1932

Abstract

Nearly thirty years after its inception, the field of DNA-programmed colloidal self-assembly has begun to realize its initial promise. In this review, we summarize recent developments in designing effective interactions and understanding the dynamic self-assembly pathways of DNA-coated nanoparticles and microparticles, as well as how these advances have propelled tremendous progress in crystal engineering. We also highlight exciting new directions showing that new classes of subunits combining nanoparticles with DNA origami can be used to engineer novel multicomponent assemblies, including structures with self-limiting, finite sizes. We conclude by providing an outlook on how recent theoretical advances focusing on the kinetics of self-assembly could usher in new materials-design opportunities, like the possibility of retrieving multiple distinct target structures from a single suspension or accessing new classes of materials that are stabilized by energy dissipation, mimicking self-assembly in living systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-032922-113138
2025-03-10
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/16/1/annurev-conmatphys-032922-113138.html?itemId=/content/journals/10.1146/annurev-conmatphys-032922-113138&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Whitesides GM, Grzybowski B. 2002.. Science 295:(5564):241821
    [Crossref] [Google Scholar]
  2. 2.
    Bale JB, Gonen S, Liu Y, Sheffler W, Ellis D, et al. 2016.. Science 353:(6297):38994
    [Crossref] [Google Scholar]
  3. 3.
    Seelig G, Soloveichik D, Zhang DY, Winfree E. 2006.. Science 314:(5805):158588
    [Crossref] [Google Scholar]
  4. 4.
    Tang Z, Kotov NA, Giersig M. 2002.. Science 297:(5579):23740
    [Crossref] [Google Scholar]
  5. 5.
    Manoharan VN. 2015.. Science 349:(6251):1253751
    [Crossref] [Google Scholar]
  6. 6.
    Frenkel D. 2015.. Nat. Mater. 14:(1):912
    [Crossref] [Google Scholar]
  7. 7.
    Harland J, van Megen W. 1997.. Phys. Rev. E 55:(3):305467
    [Crossref] [Google Scholar]
  8. 8.
    Auer S, Frenkel D. 2001.. Nature 409:(6823):102023
    [Crossref] [Google Scholar]
  9. 9.
    Anderson VJ, Lekkerkerker HN. 2002.. Nature 416:(6883):81115
    [Crossref] [Google Scholar]
  10. 10.
    Frenkel D. 2002.. Science 296:(5565):6566
    [Crossref] [Google Scholar]
  11. 11.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. 1996.. Nature 382:(6592):6079 11. Establishes the field of DNA-programmed colloidal self-assembly.
    [Crossref] [Google Scholar]
  12. 12.
    Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, et al. 1996.. Nature 382:(6592):60911
    [Crossref] [Google Scholar]
  13. 13.
    Watson JD, Crick FH. 1953.. Nature 171:(4356):73738
    [Crossref] [Google Scholar]
  14. 14.
    SantaLucia J Jr., Hicks D. 2004.. Annu. Rev. Biophys. 33::41540
    [Crossref] [Google Scholar]
  15. 15.
    Park SY, Lytton-Jean AK, Lee B, Weigand S, Schatz GC, Mirkin CA. 2008.. Nature 451:(7178):55356
    [Crossref] [Google Scholar]
  16. 16.
    Nykypanchuk D, Maye MM, van der Lelie D, Gang O. 2008.. Nature 451:(7178):54952
    [Crossref] [Google Scholar]
  17. 17.
    Macfarlane RJ, Lee B, Jones MR, Harris N, Schatz GC, Mirkin CA. 2011.. Science 334:(6053):2048 17. Marks the first leap forward toward programmable crystal engineering using DNA.
    [Crossref] [Google Scholar]
  18. 18.
    Casey MT, Scarlett RT, Rogers WB, Jenkins I, Sinno T, Crocker JC. 2012.. Nat. Commun. 3:(1):1209
    [Crossref] [Google Scholar]
  19. 19.
    Rogers WB, Manoharan VN. 2015.. Science 347:(6222):63942
    [Crossref] [Google Scholar]
  20. 20.
    Wang Y, Wang Y, Zheng X, Ducrot É, Yodh JS, et al. 2015.. Nat. Commun. 6:(1):7253
    [Crossref] [Google Scholar]
  21. 21.
    Auyeung E, Li TI, Senesi AJ, Schmucker AL, Pals BC, et al. 2014.. Nature 505:(7481):7377
    [Crossref] [Google Scholar]
  22. 22.
    Liu W, Tagawa M, Xin HL, Wang T, Emamy H, et al. 2016.. Science 351:(6273):58286
    [Crossref] [Google Scholar]
  23. 23.
    Lewis DJ, Zornberg LZ, Carter DJ, Macfarlane RJ. 2020.. Nat. Mater. 19:(7):71924
    [Crossref] [Google Scholar]
  24. 24.
    Zhou W, Li Y, Je K, Vo T, Lin H, et al. 2024.. Science 383:(6680):31219 24. Controlling the effective interactions between polyhedral nanoparticles yields a rich diversity of crystals.
    [Crossref] [Google Scholar]
  25. 25.
    Zhou W, Lim Y, Lin H, Lee S, Li Y, et al. 2023.. Nat. Mater. 23::42428
    [Crossref] [Google Scholar]
  26. 26.
    Lin H, Lee S, Sun L, Spellings M, Engel M, et al. 2017.. Science 355:(6328):93135
    [Crossref] [Google Scholar]
  27. 27.
    Wang S, Lee S, Du JS, Partridge BE, Cheng HF, et al. 2022.. Nat. Mater. 21:(5):58087
    [Crossref] [Google Scholar]
  28. 28.
    Fang H, Hagan MF, Rogers WB. 2020.. PNAS 117:(45):2792733
    [Crossref] [Google Scholar]
  29. 29.
    Hensley A, Jacobs WM, Rogers WB. 2022.. PNAS 119:(1):e2114050118 29. Combines experiment and theory to quantitatively understand the dynamics of nucleation and growth.
    [Crossref] [Google Scholar]
  30. 30.
    He M, Gales JP, Ducrot É, Gong Z, Yi GR, et al. 2020.. Nature 585:(7826):52429
    [Crossref] [Google Scholar]
  31. 31.
    Wang Y, Jenkins IC, McGinley JT, Sinno T, Crocker JC. 2017.. Nat. Commun. 8:(1):14173
    [Crossref] [Google Scholar]
  32. 32.
    Ducrot É, He M, Yi GR, Pine DJ. 2017.. Nat. Mater. 16:(6):65257
    [Crossref] [Google Scholar]
  33. 33.
    Jones MR, Seeman NC, Mirkin CA. 2015.. Science 347:(6224):1260901
    [Crossref] [Google Scholar]
  34. 34.
    Rogers WB, Shih WM, Manoharan VN. 2016.. Nat. Rev. Mater. 1:: 16008:
    [Google Scholar]
  35. 35.
    Seeman NC, Sleiman HF. 2017.. Nat. Rev. Mater. 3::17068
    [Crossref] [Google Scholar]
  36. 36.
    Laramy CR, O'Brien MN, Mirkin CA. 2019.. Nat. Rev. Mater. 4:(3):20124 36. Provides a thorough review of colloidal crystal engineering using DNA.
    [Crossref] [Google Scholar]
  37. 37.
    Kahn JS, Gang O. 2022.. Angew. Chem. 134:(3):e202105678
    [Crossref] [Google Scholar]
  38. 38.
    Angioletti-Uberti S, Mognetti BM, Frenkel D. 2016.. Phys. Chem. Chem. Phys. 18:(9):637393
    [Crossref] [Google Scholar]
  39. 39.
    Varilly P, Angioletti-Uberti S, Mognetti BM, Frenkel D. 2012.. J. Chem. Phys. 137:(9):094108
    [Crossref] [Google Scholar]
  40. 40.
    Angioletti-Uberti S, Varilly P, Mognetti BM, Tkachenko AV, Frenkel D. 2013.. J. Chem. Phys. 138:(2):021102
    [Crossref] [Google Scholar]
  41. 41.
    Rogers WB, Crocker JC. 2011.. PNAS 108:(38):1568792
    [Crossref] [Google Scholar]
  42. 42.
    Rogers WB. 2020.. J. Chem. Phys. 153:(12):124901
    [Crossref] [Google Scholar]
  43. 43.
    Li TI, Sknepnek R, Olvera de la Cruz M. 2013.. J. Am. Chem. Soc. 135:(23):853541
    [Crossref] [Google Scholar]
  44. 44.
    Ding Y, Mittal J. 2014.. J. Chem. Phys. 141:(18):184901
    [Crossref] [Google Scholar]
  45. 45.
    Mao R, Minevich B, McKeen D, Chen Q, Lu F, et al. 2023.. PNAS 120:(52):e2302037120
    [Crossref] [Google Scholar]
  46. 46.
    Biancaniello PL, Kim AJ, Crocker JC. 2005.. Phys. Rev. Lett. 94:(5):058302
    [Crossref] [Google Scholar]
  47. 47.
    Merminod S, Edison JR, Fang H, Hagan MF, Rogers WB. 2021.. Nanoscale 13:(29):1260212
    [Crossref] [Google Scholar]
  48. 48.
    Cui F, Marbach S, Zheng JA, Holmes-Cerfon M, Pine DJ. 2022.. Nat. Commun. 13:(1):2304 48. Develops the leading model of the effective interactions between DNA-coated particles.
    [Crossref] [Google Scholar]
  49. 49.
    Rogers WB, Crocker JC. 2012.. PNAS 109:(7):E380
    [Crossref] [Google Scholar]
  50. 50.
    Mognetti BM, Varilly P, Angioletti-Uberti S, Martinez-Veracoechea FJ, Dobnikar J, et al. 2012.. PNAS 109:(7):E37879
    [Crossref] [Google Scholar]
  51. 51.
    Lowensohn J, Oyarzún B, Paliza GN, Mognetti BM, Rogers WB. 2019.. Phys. Rev. X 9:(4):041054
    [Google Scholar]
  52. 52.
    Xiong H, van der Lelie D, Gang O. 2009.. Phys. Rev. Lett. 102:(1):015504
    [Crossref] [Google Scholar]
  53. 53.
    Lowensohn J, Hensley A, Perlow-Zelman M, Rogers WB. 2020.. Langmuir 36:(25):71008
    [Crossref] [Google Scholar]
  54. 54.
    Jones MR, Macfarlane RJ, Lee B, Zhang J, Young KL, et al. 2010.. Nat. Mater. 9:(11):91317
    [Crossref] [Google Scholar]
  55. 55.
    Tian Y, Zhang Y, Wang T, Xin HL, Li H, Gang O. 2016.. Nat. Mater. 15:(6):65461 55. DNA origami enables the engineering of effective interactions between DNA-coated nanoparticles.
    [Crossref] [Google Scholar]
  56. 56.
    Liu W, Halverson J, Tian Y, Tkachenko AV, Gang O. 2016.. Nat. Chem. 8:(9):86773
    [Crossref] [Google Scholar]
  57. 57.
    Tian Y, Lhermitte JR, Bai L, Vo T, Xin HL, et al. 2020.. Nat. Mater. 19:(7):78996
    [Crossref] [Google Scholar]
  58. 58.
    Lee S, Calcaterra HA, Lee S, Hadibrata W, Lee B, et al. 2022.. Nature 610:(7933):67479
    [Crossref] [Google Scholar]
  59. 59.
    Li Y, Jin H, Zhou W, Wang Z, Lin Z, et al. 2023.. Sci. Adv. 9:(39):eadj8103
    [Crossref] [Google Scholar]
  60. 60.
    Zornberg LZ, Lewis DJ, Mertiri A, Hueckel T, Carter DJ, Macfarlane RJ. 2023.. ACS Nano 17:(4):3394400
    [Crossref] [Google Scholar]
  61. 61.
    Shani L, Michelson AN, Minevich B, Fleger Y, Stern M, et al. 2020.. Nat. Commun. 11:(1):5697
    [Crossref] [Google Scholar]
  62. 62.
    Hensley A, Videbæk TE, Seyforth H, Jacobs WM, Rogers WB. 2023.. Nat. Commun. 14:(1):4237 62. A theory-driven assembly protocol yields monodisperse macroscopic colloidal crystals with optical metamaterial properties.
    [Crossref] [Google Scholar]
  63. 63.
    Whitelam S, Jack RL. 2015.. Annu. Rev. Phys. Chem. 66::14363
    [Crossref] [Google Scholar]
  64. 64.
    Jacobs WM, Frenkel D. 2016.. J. Am. Chem. Soc. 138:(8):245767
    [Crossref] [Google Scholar]
  65. 65.
    Gartner FM, Graf IR, Frey E. 2022.. PNAS 119:(4):e2116373119
    [Crossref] [Google Scholar]
  66. 66.
    Rogers WB, Sinno T, Crocker JC. 2013.. Soft Matter 9:(28):641217
    [Crossref] [Google Scholar]
  67. 67.
    Hurst SJ, Lytton-Jean AK, Mirkin CA. 2006.. Anal. Chem. 78:(24):831318
    [Crossref] [Google Scholar]
  68. 68.
    Zhang C, Macfarlane RJ, Young KL, Choi CHJ, Hao L, et al. 2013.. Nat. Mater. 12:(8):74146
    [Crossref] [Google Scholar]
  69. 69.
    Wang Y, Wang Y, Zheng X, Ducrot É, Lee MG, et al. 2015.. J. Am. Chem. Soc. 137:(33):1076066
    [Crossref] [Google Scholar]
  70. 70.
    Oh JS, Lee S, Glotzer SC, Yi GR, Pine DJ. 2019.. Nat. Commun. 10:(1):3936
    [Crossref] [Google Scholar]
  71. 71.
    Mao R, Mittal J. 2020.. J. Phys. Chem. B 124:(51):1159399
    [Crossref] [Google Scholar]
  72. 72.
    Zheng JA, Holmes-Cerfon M, Pine DJ, Marbach S. 2024.. PNAS 121:(41):e2318865121
    [Crossref] [Google Scholar]
  73. 73.
    Lee-Thorp JP, Holmes-Cerfon M. 2018.. Soft Matter 14:(40):814759
    [Crossref] [Google Scholar]
  74. 74.
    Jana PK, Mognetti BM. 2019.. Phys. Rev. E 100:(6):060601
    [Crossref] [Google Scholar]
  75. 75.
    Marbach S, Zheng JA, Holmes-Cerfon M. 2022.. Soft Matter 18:(16):313046
    [Crossref] [Google Scholar]
  76. 76.
    Gasser U, Weeks ER, Schofield A, Pusey P, Weitz D. 2001.. Science 292:(5515):25862
    [Crossref] [Google Scholar]
  77. 77.
    Karthika S, Radhakrishnan T, Kalaichelvi P. 2016.. Cryst. Growth Des. 16:(11):666381
    [Crossref] [Google Scholar]
  78. 78.
    Oxtoby DW. 1992.. J. Phys. Condens. Matter 4:(38):762750
    [Crossref] [Google Scholar]
  79. 79.
    Tkachenko AV. 2016.. PNAS 113:(37):1026974
    [Crossref] [Google Scholar]
  80. 80.
    Pretti E, Zerze H, Song M, Ding Y, Mao R, Mittal J. 2019.. Sci. Adv. 5:(9):eaaw5912
    [Crossref] [Google Scholar]
  81. 81.
    Landy KM, Gibson KJ, Chan RR, Pietryga J, Weigand S, Mirkin CA. 2023.. ACS Nano 17:(7):648087
    [Crossref] [Google Scholar]
  82. 82.
    Jacobs WM, Frenkel D. 2015.. Soft Matter 11:(46):893038
    [Crossref] [Google Scholar]
  83. 83.
    Kravets VG, Kabashin AV, Barnes WL, Grigorenko AN. 2018.. Chem. Rev. 118:(12):591251
    [Crossref] [Google Scholar]
  84. 84.
    Rothemund PW. 2006.. Nature 440:(7082):297302
    [Crossref] [Google Scholar]
  85. 85.
    Wagenbauer KF, Engelhardt FA, Stahl E, Hechtl VK, Stömmer P, et al. 2017.. ChemBioChem 18:(19):187385
    [Crossref] [Google Scholar]
  86. 85a.
    Kahn JS, Minevich B, Michelson A, Emamy H, Kisslinger K, . 2022.. ChemRxiv. https://doi.org/10.26434/chemrxiv-2022-xwbst
  87. 86.
    Ke Y, Ong LL, Sun W, Song J, Dong M, et al. 2014.. Nat. Chem. 6:(11):9941002
    [Crossref] [Google Scholar]
  88. 87.
    Hayakawa D, Videbæk TE, Grason GM, Rogers WB. 2024.. ACS Nano 18:(29):1916978
    [Crossref] [Google Scholar]
  89. 88.
    Videbæk TE, Hayakawa D, Grason GM, Hagan MF, Fraden S, Rogers WB. 2023.. Sci. Adv. 10:(27):eado5979
    [Crossref] [Google Scholar]
  90. 89.
    Romano F, Russo J, Kroc L, Šulc P. 2020.. Phys. Rev. Lett. 125:(11):118003
    [Crossref] [Google Scholar]
  91. 90.
    Russo J, Romano F, Kroc L, Sciortino F, Rovigatti L, Šulc P. 2022.. J. Phys. Condens. Matter 34:(35):354002
    [Crossref] [Google Scholar]
  92. 91.
    Pinto DE, Šulc P, Sciortino F, Russo J. 2023.. PNAS 120:(16):e2219458120
    [Crossref] [Google Scholar]
  93. 92.
    Liu H, Matthies M, Russo J, Rovigatti L, Narayanan RP, et al. 2024.. Science 384::77681
    [Crossref] [Google Scholar]
  94. 93.
    Bohlin J, Turberfield AJ, Louis AA, Sulc P. 2023.. ACS Nano 17:(6):538798
    [Crossref] [Google Scholar]
  95. 94.
    Jacobs WM, Reinhardt A, Frenkel D. 2015.. PNAS 112:(20):631318
    [Crossref] [Google Scholar]
  96. 95.
    Ke Y, Ong LL, Shih WM, Yin P. 2012.. Science 338:(6111):117783
    [Crossref] [Google Scholar]
  97. 96.
    Ong LL, Hanikel N, Yaghi OK, Grun C, Strauss MT, et al. 2017.. Nature 552:(7683):7277
    [Crossref] [Google Scholar]
  98. 97.
    Hagan MF, Grason GM. 2021.. Rev. Mod. Phys. 93:(2):025008
    [Crossref] [Google Scholar]
  99. 98.
    Duque CM, Hall DM, Tyukodi B, Hagan MF, Santangelo CD, Grason GM. 2024.. PNAS 121:(18):e2315648121
    [Crossref] [Google Scholar]
  100. 99.
    Wagenbauer KF, Sigl C, Dietz H. 2017.. Nature 552:(7683):7883
    [Crossref] [Google Scholar]
  101. 100.
    Sigl C, Willner EM, Engelen W, Kretzmann JA, Sachenbacher K, et al. 2021.. Nat. Mater. 20:(9):128189
    [Crossref] [Google Scholar]
  102. 101.
    Wei WS, Trubiano A, Sigl C, Paquay S, Dietz H, et al. 2024.. PNAS 121:(7):e2312775121
    [Crossref] [Google Scholar]
  103. 102.
    Hayakawa D, Videbæk TE, Hall DM, Fang H, Sigl C, et al. 2022.. PNAS 119:(43):e2207902119 102. Colloidal particles with programmed curvature can assemble into spatially limited architectures like cylindrical tubules.
    [Crossref] [Google Scholar]
  104. 103.
    Karfusehr C, Eder M, Simmel FC. 2024.. bioRxiv:2024.02.09.579479
  105. 104.
    Fang H, Tyukodi B, Rogers WB, Hagan MF. 2022.. Soft Matter 18:(35):671628
    [Crossref] [Google Scholar]
  106. 105.
    Videbæk TE, Fang H, Hayakawa D, Tyukodi B, Hagan MF, Rogers WB. 2022.. J. Phys. Condens. Matter 34:(13):134003
    [Crossref] [Google Scholar]
  107. 106.
    Torquato S. 2009.. Soft Matter 5:(6):115773
    [Crossref] [Google Scholar]
  108. 107.
    Miskin MZ, Khaira G, de Pablo JJ, Jaeger HM. 2016.. PNAS 113:(1):3439
    [Crossref] [Google Scholar]
  109. 108.
    Sherman ZM, Howard MP, Lindquist BA, Jadrich RB, Truskett TM. 2020.. J. Chem. Phys. 152:(14):140902
    [Crossref] [Google Scholar]
  110. 109.
    Rechtsman MC, Stillinger FH, Torquato S. 2005.. Phys. Rev. Lett. 95:(22):228301
    [Crossref] [Google Scholar]
  111. 110.
    Zeravcic Z, Manoharan VN, Brenner MP. 2014.. PNAS 111:(45):1591823
    [Crossref] [Google Scholar]
  112. 111.
    Halverson JD, Tkachenko AV. 2013.. Phys. Rev. E 87:(6):062310
    [Crossref] [Google Scholar]
  113. 112.
    Tkachenko AV. 2002.. Phys. Rev. Lett. 89:(14):148303
    [Crossref] [Google Scholar]
  114. 113.
    Lukatsky D, Frenkel D. 2004.. Phys. Rev. Lett. 92:(6):068302
    [Crossref] [Google Scholar]
  115. 114.
    Martinez-Veracoechea FJ, Mladek BM, Tkachenko AV, Frenkel D. 2011.. Phys. Rev. Lett. 107:(4):045902
    [Crossref] [Google Scholar]
  116. 115.
    Scarlett RT, Ung MT, Crocker JC, Sinno T. 2011.. Soft Matter 7:(5):191225
    [Crossref] [Google Scholar]
  117. 116.
    Villar G, Wilber AW, Williamson AJ, Thiara P, Doye JP, et al. 2009.. Phys. Rev. Lett. 102:(11):118106
    [Crossref] [Google Scholar]
  118. 117.
    Hagan MF, Chandler D. 2006.. Biophys. J. 91:(1):4254
    [Crossref] [Google Scholar]
  119. 118.
    Zenk J, Billups M, Schulman R. 2018.. ACS Omega 3:(12):1875361
    [Crossref] [Google Scholar]
  120. 119.
    Trubiano A, Holmes-Cerfon M. 2021.. Soft Matter 17:(28):6797807
    [Crossref] [Google Scholar]
  121. 120.
    Chatterjee S, Jacobs WM. 2024.. arXiv:2401.11234 [cond-mat.soft]
  122. 121.
    Miller WL, Cacciuto A. 2010.. J. Chem. Phys. 133:(23):234108
    [Crossref] [Google Scholar]
  123. 122.
    Goodrich CP, King EM, Schoenholz SS, Cubuk ED, Brenner MP. 2021.. PNAS 118:(10):e2024083118
    [Crossref] [Google Scholar]
  124. 123.
    Trubiano A, Hagan MF. 2022.. J. Chem. Phys. 157:(24):244901
    [Crossref] [Google Scholar]
  125. 124.
    Curatolo AI, Kimchi O, Goodrich CP, Krueger RK, Brenner MP. 2023.. Nat. Commun. 14::8328
    [Crossref] [Google Scholar]
  126. 125.
    Bolhuis PG, Brotzakis ZF, Keller BG. 2023.. J. Chem. Phys. 159:(7):074102
    [Crossref] [Google Scholar]
  127. 126.
    Whitelam S, Tamblyn I. 2021.. Phys. Rev. Lett. 127:(1):018003
    [Crossref] [Google Scholar]
  128. 127.
    Chennakesavalu S, Rotskoff GM. 2023.. Phys. Rev. Lett. 130:(10):107101
    [Crossref] [Google Scholar]
  129. 128.
    Sanchez-Lengeling B, Aspuru-Guzik A. 2018.. Science 361:(6400):36065
    [Crossref] [Google Scholar]
  130. 129.
    Dijkstra M, Luijten E. 2021.. Nat. Mater. 20:(6):76273
    [Crossref] [Google Scholar]
  131. 130.
    Woods D, Doty D, Myhrvold C, Hui J, Zhou F, et al. 2019.. Nature 567:(7748):36672
    [Crossref] [Google Scholar]
  132. 131.
    Bupathy A, Frenkel D, Sastry S. 2022.. PNAS 119:(8):e2119315119
    [Crossref] [Google Scholar]
  133. 132.
    Murugan A, Zeravcic Z, Brenner MP, Leibler S. 2015.. PNAS 112:(1):5459
    [Crossref] [Google Scholar]
  134. 133.
    Jacobs WM. 2021.. Phys. Rev. Lett. 126:(25):258101
    [Crossref] [Google Scholar]
  135. 134.
    Huntley MH, Murugan A, Brenner MP. 2016.. PNAS 113:(21):584146
    [Crossref] [Google Scholar]
  136. 135.
    Chen F, Jacobs WM. 2024.. J. Chem. Theory Comput. 20:(15):688189
    [Crossref] [Google Scholar]
  137. 136.
    Evans CG, O'Brien J, Winfree E, Murugan A. 2024.. Nature 625:(7995):5007
    [Crossref] [Google Scholar]
  138. 137.
    van Rossum SA, Tena-Solsona M, van Esch JH, Eelkema R, Boekhoven J. 2017.. Chem. Soc. Rev. 46:(18):551935
    [Crossref] [Google Scholar]
  139. 138.
    Weber CA, Zwicker D, Jülicher F, Lee CF. 2019.. Rep. Prog. Phys. 82:(6):064601
    [Crossref] [Google Scholar]
  140. 139.
    Mitchison T, Kirschner M. 1984.. Nature 312:(5991):23742
    [Crossref] [Google Scholar]
  141. 140.
    Späth F, Donau C, Bergmann AM, Kränzlein M, Synatschke CV, et al. 2021.. J. Am. Chem. Soc. 143:(12):478289
    [Crossref] [Google Scholar]
  142. 141.
    Nakashima KK, van Haren MH, André AAM, Robu I, Spruijt E. 2021.. Nat. Commun. 12:(1):3819
    [Crossref] [Google Scholar]
  143. 142.
    Hopfield JJ. 1974.. PNAS 71:(10):413539
    [Crossref] [Google Scholar]
  144. 143.
    Murugan A, Huse DA, Leibler S. 2012.. PNAS 109:(30):1203439
    [Crossref] [Google Scholar]
  145. 144.
    Zhu QZ, Du CX, King EM, Brenner MP. 2023.. arXiv:2312.08619 [cond-mat.soft]
  146. 145.
    Zwicker D, Seyboldt R, Weber CA, Hyman AA, Jülicher F. 2017.. Nat. Phys. 13:(4):40813
    [Crossref] [Google Scholar]
  147. 146.
    Wurtz JD, Lee CF. 2018.. Phys. Rev. Lett. 120:(7):078102
    [Crossref] [Google Scholar]
  148. 147.
    Kirschbaum J, Zwicker D. 2021.. J. R. Soc. Interface 18:(179):20210255
    [Crossref] [Google Scholar]
  149. 148.
    Cho Y, Jacobs WM. 2023.. Phys. Rev. Lett. 130::128203
    [Crossref] [Google Scholar]
  150. 149.
    Nguyen M, Vaikuntanathan S. 2016.. PNAS 113:(50):1423136
    [Crossref] [Google Scholar]
  151. 150.
    Das A, Limmer DT. 2023.. PNAS 120:(40):e2217242120
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-032922-113138
Loading
/content/journals/10.1146/annurev-conmatphys-032922-113138
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error