1932

Abstract

Solids are rigid, which means that when left undisturbed, their structures are nearly static. It follows that these structures depend on history—but it is surprising that they hold readable memories of past events. Here, we review the research that has recently flourished around mechanical memory formation, beginning with amorphous solids’ various memories of deformation and mesoscopic models based on particle rearrangements. We describe how these concepts apply to a much wider range of solids and glassy matter, and how they are a bridge to memory and physical computing in mechanical metamaterials. An understanding of memory in all these solids can potentially be the basis for designing or training functionality into materials. Just as important is memory's value for understanding matter whenever it is complex, frustrated, and out of equilibrium.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-032822-035544
2025-03-10
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/16/1/annurev-conmatphys-032822-035544.html?itemId=/content/journals/10.1146/annurev-conmatphys-032822-035544&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Toiya M, Stambaugh J, Losert W. 2004.. Phys. Rev. Lett. 93:(8):088001
    [Crossref] [Google Scholar]
  2. 2.
    Zhao Y, Barés J, Zheng H, Socolar JES, Behringer RP. 2019.. Phys. Rev. Lett. 123:(15):158001
    [Crossref] [Google Scholar]
  3. 3.
    Keim NC, Paulsen JD, Zeravcic Z, Sastry S, Nagel SR. 2019.. Rev. Mod. Phys. 91:(3):035002
    [Crossref] [Google Scholar]
  4. 4.
    Barrat JL, Gado ED, Egelhaaf SU, Mao X, Dijkstra M, et al. 2023.. J. Phys. Mater. 7:(1):012501
    [Crossref] [Google Scholar]
  5. 5.
    Lagoudas DC. 2008.. Shape Memory Alloys: Modeling and Engineering Applications. New York:: Springer
    [Google Scholar]
  6. 6.
    Mather PT, Luo X, Rousseau IA. 2009.. Annu. Rev. Mater. Res. 39::44571
    [Crossref] [Google Scholar]
  7. 7.
    Howell D, Behringer RP, Veje C. 1999.. Phys. Rev. Lett. 82:(26):524144
    [Crossref] [Google Scholar]
  8. 8.
    Abed Zadeh A, Barés J, Brzinski TA, Daniels KE, Dijksman J, et al. 2019.. Granul. Matter 21:(4):83
    [Crossref] [Google Scholar]
  9. 9.
    Majmudar TS, Behringer RP. 2005.. Nature 435:(7045):107982
    [Crossref] [Google Scholar]
  10. 10.
    Gadala-Maria F, Acrivos A. 1980.. J. Rheol. 24:(6):799814
    [Crossref] [Google Scholar]
  11. 11.
    Keim NC, Hass J, Kroger B, Wieker D. 2020.. Phys. Rev. Res. 2:(1):012004
    [Crossref] [Google Scholar]
  12. 12.
    Keim NC, Medina D. 2022.. Sci. Adv. 8:(40):eabo1614
    [Crossref] [Google Scholar]
  13. 13.
    Fiocco D, Foffi G, Sastry S. 2014.. Phys. Rev. Lett. 112:(2):025702
    [Crossref] [Google Scholar]
  14. 14.
    Mukherji S, Kandula N, Sood AK, Ganapathy R. 2019.. Phys. Rev. Lett. 122:(15):158001
    [Crossref] [Google Scholar]
  15. 15.
    Preisach F. 1935.. Z. Phys. 94:(5–6):277302
    [Crossref] [Google Scholar]
  16. 16.
    Semenov ME, Borzunov SV, Meleshenko PA, Sel'vesyuk NI. 2024.. Phys. Scr. 99:(6):062008
    [Crossref] [Google Scholar]
  17. 17.
    Mayergoyz ID. 1985.. J. Appl. Phys. 57:(8):38035
    [Crossref] [Google Scholar]
  18. 18.
    Guyer RA, Johnson PA. 1999.. Phys. Today 52:(4):3036
    [Crossref] [Google Scholar]
  19. 19.
    Guyer RA. 2006.. In The Science of Hysteresis, Vol. 3, ed. G Bertotti, I Mayergoyz , pp. 555688. Oxford, UK:: Academic
    [Google Scholar]
  20. 20.
    Lundberg M, Krishan K, Xu N, O'Hern CS, Dennin M. 2008.. Phys. Rev. E 77:(4):041505
    [Crossref] [Google Scholar]
  21. 21.
    Keim NC, Arratia PE. 2014.. Phys. Rev. Lett. 112:(2):028302
    [Crossref] [Google Scholar]
  22. 22.
    Mungan M, Sastry S, Dahmen K, Regev I. 2019.. Phys. Rev. Lett. 123:(17):178002
    [Crossref] [Google Scholar]
  23. 23.
    Sethna JP, Dahmen K, Kartha S, Krumhansl JA, Roberts BW, Shore JD. 1993.. Phys. Rev. Lett. 70::3347
    [Crossref] [Google Scholar]
  24. 24.
    Middleton AA. 1992.. Phys. Rev. Lett. 68::670
    [Crossref] [Google Scholar]
  25. 25.
    Barker JA, Schreiber DE, Huth BG, Everett DH. 1983.. Proc. R. Soc. Lond. A 386::25161
    [Crossref] [Google Scholar]
  26. 26.
    Terzi M, Mungan M. 2020.. Phys. Rev. E 102:(1-1):012122
    [Crossref] [Google Scholar]
  27. 27.
    Regev I, Attia I, Dahmen K, Sastry S, Mungan M. 2021.. Phys. Rev. E 103:(6):062614
    [Crossref] [Google Scholar]
  28. 28.
    Regev I, Lookman T, Reichhardt C. 2013.. Phys. Rev. E 88:(6):062401
    [Crossref] [Google Scholar]
  29. 29.
    Keim NC, Arratia PE. 2013.. Soft Matter 9:(27):622225
    [Crossref] [Google Scholar]
  30. 30.
    Regev I, Weber J, Reichhardt C, Dahmen KA, Lookman T. 2015.. Nat. Commun. 6:(1):8805
    [Crossref] [Google Scholar]
  31. 31.
    Royer JR, Chaikin PM. 2015.. PNAS 112:(1):4953
    [Crossref] [Google Scholar]
  32. 32.
    Priezjev NV. 2013.. Phys. Rev. E 87:(5):052302
    [Crossref] [Google Scholar]
  33. 33.
    Nagamanasa KH, Gokhale S, Sood AK, Ganapathy R. 2014.. Phys. Rev. E 89:(6):062308
    [Crossref] [Google Scholar]
  34. 34.
    Adhikari M, Sastry S. 2018.. Eur. Phys. J. E 41:(9):045504
    [Crossref] [Google Scholar]
  35. 35.
    Zhao Y, Zhao Y, Wang D, Zheng H, Chakraborty B, Socolar JES. 2022.. Phys. Rev. X 12:(3):3
    [Google Scholar]
  36. 36.
    Reichhardt C, Regev I, Dahmen K, Okuma S, Reichhardt CJO. 2023.. Phys. Rev. Res. 5:(2):021001
    [Crossref] [Google Scholar]
  37. 37.
    Teich EG, Galloway KL, Arratia PE, Bassett DS. 2021.. Sci. Adv. 7:(20):eabe3392
    [Crossref] [Google Scholar]
  38. 38.
    Galloway KL, Teich EG, Ma XG, Kammer C, Graham IR, et al. 2022.. Nat. Phys. 18:(5):56570
    [Crossref] [Google Scholar]
  39. 39.
    Edera P, Bantawa M, Aime S, Bonnecaze RT, Cloitre M. 2024.. arXiv:2402.08293v1 [cond-mat.soft]
  40. 40.
    Bhaumik H, Foffi G, Sastry S. 2021.. PNAS 118:(16):e2100227118
    [Crossref] [Google Scholar]
  41. 41.
    Liu C, Ferrero EE, Jagla EA, Martens K, Rosso A, Talon L. 2022.. J. Chem. Phys. 156:(10):104902
    [Crossref] [Google Scholar]
  42. 42.
    Sastry S. 2021.. Phys. Rev. Lett. 126:(25):255501
    [Crossref] [Google Scholar]
  43. 43.
    Strogatz SH. 1994.. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Cambridge, MA:: Westview
    [Google Scholar]
  44. 44.
    Arceri F, Corwin EI, Hagh VF. 2021.. Phys. Rev. E 104:(4):044907
    [Crossref] [Google Scholar]
  45. 45.
    Mungan M, Terzi MM. 2019.. Ann. Henri Poincaré 20::281972
    [Crossref] [Google Scholar]
  46. 46.
    Mungan M, Witten T. 2019.. Phys. Rev. E 99:(5–1):052132
    [Crossref] [Google Scholar]
  47. 47.
    Ferrari PL, Mungan M, Terzi MM. 2022.. Ann. l'Inst. Henri Poincaré D, Combinatorics, Phys. Interact. 9:(4):64357
    [Crossref] [Google Scholar]
  48. 48.
    Movsheva A, Witten TA. 2023.. Eur. Phys. J. E 46:(9):84
    [Crossref] [Google Scholar]
  49. 49.
    Eshelby JD. 1957.. Proc. R. Soc. Lond. A 241:( 1226.):37696
    [Google Scholar]
  50. 50.
    Nicolas A, Ferrero EE, Martens K, Barrat JL. 2018.. Rev. Mod. Phys. 90:(4):34163
    [Crossref] [Google Scholar]
  51. 51.
    Lindeman CW, Jalowiec TR, Keim NC. 2023.. arXiv:2306.07177 [cond-mat.soft]
  52. 52.
    Keim NC, Paulsen JD. 2021.. Sci. Adv. 7:(33):eabg7685
    [Crossref] [Google Scholar]
  53. 53.
    Jerolmack DJ, Daniels KE. 2019.. Nat. Rev. Phys. 1::71630
    [Crossref] [Google Scholar]
  54. 54.
    Antonaglia J, Wright WJ, Gu X, Byer RR, Hufnagel TC, et al. 2014.. Phys. Rev. Lett. 112:(15):155501
    [Crossref] [Google Scholar]
  55. 55.
    Bonn D, Tanaka H, Coussot P, Meunier J. 2004.. J Phys. Condens. Matter 16:(42):S4987
    [Crossref] [Google Scholar]
  56. 56.
    Denisov DV, Lörincz KA, Uhl JT, Dahmen KA, Schall P. 2016.. Nat. Commun. 7::10641
    [Crossref] [Google Scholar]
  57. 57.
    Szulc A, Mungan M, Regev I. 2022.. J. Chem. Phys. 156:(16):164506
    [Crossref] [Google Scholar]
  58. 58.
    Binder K, Young AP. 1986.. Rev. Mod. Phys. 58:(4):801976
    [Crossref] [Google Scholar]
  59. 59.
    Hovorka O, Friedman G. 2008.. Phys. Rev. Lett. 100:(9):097201
    [Crossref] [Google Scholar]
  60. 60.
    van Hecke M. 2021.. Phys. Rev. E 104:(5-1):054608
    [Crossref] [Google Scholar]
  61. 61.
    Lindeman CW, Nagel SR. 2021.. Sci. Adv. 7:(33):eabg7133
    [Crossref] [Google Scholar]
  62. 62.
    Deutsch JM, Narayan O. 2003.. Phys. Rev. Lett. 91:(20):200601
    [Crossref] [Google Scholar]
  63. 63.
    Lavrentovich MO, Liu AJ, Nagel SR. 2017.. Phys. Rev. E 96:(2):020101
    [Crossref] [Google Scholar]
  64. 64.
    Talamali M, Petäjä V, Vandembroucq D, Roux S. 2012.. C. R. Méc. 340:(4–5):27588
    [Crossref] [Google Scholar]
  65. 65.
    Khirallah K, Tyukodi B, Vandembroucq D, Maloney CE. 2021.. Phys. Rev. Lett. 126:(21):218005
    [Crossref] [Google Scholar]
  66. 66.
    Kumar D, Patinet S, Maloney C, Regev I, Vandembroucq D, Mungan M. 2022.. J. Chem. Phys. 157:(17):174504
    [Crossref] [Google Scholar]
  67. 67.
    Ben Amar M, Pomeau Y. 1997.. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 453:( 1959.):72955
    [Crossref] [Google Scholar]
  68. 68.
    Matan K, Williams RB, Witten TA, Nagel SR. 2002.. Phys. Rev. Lett. 88:(7):076101
    [Crossref] [Google Scholar]
  69. 69.
    Witten TA. 2007.. Rev. Mod. Phys. 79:(2):64375
    [Crossref] [Google Scholar]
  70. 70.
    Cambou AD, Menon N. 2015.. Europhys. Lett. 112:(1):14003
    [Crossref] [Google Scholar]
  71. 71.
    Gottesman O, Andrejevic J, Rycroft CH, Rubinstein SM. 2018.. Commun. Phys. 1:(1):70
    [Crossref] [Google Scholar]
  72. 72.
    Croll AB, Twohig T, Elder T. 2019.. Nat. Commun. 10:(1):1502
    [Crossref] [Google Scholar]
  73. 73.
    Fokker MC, Janbaz S, Zadpoor AA. 2019.. RSC Adv. 9:(9):517488
    [Crossref] [Google Scholar]
  74. 74.
    Timounay Y, De R, Stelzel JL, Schrecengost ZS, Ripp MM, Paulsen JD. 2020.. Phys. Rev. X 10:(2):021008
    [Google Scholar]
  75. 75.
    Dawadi A, Kudrolli A. 2024.. arXiv:2403.06918 [cond-mat.soft]
  76. 76.
    Lechenault F, Adda-Bedia M. 2015.. Phys. Rev. Lett. 115:(23):235501
    [Crossref] [Google Scholar]
  77. 77.
    Jules T, Reid A, Daniels KE, Mungan M, Lechenault F. 2022.. Phys. Rev. Res. 4:(1):013128
    [Crossref] [Google Scholar]
  78. 78.
    Shohat D, Hexner D, Lahini Y. 2022.. PNAS 119:(28):e2200028119
    [Crossref] [Google Scholar]
  79. 79.
    Shohat D, Lahini Y. 2023.. Phys. Rev. Lett. 130:(4):048202
    [Crossref] [Google Scholar]
  80. 80.
    Hanna BH, Lund JM, Lang RJ, Magleby SP, Howell LL. 2014.. Smart Mater. Struct. 23:(9):094009
    [Crossref] [Google Scholar]
  81. 81.
    Waitukaitis S, Menaut R, Chen BG, van Hecke M. 2015.. Phys. Rev. Lett. 114:(5):055503
    [Crossref] [Google Scholar]
  82. 82.
    Yu T, Andrade-Silva I, Dias MA, Hanna J. 2022.. Mech. Res. Commun. 124::103700
    [Crossref] [Google Scholar]
  83. 83.
    Greenberg HC, Gong ML, Magleby SP, Howell LL. 2011.. Mech. Sci. 2:(2):21725
    [Crossref] [Google Scholar]
  84. 84.
    Silverberg JL, Na JH, Evans AA, Liu B, Hull TC, et al. 2015.. Nat. Mater. 14:(4):38993
    [Crossref] [Google Scholar]
  85. 85.
    Reid A, Lechenault F, Rica S, Adda-Bedia M. 2017.. Phys. Rev. E 95:(1):013002
    [Crossref] [Google Scholar]
  86. 86.
    Liu B, Silverberg JL, Evans AA, Santangelo CD, Lang RJ, et al. 2018.. Nat. Phys. 14:(8):81115
    [Crossref] [Google Scholar]
  87. 87.
    Yasuda H, Tachi T, Lee M, Yang J. 2017.. Nat. Commun. 8:(1):962
    [Crossref] [Google Scholar]
  88. 88.
    Merkle RC. 1993.. Nanotechnology 4:(2):11431
    [Crossref] [Google Scholar]
  89. 89.
    Treml B, Gillman A, Buskohl P, Vaia R. 2018.. PNAS 115:(27):691621
    [Crossref] [Google Scholar]
  90. 90.
    Yasuda H, Buskohl PR, Gillman A, Murphey TD, Stepney S, et al. 2021.. Nature 598:(7879):3948
    [Crossref] [Google Scholar]
  91. 91.
    Bense H, van Hecke M. 2021.. PNAS 118:(50):e2111436118
    [Crossref] [Google Scholar]
  92. 92.
    Seffen K. 2006.. Scr. Mater. 55:(4):41114
    [Crossref] [Google Scholar]
  93. 93.
    Muhaxheri G, Santangelo CD. 2024.. Phys. Rev. E 110::024209
    [Crossref] [Google Scholar]
  94. 94.
    Sirote-Katz C, Shohat D, Merrigan C, Lahini Y, Nisoli C, Shokef Y. 2024.. Nat. Commun. 15::4008
    [Crossref] [Google Scholar]
  95. 95.
    Hyatt LP, Harne RL. 2023.. Extrem. Mech. Lett. 59::101975
    [Crossref] [Google Scholar]
  96. 96.
    Liu J, Teunisse M, Korovin G, Vermaire IR, Jin L, et al. 2024.. PNAS 121:(22):e2308414121
    [Crossref] [Google Scholar]
  97. 97.
    Meeussen AS, van Hecke M. 2023.. Nature 621:(7979):51620
    [Crossref] [Google Scholar]
  98. 98.
    Faber JA, Udani JP, Riley KS, Studart AR, Arrieta AF. 2020.. Adv. Sci. 7:(22):2001955
    [Crossref] [Google Scholar]
  99. 99.
    Plummer A, Hanakata PZ, Nelson DR. 2022.. Phys. Rev. Mater. 6:(11):115203
    [Crossref] [Google Scholar]
  100. 100.
    Oppenheimer N, Witten TA. 2015.. Phys. Rev. E 92:(5):052401
    [Crossref] [Google Scholar]
  101. 101.
    Liu M, Domino L, Dupont de Dinechin I, Taffetani M, Vella D. 2023.. J. Mech. Phys. Solids 170::105116
    [Crossref] [Google Scholar]
  102. 102.
    Ding J, van Hecke M. 2022.. J. Chem. Phys. 156:(20):204902
    [Crossref] [Google Scholar]
  103. 103.
    Kwakernaak LJ, van Hecke M. 2023.. Phys. Rev. Lett. 130:(26):268204
    [Crossref] [Google Scholar]
  104. 104.
    Goodrich CP, Liu AJ, Nagel SR. 2014.. Nat. Phys. 10:(8):57881
    [Crossref] [Google Scholar]
  105. 105.
    Keim NC, Arratia PE. 2015.. Soft Matter 11:(8):153946
    [Crossref] [Google Scholar]
  106. 106.
    Katgert G, Latka A, Möbius ME, van Hecke M. 2009.. Phys. Rev. E 79:(6):066318
    [Crossref] [Google Scholar]
  107. 107.
    Mari R, Krzakala F, Kurchan J. 2009.. Phys. Rev. Lett. 103:(2):025701
    [Crossref] [Google Scholar]
  108. 108.
    Shiba H, Onuki A. 2010.. Phys. Rev. E 81:(5):051501
    [Crossref] [Google Scholar]
  109. 109.
    Biswas S, Grant M, Samajdar I, Haldar A, Sain A. 2013.. Sci. Rep. 3:(1):2728
    [Crossref] [Google Scholar]
  110. 110.
    Rottler J, Schoenholz SS, Liu AJ. 2014.. Phys. Rev. E 89:(4):042304
    [Crossref] [Google Scholar]
  111. 111.
    Sharp TA, Thomas SL, Cubuk ED, Schoenholz SS, Srolovitz DJ, Liu AJ. 2018.. PNAS 115:(43):1094347
    [Crossref] [Google Scholar]
  112. 112.
    Jana PK, Alava MJ, Zapperi S. 2018.. Phys. Rev. E 98:(6):062607
    [Crossref] [Google Scholar]
  113. 113.
    Khushika Laurson L, Jana PK. 2023.. Phys. Rev. E 108:(6):064612
    [Crossref] [Google Scholar]
  114. 114.
    Falk ML, Langer JS. 2011.. Annu. Rev. Condens. Matter Phys. 2::35373
    [Crossref] [Google Scholar]
  115. 115.
    Greer AL, Cheng YQ, Ma E. 2013.. Mater. Sci. Eng. R 74:(4):71132
    [Crossref] [Google Scholar]
  116. 116.
    Ness C, Seto R, Mari R. 2022.. Annu. Rev. Condens. Matter Phys. 13::97117
    [Crossref] [Google Scholar]
  117. 117.
    McCall KR, Guyer RA. 1994.. J. Geophys. Res. Solid Earth 99:(B12):2388797
    [Crossref] [Google Scholar]
  118. 118.
    Kern N, Weaire D, Martin A, Hutzler S, Cox S. 2004.. Phys. Rev. E 70::041411
    [Crossref] [Google Scholar]
  119. 119.
    Lindeman CW, Hagh VF, Ip CI, Nagel SR. 2023.. Phys. Rev. Lett. 130:(19):197201
    [Crossref] [Google Scholar]
  120. 120.
    Jules T, Michel L, Douin A, Lechenault F. 2023.. Commun. Phys. 6:(1):25
    [Crossref] [Google Scholar]
  121. 121.
    Paulsen JD, Keim NC, Nagel SR. 2014.. Phys. Rev. Lett. 113:(6):068301
    [Crossref] [Google Scholar]
  122. 122.
    Majumdar D, Regev I. 2023.. arXiv:2310.09869v2 [cond-mat.soft]
  123. 123.
    Cubuk ED, Ivancic RJS, Schoenholz SS, Strickland DJ, Basu A, et al. 2017.. Science 358:(6366):103337
    [Crossref] [Google Scholar]
  124. 124.
    Daniels KE. 2013.. In Asteroids: Prospective Energy and Material Resources, ed. V Badescu, pp. 27186. Berlin/Heidelberg:: Springer
    [Google Scholar]
  125. 125.
    Walsh KJ. 2018.. Annu. Rev. Astron. Astrophys. 56::593624
    [Crossref] [Google Scholar]
  126. 126.
    Kollmer JE, Daniels KE. 2019.. Soft Matter 15:(8):179398
    [Crossref] [Google Scholar]
  127. 127.
    Slotterback S, Mailman M, Ronaszegi K, van Hecke M, Girvan M, Losert W. 2012.. Phys. Rev. E 85:(2):021309
    [Crossref] [Google Scholar]
  128. 128.
    Benson Z, Peshkov A, Richardson D, Losert W. 2021.. Phys. Rev. E 103:(6-1):062906
    [Crossref] [Google Scholar]
  129. 129.
    Candela D. 2023.. Phys. Rev. Lett. 130:(26):268202
    [Crossref] [Google Scholar]
  130. 130.
    Schwen EM, Ramaswamy M, Cheng CM, Jan L, Cohen I. 2020.. Soft Matter 16:(15):374652
    [Crossref] [Google Scholar]
  131. 131.
    Chattopadhyay S, Majumdar S. 2022.. J. Chem. Phys. 156:(24):241102
    [Crossref] [Google Scholar]
  132. 132.
    van Doorn JM, Verweij JE, Sprakel J, van der Gucht J. 2018.. Phys. Rev. Lett. 120:(20):208005
    [Crossref] [Google Scholar]
  133. 133.
    Schmoller KM, Fernández P, Arevalo RC, Blair DL, Bausch AR. 2010.. Nat. Commun. 1:(1):134
    [Crossref] [Google Scholar]
  134. 134.
    Chen Y, Zhang Q, Ramakrishnan S, Leheny RL. 2023.. J. Chem. Phys. 158:(2):024906
    [Crossref] [Google Scholar]
  135. 135.
    Pashine N, Hexner D, Liu AJ, Nagel SR. 2019.. Sci. Adv. 5:(12):eaax4215
    [Crossref] [Google Scholar]
  136. 136.
    Stern M, Murugan A. 2023.. Annu. Rev. Condens. Matter Phys. 14:(1):41741
    [Crossref] [Google Scholar]
  137. 137.
    Anisetti VR, Scellier B, Schwarz JM. 2023.. Phys. Rev. Res. 5:(2):023024
    [Crossref] [Google Scholar]
  138. 138.
    Adhikari M, Sharma R, Karmakar S. 2023.. arXiv:2309.10682v1 [cond-mat.soft]
  139. 139.
    Hachen I, Reinartz S, Brasselet R, Stroligo A, Diamond M. 2021.. Nat. Commun. 12:(1):6036
    [Crossref] [Google Scholar]
  140. 140.
    Rivière M, Meroz Y. 2023.. PNAS 120:(42):e2306655120
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-032822-035544
Loading
/content/journals/10.1146/annurev-conmatphys-032822-035544
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error