1932

Abstract

The dynamic charge susceptibility, χ(, ω), is a fundamental observable of all materials, in one, two, and three dimensions, quantifying the collective charge modes and the ability of a material to screen charge, as well as its electronic compressibility. Here, we review the current state of efforts to measure the charge susceptibility of quantum materials using inelastic electron scattering, which historically has been called electron energy-loss spectroscopy (EELS). We focus on comparison between transmission (T-EELS) and reflection (R-EELS) geometries as applied to a selection of three-dimensional and quasi-two-dimensional conductors. Although a great deal is understood about simple metals, measurements of more strongly interacting and strange metals are currently conflicting, with different groups obtaining fundamentally contradictory results, emphasizing the importance of improved EELS measurements. Furthermore, current opportunities for improvement in EELS techniques are vast, with the most promising future development being in hemispherical and time-of-flight analyzers, as well as scanning transmission electron microscope instruments configured for high-momentum resolution. We conclude that, despite more than half a century of work, EELS techniques are currently still in their infancy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-032822-044125
2025-03-10
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/16/1/annurev-conmatphys-032822-044125.html?itemId=/content/journals/10.1146/annurev-conmatphys-032822-044125&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kamihara Y, Watanabe T, Hirano M, Hosono H. 2008.. J. Am. Chem. Soc. 130::329697
    [Crossref] [Google Scholar]
  2. 2.
    Johnston DC. 2010.. Adv. Phys. 59::8031061
    [Crossref] [Google Scholar]
  3. 3.
    Paglione J, Greene RL. 2010.. Nat. Phys. 6:(9):64558
    [Crossref] [Google Scholar]
  4. 4.
    Hasan MZ, Kane CL. 2010.. Rev. Mod. Phys. 82:(4):304567
    [Crossref] [Google Scholar]
  5. 5.
    Lv BQ, Qian T, Ding H. 2021.. Rev. Mod. Phys. 93:(2):025002
    [Crossref] [Google Scholar]
  6. 6.
    Chen CW, Choe J, Morosan E. 2016.. Rep. Prog. Phys. 79:(8):084505
    [Crossref] [Google Scholar]
  7. 7.
    Eisenstein J. 2014.. Annu. Rev. Condens. Matter Phys. 5::15981
    [Crossref] [Google Scholar]
  8. 8.
    Kogar A, Rak MS, Vig S, Husain AA, Flicker F, et al. 2017.. Science 358:(6368):131417
    [Crossref] [Google Scholar]
  9. 9.
    Cai J, Anderson E, Wang C, Zhang X, Liu X, et al. 2023.. Nature 622::6368
    [Crossref] [Google Scholar]
  10. 10.
    Stewart GR. 2017.. Adv. Phys. 66::75196
    [Crossref] [Google Scholar]
  11. 11.
    Jiao L, Howard S, Ran S, Wang Z, Rodriguez JO, et al. 2020.. Nature 579::52327
    [Crossref] [Google Scholar]
  12. 12.
    Dressel M, Grüner G. 2002.. Electrodynamics of Solids: Optical Properties of Electrons in Matter. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  13. 13.
    Basov DN, Timusk T. 2005.. Rev. Mod. Phys. 77:(2):72179
    [Crossref] [Google Scholar]
  14. 14.
    Damascelli A, Hussain Z, Shen ZX. 2003.. Rev. Mod. Phys. 75:(2):473541
    [Crossref] [Google Scholar]
  15. 15.
    Fischer O, Kugler M, Maggio-Aprile I, Berthod C, Renner C. 2007.. Rev. Mod. Phys. 79:(1):353419
    [Crossref] [Google Scholar]
  16. 16.
    Balcar E, Lovesey SW. 1989.. Theory of Magnetic Neutron and Photon Scattering. Oxford, UK:: Clarendon
    [Google Scholar]
  17. 17.
    Schülke W. 2007.. Electron Dynamics by Inelastic X-ray Scattering. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  18. 18.
    Ament LJP, van Veenendaal M, Devereaux TP, Hill JP, van den Brink J. 2011.. Rev. Mod. Phys. 83:(2):70567
    [Crossref] [Google Scholar]
  19. 19.
    Franck J, Hertz G. 1913.. Verh. Dtsch. Phys. Ges. 15::45767
    [Google Scholar]
  20. 20.
    Rudberg E. 1936.. Phys. Rev. 50:(2):13850
    [Crossref] [Google Scholar]
  21. 21.
    Ruthemann G. 1941.. Naturwissenschaften 29::64849
    [Crossref] [Google Scholar]
  22. 22.
    Pines D, Bohm D. 1952.. Phys. Rev. 85::33853
    [Crossref] [Google Scholar]
  23. 23.
    Watanabe H. 1956.. J. Phys. Soc. Jpn. 11:(2):11219
    [Crossref] [Google Scholar]
  24. 24.
    Raether H. 1965.. In Springer Tracts in Modern Physics, Vol. 38:, ed. G Höhler , pp. 84157. Berlin, Ger:.: Springer-Verlag
    [Crossref] [Google Scholar]
  25. 25.
    Daniels J, von Festenberg C, Raether H, Zeppenfeld K. 1970.. In Springer Tracts in Modern Physics, Vol. 54, ed. G Höhler , pp. 77135. Berlin, Ger:.: Springer-Verlag
    [Google Scholar]
  26. 26.
    Schnatterly J. 1979.. Solid State Phys. 34::275358
    [Crossref] [Google Scholar]
  27. 27.
    Schnattschneider P. 1950.. Fundamentals of Inelastic Electron Scattering. Wien/New York:: Springer-Verlag
    [Google Scholar]
  28. 28.
    Fink J. 1989.. In Advances in Electronics and Electron Physics, Vol. 75, ed. PW Hawkes , pp. 121232. Boston:: Academic
    [Google Scholar]
  29. 29.
    v. Baltz R. 1997.. In Spectroscopy and Dynamics of Collective Excitations in Solids, Vol. 356, NATO Sci. Ser. B, ed. B Bartolo, S Kyrkos , pp. 30338. New York:: Springer
    [Google Scholar]
  30. 30.
    Roth F, König A, Fink J, Büchner B, Knupfer M. 2014.. J. Electron Spectrosc. Relat. Phenom. 195::8595
    [Crossref] [Google Scholar]
  31. 31.
    Egerton RF. 1996.. Electron Energy-Loss Spectroscopy in the Electron Microscope. New York:: Plenum
    [Google Scholar]
  32. 32.
    Rose HH. 2008.. Sci. Technol. Adv. Mater. 9:(1):014107
    [Crossref] [Google Scholar]
  33. 33.
    Mkhoyan K, Babinec T, Maccagnano S, Kirkland E, Silcox J. 2007.. Ultramicroscopy 107:(4):34555
    [Crossref] [Google Scholar]
  34. 34.
    Boersch H, Geiger J, Stickel W. 1964.. Z. Phys. 180::41524
    [Crossref] [Google Scholar]
  35. 35.
    Schröder B, Geiger J. 1972.. Phys. Rev. Lett. 28:(5):3013
    [Crossref] [Google Scholar]
  36. 36.
    Ibach H, Mills DL. 1982.. Electron Energy Loss Spectroscopy and Surface Vibrations. New York:: Academic
    [Google Scholar]
  37. 37.
    Ibach H. 1991.. Electron Energy Loss Spectrometers: The Technology of High Performance. Berlin:: Springer-Verlag
    [Google Scholar]
  38. 38.
    Ibach H. 1993.. J. Electron Spectrosc. Relat. Phenom. 64–65::81923
    [Crossref] [Google Scholar]
  39. 39.
    Ibach H, Bocquet FC, Sforzini J, Soubatch S, Tautz FS. 2017.. Rev. Sci. Instrum. 88:(3):033903
    [Crossref] [Google Scholar]
  40. 40.
    Krivanek O, Dellby N, Hachtel J, Idrobo JC, Hotz M, et al. 2019.. Ultramicroscopy 203::6067
    [Crossref] [Google Scholar]
  41. 41.
    Krivanek OL, Lovejoy TC, Dellby N, Aoki T, Carpenter RW, et al. 2014.. Nature 514:(7521):20912
    [Crossref] [Google Scholar]
  42. 42.
    Vig S, Kogar A, Mitrano M, Husain A, Venema L, et al. 2017.. SciPost Phys. 3:(4):026
    [Crossref] [Google Scholar]
  43. 43.
    Mitrano M, Husain AA, Vig S, Kogar A, Rak MS, et al. 2018.. PNAS 115:(21):539296
    [Crossref] [Google Scholar]
  44. 44.
    Husain AA, Mitrano M, Rak MS, Rubeck S, Uchoa B, et al. 2019.. Phys. Rev. X 9:(4):041062
    [Google Scholar]
  45. 45.
    Zhu X, Cao Y, Zhang S, Jia X, Guo Q, et al. 2015.. Rev. Sci. Instrum. 86::083902
    [Crossref] [Google Scholar]
  46. 46.
    Li J, Li J, Tang J, Tao Z, Xue S, et al. 2023.. Phys. Rev. Lett. 131:(11):116602
    [Crossref] [Google Scholar]
  47. 47.
    Husain AA, Huang EW, Mitrano M, Rak MS, Rubeck SI, et al. 2023.. Nature 621::6670
    [Crossref] [Google Scholar]
  48. 48.
    Platzman PM, Wolff PA. 1973.. Waves and Interactions in Solid State Plasmas. New York:: Academic
    [Google Scholar]
  49. 49.
    Giuliani G, Vignale G. 2005.. Quantum Theory of the Electron Liquid. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  50. 50.
    Sturm K. 1982.. Adv. Phys. 31:(1):164
    [Crossref] [Google Scholar]
  51. 51.
    Quong AA, Eguiluz AG. 1993.. Phys. Rev. Lett. 70:(25):395558
    [Crossref] [Google Scholar]
  52. 52.
    Reining L. 2018.. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8:(3):e1344
    [Crossref] [Google Scholar]
  53. 53.
    Onida G, Reining L, Rubio A. 2002.. Rev. Mod. Phys. 74:(2):60159
    [Crossref] [Google Scholar]
  54. 54.
    Hybertsen MS, Louie SG. 1985.. Phys. Rev. Lett. 55:(13):141821
    [Crossref] [Google Scholar]
  55. 55.
    Hybertsen MS, Louie SG. 1986.. Phys. Rev. B 34:(8):5390413
    [Crossref] [Google Scholar]
  56. 56.
    Coleman P. 2015.. Introduction to Many-Body Physics. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  57. 57.
    Martin PC. 1968.. Measurements and Correlation Functions. New York:: Gordon and Breach
    [Google Scholar]
  58. 58.
    Boothroyd AT. 2020.. Principles of Neutron Scattering from Condensed Matter. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  59. 59.
    Mahan GD. 2000.. Many-Particle Physics. New York:: Kluwer Acad./Plenum Publ.
    [Google Scholar]
  60. 60.
    Van Hove L. 1954.. Phys. Rev. 95:(1):24962
    [Crossref] [Google Scholar]
  61. 61.
    Mills DL. 1975.. Surf. Sci. 48:(1):5979
    [Crossref] [Google Scholar]
  62. 62.
    Kogar A, Vig S, Gan Y, Abbamonte P. 2014.. J. Phys. B At. Mol. Opt. Phys. 47::124034
    [Crossref] [Google Scholar]
  63. 63.
    Schröder B, Geiger J. 1972.. Phys. Rev. Lett. 28:(5):3013
    [Crossref] [Google Scholar]
  64. 64.
    Egerton RF. 2008.. Rep. Prog. Phys. 72:(1):016502
    [Crossref] [Google Scholar]
  65. 65.
    Colliex C. 2022.. Eur. Phys. J. Appl. Phys. 97::38
    [Crossref] [Google Scholar]
  66. 66.
    Chiarello G, Formoso V, Santaniello A, Colavita E, Papagno L. 2000.. Phys. Rev. B 62:(19):1267679
    [Crossref] [Google Scholar]
  67. 67.
    Husain AA. 2020.. Charge Fluctuations of the Strange Metal in Space and Time. PhD Thesis, Univ. Ill., Urbana-Champaign
    [Google Scholar]
  68. 68.
    Nazarov VU. 1994.. Phys. Rev. B 49:(15):1066367
    [Crossref] [Google Scholar]
  69. 69.
    Chen J, Guo X, Boyd C, Bettler S, Kengle C, et al. 2024.. Phys. Rev. B 109::045108
    [Crossref] [Google Scholar]
  70. 70.
    Schwinger J. 1962.. Phys. Rev. 125:(1):39798
    [Crossref] [Google Scholar]
  71. 71.
    Anderson PW. 1963.. Phys. Rev. 130:(1):43942
    [Crossref] [Google Scholar]
  72. 72.
    Higgs PW. 1964.. Phys. Rev. Lett. 13:(16):5089
    [Crossref] [Google Scholar]
  73. 73.
    Pines D, Nozieres P. 1966.. The Theory of Quantum Liquids. New York:: Perseus Books
    [Google Scholar]
  74. 74.
    Batson PE, Silcox J. 1983.. Phys. Rev. B 27:(9):522439
    [Crossref] [Google Scholar]
  75. 75.
    vom Felde A, Sprösser-Prou J, Fink J. 1989.. Phys. Rev. B 40:(15):1018193
    [Crossref] [Google Scholar]
  76. 76.
    Ritchie RH. 1957.. Phys. Rev. 106:(5):87481
    [Crossref] [Google Scholar]
  77. 77.
    Plummer W, Tsuei KD, Kim BO. 1995.. Nuclear Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 96:(3):44859
    [Crossref] [Google Scholar]
  78. 78.
    Kogar A, Vig S, Thaler A, Wong MH, Xiao Y, et al. 2015.. Phys. Rev. Lett. 115:(25):257402
    [Crossref] [Google Scholar]
  79. 79.
    Tsuei KD, Plummer EW, Feibelman PJ. 1989.. Phys. Rev. Lett. 63:(20):225659
    [Crossref] [Google Scholar]
  80. 80.
    Sprunger P, Watson G, Plummer E. 1992.. Surface Sci. 269–70::55155
    [Crossref] [Google Scholar]
  81. 81.
    Feibelman PJ. 1982.. Prog. Surf. Sci. 12:(4):287407
    [Crossref] [Google Scholar]
  82. 82.
    Silkin VM, Chulkov EV, Echenique PM. 2004.. Phys. Rev. Lett. 93:(17):176801
    [Crossref] [Google Scholar]
  83. 83.
    DuBois DF, Kivelson MG. 1969.. Phys. Rev. 186:(2):40919
    [Crossref] [Google Scholar]
  84. 84.
    Paasch G. 1970.. Phys. Stat. Sol. 38::K123
    [Crossref] [Google Scholar]
  85. 85.
    Gibbons PC, Schnatterly SE. 1977.. Phys. Rev. B 15:(4):242021
    [Crossref] [Google Scholar]
  86. 86.
    Ku W, Eguiluz AG. 1999.. Phys. Rev. Lett. 82:(11):235053
    [Crossref] [Google Scholar]
  87. 87.
    Jain JK, Allen PB. 1985.. Phys. Rev. B 32:(2):9971004
    [Crossref] [Google Scholar]
  88. 88.
    Fetter AL. 1974.. Ann. Phys. 88:(1):125
    [Crossref] [Google Scholar]
  89. 89.
    Aryasetiawan F, Karlsson K. 1994.. Phys. Rev. Lett. 73:(12):167982
    [Crossref] [Google Scholar]
  90. 90.
    Fleszar A, Stumpf R, Eguiluz AG. 1997.. Phys. Rev. B 55:(4):206872
    [Crossref] [Google Scholar]
  91. 91.
    Nücker N, Romberg H, Nakai S, Scheerer B, Fink J, et al. 1989.. Phys. Rev. B 39:(16):1237982
    [Crossref] [Google Scholar]
  92. 92.
    Terauchi M, Tanaka M, Takahashi T, Katayama-Yoshida H, Mochiku T, Kadowaki K. 1995.. Jpn. J. Appl. Phys. 34:(11B):L1524
    [Crossref] [Google Scholar]
  93. 93.
    Terauchi M, Tanaka M, Tsuno K, Ishida M. 1999.. J. Microsc. 194:(1):2039
    [Crossref] [Google Scholar]
  94. 94.
    Doiron-Leyraud N, Auban-Senzier P, René de Cotret S, Bourbonnais C, Jérome D, et al. 2009.. Phys. Rev. B 80:(21):214531
    [Crossref] [Google Scholar]
  95. 95.
    Tomita T, Kuga K, Uwatoko Y, Coleman P, Nakatsuji S. 2015.. Science 349:(6247):5069
    [Crossref] [Google Scholar]
  96. 96.
    Trovarelli O, Geibel C, Mederle S, Langhammer C, Grosche FM, et al. 2000.. Phys. Rev. Lett. 85:(3):62629
    [Crossref] [Google Scholar]
  97. 97.
    Mousatov CH, Berg E, Hartnoll SA. 2020.. PNAS 117:(6):285257
    [Crossref] [Google Scholar]
  98. 98.
    Tanatar MA, Paglione J, Petrovic C, Taillefer L. 2007.. Science 316:(5829):132022
    [Crossref] [Google Scholar]
  99. 99.
    Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, et al. 2020.. Phys. Rev. Lett. 124:(7):076801
    [Crossref] [Google Scholar]
  100. 100.
    Hussey NE, Takenaka K, Takagi H. 2004.. Philos. Mag. 84:(27):284764
    [Crossref] [Google Scholar]
  101. 101.
    Zaanen J. 2019.. SciPost Phys. 6::061
    [Crossref] [Google Scholar]
  102. 102.
    Bruin JAN, Sakai H, Perry RS, Mackenzie AP. 2013.. Science 339:(6121):8047
    [Crossref] [Google Scholar]
  103. 103.
    Reber TJ, Zhou X, Plumb NC, Parham S, Waugh JA, et al. 2019.. Nat. Commun. 10:(1):5737
    [Crossref] [Google Scholar]
  104. 104.
    van der Marel D, Molegraaf H, Zaanen J, Nussinov Z, Carbone F, et al. 2003.. Nature 425:(6955):27174
    [Crossref] [Google Scholar]
  105. 105.
    Varma CM, Littlewood PB, Schmitt-Rink S, Abrahams E, Ruckenstein AE. 1989.. Phys. Rev. Lett. 63:(18):199699
    [Crossref] [Google Scholar]
  106. 106.
    Levallois J, Tran MK, Pouliot D, Presura CN, Greene LH, et al. 2016.. Phys. Rev. X 6:(3):031027
    [Google Scholar]
  107. 107.
    Hepting M, Chaix L, Huang EW, Fumagalli R, Peng YY, et al. 2018.. Nature 563:(7731):37478
    [Crossref] [Google Scholar]
  108. 108.
    Nag A, Zhu M, Bejas M, Li J, Robarts HC, et al. 2020.. Phys. Rev. Lett. 125:(25):257002
    [Crossref] [Google Scholar]
  109. 109.
    Hepting M, Bejas M, Nag A, Yamase H, Coppola N, et al. 2022.. Phys. Rev. Lett. 129:(4):047001
    [Crossref] [Google Scholar]
  110. 110.
    Wang YY, Feng G, Ritter AL. 1990.. Phys. Rev. B 42:(1):42025
    [Crossref] [Google Scholar]
  111. 111.
    Schulte KHG. 2002.. The Interplay of Spectroscopy and Correlated Materials. PhD Thesis, Univ. Groningen, Neth:.
    [Google Scholar]
  112. 112.
    Mackenzie AP, Maeno Y. 2003.. Rev. Mod. Phys. 75:(2):657712
    [Crossref] [Google Scholar]
  113. 113.
    Stricker D, Mravlje J, Berthod C, Fittipaldi R, Vecchione A, et al. 2014.. Phys. Rev. Lett. 113:(8):087404
    [Crossref] [Google Scholar]
  114. 114.
    Wang SC, Yang HB, Sekharan AKP, Ding H, Engelbrecht JR, et al. 2004.. Phys. Rev. Lett. 92:(13):137002
    [Crossref] [Google Scholar]
  115. 115.
    Tyler AW, Mackenzie AP, NishiZaki S, Maeno Y. 1998.. Phys. Rev. B 58:(16):R1010710
    [Crossref] [Google Scholar]
  116. 116.
    Tamai A, Zingl M, Rozbicki E, Cappelli E, Riccò S, et al. 2019.. Phys. Rev. X 9:(2):021048
    [Google Scholar]
  117. 117.
    Pines D. 1956.. Can. J. Phys. 34::137994
    [Crossref] [Google Scholar]
  118. 118.
    Knupfer M, Jerzembeck F, Kikugawa N, Roth F, Fink J. 2022.. Phys. Rev. B 106:(24):L241103
    [Crossref] [Google Scholar]
  119. 119.
    Schultz J, Lubk A, Jerzembeck F, Kikugawa N, Knupfer M, et al. 2024.. arXiv:2401.05880 [cond-mat.str-el]
/content/journals/10.1146/annurev-conmatphys-032822-044125
Loading
/content/journals/10.1146/annurev-conmatphys-032822-044125
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error