    [Crossref] [Google Scholar]
  86. 86.
    Stolovitzky G, Sreenivasan KR. 1994.. Rev. Mod. Phys. 66::22940
    [Crossref] [Google Scholar]
  87. 87.
    Buaria D, Sreenivasan KR. 2023.. Phys. Rev. Lett. 131::204001
    [Crossref] [Google Scholar]
  88. 88.
    Sreenivasan KR, Yakhot V. 2024.. Phys. Rev. Res. 6::033087
    [Crossref] [Google Scholar]
  89. 89.
    She Z-S, Leveque E. 1994.. Phys. Rev. Lett. 72::33639
    [Crossref] [Google Scholar]
  90. 90.
    Sreenivasan KR, Yakhot V. 2021.. Phys. Rev. Fluids 5::054605
    [Google Scholar]
  91. 91.
    Bec J, Khanin K. 2007.. Phys. Rep. 447::166
    [Crossref] [Google Scholar]
  92. 92.
    Friedrich J, Margazoglou G, Biferale L, Grauer R. 2018.. Phys. Rev. E 98::023104
    [Crossref] [Google Scholar]
  93. 93.
    Kardar M, Parisi G, Zhang Y-C. 1986.. Phys. Rev. Lett. 56::88992
    [Crossref] [Google Scholar]
  94. 94.
    Falkovich G, Gawe¸dzki K, Vergassola M. 2001.. Rev. Mod. Phys. 73::91375
    [Crossref] [Google Scholar]
  95. 95.
    Iyer KP, Schumacher J, Sreenivasan KR, Yeung PK. 2018.. Phys. Rev. Lett. 121::264501
    [Crossref] [Google Scholar]
  96. 96.
    Celani A, Lanotte A, Mazzino A, Vergassola M. 2001.. Phys. Fluids 13::176883
    [Crossref] [Google Scholar]
  97. 97.
    Watanabe T, Gotoh T. 2004.. New J. Phys. 6::40
    [Crossref] [Google Scholar]
  98. 98.
    Watanabe T, Gotoh T. 2006.. Phys. Fluids 18::058105
    [Crossref] [Google Scholar]
  99. 99.
    Sreenivasan KR. 2018.. PNAS 116::1817583
    [Crossref] [Google Scholar]
  100. 100.
    Shraiman BI, Siggia ED. 2000.. Nature 405::63946
    [Crossref] [Google Scholar]
  101. 101.
    Kraichnan RH. 1968.. Phys. Fluids 11::94553
    [Crossref] [Google Scholar]
  102. 102.
    Sreenivasan KR, Schumacher J. 2010.. Philos. Trans. R. Soc. A 368::156177
    [Crossref] [Google Scholar]
  103. 103.
    Kraichnan RH. 1994.. Phys. Rev. Lett. 72::101619
    [Crossref] [Google Scholar]
  104. 104.
    Buaria D, Sreenivasan KR. 2022.. Phys. Rev. Lett. 128::234502
    [Crossref] [Google Scholar]
  105. 105.
    Canet L. 2022.. J. Fluid Mech. 950::P1
    [Crossref] [Google Scholar]
  106. 106.
    Schumacher J, Scheel JD, Krasnov D, Donzis DA, Yakhot V, Sreenivasan KR. 2014.. PNAS 111::1096165
    [Crossref] [Google Scholar]
  107. 107.
    Yakhot V, Donzis D. 2017.. Phys. Rev. Lett. 119::044501
    [Crossref] [Google Scholar]
  108. 108.
    Launder BE, Spalding DB. 1972.. Mathematical Models of Turbulence. New York:: Academic
    [Google Scholar]
  109. 109.
    Moin P, Mahesh K. 1998.. Annu. Rev. Fluid Mech. 30::53787
    [Crossref] [Google Scholar]
  110. 110.
    Brown GL, Roshko A. 1974.. J. Fluid Mech. 64::775816
    [Crossref] [Google Scholar]
  111. 111.
    Hussain AKMF. 1983.. Phys. Fluids 26::281650
    [Crossref] [Google Scholar]
  112. 112.
    Smagorinsky J. 1963.. Mon. Weather Rev. 91::99164
    [Crossref] [Google Scholar]
  113. 113.
    Sagaut P. 2006.. Large Eddy Simulations for Incompressible Flows. Berlin:: Springer
    [Google Scholar]
  114. 114.
    Goc KA, Lehmkuhl O, Park GI, Bose ST, Moin P. 2021.. Flow 1::E14
    [Crossref] [Google Scholar]
  115. 115.
    Moser RD, Haering SW, Valla GR. 2021.. Annu. Rev. Fluid Mech. 53::25586
    [Crossref] [Google Scholar]
  116. 116.
    Chen S, Doolen GD. 1998.. Annu. Rev. Fluid Mech. 30::32964
    [Crossref] [Google Scholar]
  117. 117.
    Chen H, Kandasamy S, Orszag S, Shock R, Succi S, Yakhot V. 2003.. Science 301::63336
    [Crossref] [Google Scholar]
  118. 118.
    Aidun CK, Clausen JR. 2010.. Annu. Rev. Fluid Mech. 42::43972
    [Crossref] [Google Scholar]
  119. 119.
    Leith CE. 1971.. J. Atmos. Sci. 28::14561
    [Crossref] [Google Scholar]
  120. 120.
    Palmer TN. 2024.. Phys. Today 77:(5):3035
    [Crossref] [Google Scholar]
  121. 121.
    Smits AJ, McKeon BJ, Marusic I. 2011.. Annu. Rev. Fluid Mech. 43::35375
    [Crossref] [Google Scholar]
  122. 122.
    von Kármán T. 1930.. Nach. Gesell. Wiss. Gött., Fachgr. 1 (Math.) 5::5876
    [Google Scholar]
  123. 123.
    Monkewitz PA, Nagib HM. 2023.. J. Fluid Mech. 967::A15
    [Crossref] [Google Scholar]
  124. 124.
    Chen X, Sreenivasan KR. 2021.. J. Fluid Mech. 908::R3
    [Crossref] [Google Scholar]
  125. 125.
    Nagib HM, Monkewitz PA, Sreenivasan KR. 2023.. arXiv:2312.01184 [physics.flu-dyn]
/content/journals/10.1146/annurev-conmatphys-031620-095842
Loading
/content/journals/10.1146/annurev-conmatphys-031620-095842
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error