1932

Abstract

Colloidal dispersions exhibit rich equilibrium and nonequilibrium thermodynamic properties, self-assemble into diverse structures at different length scales, and display transport behavior under bulk conditions. In confinement or under geometrical restrictions, new phenomena emerge that have no counterpart when the colloids are embedded in an open, noncurved space. In this review, we focus on the effects of confinement and geometry on the self-assembly and transport of colloids and fluidized granular systems, which serve as model systems. Our goal is to summarize experiments, theoretical approximations and molecular simulations that provide physical insight on the role played by the geometry at the mesoscopic scale. We highlight particular challenges, and show preliminary results based on the covariant Smoluchowski equation, that present promising avenues to study colloidal dynamics in a non-Euclidean geometry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-041124-120513
2025-03-10
2025-06-20
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/16/1/annurev-conmatphys-041124-120513.html?itemId=/content/journals/10.1146/annurev-conmatphys-041124-120513&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hunter RJ. 2001.. Foundations of Colloid Science. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  2. 2.
    Conrad JC, Ferreira SR, Yoshikawa J, Shepherd RF, Ahn BY, Lewis JA. 2011.. Curr. Opin. Colloid Interface Sci. 16:(1):7179
    [Crossref] [Google Scholar]
  3. 3.
    Zhu C, Pascall AJ, Dudukovic N, Worsley MA, Kuntz JD, et al. 2019.. Annu. Rev. Chem. Biomol. Eng. 10::1742
    [Crossref] [Google Scholar]
  4. 4.
    Mewis J, Wagner NJ. 2012.. Colloidal Suspension Rheology. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  5. 5.
    Dagdug L, Peña J, Pompa-García I. 2024. Diffusion Under Confinement, A Journey Through Counterintuition. Cham, Switz.:: Springer
    [Google Scholar]
  6. 6.
    Zöttl A, Stark H. 2023.. Annu. Rev. Condens. Matter Phys. 14::10927
    [Crossref] [Google Scholar]
  7. 7.
    Zaccarelli E. 2007.. J. Phys. Condens. Matter 19:(32):323101
    [Crossref] [Google Scholar]
  8. 8.
    Glansdorff P, Prigogine I. 1971.. Thermodynamic Theory of Structure, Stability and Fluctuations. London:: Wiley-Intersci.
    [Google Scholar]
  9. 9.
    Vicsek T, Zafeiris A. 2012.. Phys. Rep. 517:(3):71140
    [Crossref] [Google Scholar]
  10. 10.
    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G. 2016.. Rev. Mod. Phys. 88:(4):045006
    [Crossref] [Google Scholar]
  11. 11.
    Ramírez-González P, Medina-Noyola M. 2010.. Phys. Rev. E 82:(6):061504
    [Crossref] [Google Scholar]
  12. 12.
    Alarcon F, Valeriani C, Pagonabarraga I. 2017.. Soft Matter 13:(4):81426
    [Crossref] [Google Scholar]
  13. 13.
    Martinez R, Alarcon F, Rodriguez DR, Aragones JL, Valeriani C. 2018.. Eur. Phys. J. E 41:(8):91
    [Crossref] [Google Scholar]
  14. 14.
    Rogel Rodriguez D, Alarcon F, Martinez R, Ramírez J, Valeriani C. 2020.. Soft Matter 16:(5):116269
    [Crossref] [Google Scholar]
  15. 15.
    Sevilla FJ. 2016.. Phys. Rev. E 94:(6):062120
    [Crossref] [Google Scholar]
  16. 16.
    Sevilla FJ, Rodríguez RF, Gomez-Solano JR. 2019.. Phys. Rev. E 100:(3):032123
    [Crossref] [Google Scholar]
  17. 17.
    Williams I, Oğuz EC, Bartlett P, Löwen H, Royall CP. 2013.. Nat. Commun. 4::2555
    [Crossref] [Google Scholar]
  18. 18.
    Rice SA. 2009.. Chem. Phys. Lett. 479::113
    [Crossref] [Google Scholar]
  19. 19.
    Chaudhuri D, Sengupta S. 2008.. J. Chem. Phys. 128::194702
    [Crossref] [Google Scholar]
  20. 20.
    Ricci A, Nielaba P, Sengupta S, Binder K. 2006.. Phys. Rev. E 74::010404(R)
    [Crossref] [Google Scholar]
  21. 21.
    Curk T, de Hoogh A, Martinez-Veracoechea FJ, Eiser E, Frenkel D, et al. 2012.. Phys. Rev. E 85::021502
    [Crossref] [Google Scholar]
  22. 22.
    Oğuz EC, Reinmüller A, Schöpe HJ, Palberg T, Messina R, Löwen H. 2012.. J. Phys.: Condens. Matter 24::464123
    [Crossref] [Google Scholar]
  23. 23.
    Galván-Moya JE, Misko VR, Peeters FM. 2014.. Phys. Rev. B 90::094111
    [Crossref] [Google Scholar]
  24. 24.
    Piacente G, Schweigert IV, Betouras JJ, Peeters FM. 2004.. Phys. Rev. B 69::045324
    [Crossref] [Google Scholar]
  25. 25.
    Williams I, Oğuz EC, Bartlett P, Löwen H, Royall CP. 2015.. J. Chem. Phys. 142::024505
    [Crossref] [Google Scholar]
  26. 26.
    Debabrata D, Winkler A, Yamani MH, Oettel M, Virnau P, Binder K. 2011.. J. Chem. Phys. 134::214706
    [Crossref] [Google Scholar]
  27. 27.
    Herrera-Velarde S, Euán-Díaz EC, Castañeda-Priego R. 2021.. Colloids Interfaces 5:(2):29
    [Crossref] [Google Scholar]
  28. 28.
    Williams I, Oğuz EC, Jack RL, Bartlett P, Löwen H, Royall CP. 2014.. J. Chem. Phys. 140::104907
    [Crossref] [Google Scholar]
  29. 29.
    Evers F, Hanes RDL, Zunke C, Capellmann RF, Bewerunge J, et al. 2013.. Eur. Phys. J. Spec. Top. 222::29953009
    [Crossref] [Google Scholar]
  30. 30.
    Dhont JKG. 1996.. An Introduction to Dynamics of Colloids. Amsterdam:: Elsevier Sci.
    [Google Scholar]
  31. 31.
    van Kampen NG. 1986.. J. Stat. Phys. 44:(1–2):124
    [Crossref] [Google Scholar]
  32. 32.
    Castro-Villarreal P. 2010.. J. Stat. Mech. 2010:(08):P08006
    [Crossref] [Google Scholar]
  33. 33.
    Seifert U. 1997.. Adv. Phys. 46:(1):13137
    [Crossref] [Google Scholar]
  34. 34.
    Guven J, Vázquez-Montejo P. 2018.. In The Role of Mechanics in the Study of Lipid Bilayers, ed. D Steigmann , pp. 167219. Cham, Switz:.: Springer Intl. Publ.
    [Google Scholar]
  35. 35.
    Gompper G, Dhont J, Elgeti J, Fahlke C, Fedosov D, et al. 2018.. Proceedings of the 49th IFF Spring School - Physics of Life, Feb. 25–Mar. 9, Jülich, Germ. Jülich, Germ.:: Jül. Forsch.
    [Google Scholar]
  36. 36.
    Heinen M, Schnyder SK, Brady JF, Löwen H. 2015.. Phys. Rev. Lett. 115:(9):097801
    [Crossref] [Google Scholar]
  37. 37.
    Southall NT, Dill KA, Haymet ADJ. 2002.. J. Phys. Chem. B 106:(3):52133
    [Crossref] [Google Scholar]
  38. 38.
    Bowick MJ, Giomi L. 2009.. Adv. Phys. 58:(5):449563
    [Crossref] [Google Scholar]
  39. 39.
    Manca F, Déjardin PM, Giordano S. 2016.. Ann. Phys. 528:(5):38193
    [Crossref] [Google Scholar]
  40. 40.
    Polettini M. 2013.. J. Stat. Mech. 2013:(07):P07005
    [Crossref] [Google Scholar]
  41. 41.
    Castro-Villarreal P. 2014.. J. Stat. Mech. 2014:(5):P05017
    [Crossref] [Google Scholar]
  42. 42.
    Castro-Villarreal P, Solano-Cabrera CO, Castañeda-Priego R. 2023.. Front. Phys. 11:
    [Crossref] [Google Scholar]
  43. 43.
    Belloni L. 2000.. J. Condens. Matter Phys. 12:(46):R54987
    [Crossref] [Google Scholar]
  44. 44.
    Likos CN. 2001.. Phys. Rep. 348:(4):267439
    [Crossref] [Google Scholar]
  45. 45.
    Castañeda-Priego R, Rodríguez-López A, Méndez-Alcaraz JM. 2006.. Phys. Rev. E 73:(5):051404
    [Crossref] [Google Scholar]
  46. 46.
    Henderson S, Mitchell S, Bartlett P. 2002.. Phys. Rev. Lett. 88:(8):088302
    [Crossref] [Google Scholar]
  47. 47.
    Diamant H. 2009.. J. Phys. Soc. Jpn. 78:(4):041002
    [Crossref] [Google Scholar]
  48. 48.
    Carbajal-Tinoco MD, Lopez-Fernandez R, Arauz-Lara JL. 2007.. Phys. Rev. Lett. 99:(13):138303
    [Crossref] [Google Scholar]
  49. 49.
    Kotar J, Leoni M, Bassetti B, Lagomarsino MC, Cicuta P. 2010.. PNAS 107:(17):766973
    [Crossref] [Google Scholar]
  50. 50.
    Golestanian R, Yeomans JM, Uchida N. 2011.. Soft Matter 7::307482
    [Crossref] [Google Scholar]
  51. 51.
    Damet L, Cicuta GM, Kotar J, Lagomarsino MC, Cicuta P. 2012.. Soft Matter 8:(33):867278
    [Crossref] [Google Scholar]
  52. 52.
    Frenkel D. 2015.. Nat. Mater. 14::912
    [Crossref] [Google Scholar]
  53. 53.
    Kondepudi D, Prigogine I. 1998.. Modern Thermodynamics, From Heat Engines to Dissipative Structures. Chichester, UK:: John Wiley and Sons
    [Google Scholar]
  54. 54.
    Wang J, Mbah CF, Przybilla T, Englisch S, Spiecker E, et al. 2019.. ACS Nano 13:(8):900515
    [Crossref] [Google Scholar]
  55. 55.
    Viveros-Méndez PX, Méndez-Alcaraz JM, González-Mozuelos P. 2008.. J. Chem. Phys. 128:(1):014701
    [Crossref] [Google Scholar]
  56. 56.
    Viveros-Méndez PX, Méndez-Alcaraz JM, González-Mozuelos P. 2012.. J. Chem. Phys. 136:(16):164902
    [Crossref] [Google Scholar]
  57. 57.
    Ramírez-Garza OA, Méndez-Alcaraz JM, González-Mozuelos P. 2021.. Phys. Chem. Chem. Phys. 23:(14):866172
    [Crossref] [Google Scholar]
  58. 58.
    Marcus AH, Rice SA. 1996.. Phys. Rev. Lett. 77:(12):257780
    [Crossref] [Google Scholar]
  59. 59.
    Skinner TOE, Aarts DGAL, Dullens RPA. 2010.. Phys. Rev. Lett. 105:(16):168301
    [Crossref] [Google Scholar]
  60. 60.
    Mermin ND, Wagner H. 1966.. Phys. Rev. Lett. 17:(22):113336
    [Crossref] [Google Scholar]
  61. 61.
    Bausch AR, Bowick MJ, Cacciuto A, Dinsmore AD, Hsu MF, et al. 2003.. Science 299:(5613):171618
    [Crossref] [Google Scholar]
  62. 62.
    Irvine W, Vitelli V, Chaikin P. 2010.. Nature 468::94751
    [Crossref] [Google Scholar]
  63. 63.
    Pieranski P, Strzelecki L, Pansu B. 1983.. Phys. Rev. Lett. 50:(12):9003
    [Crossref] [Google Scholar]
  64. 64.
    Vogel N, Utech S, England GT, Shirman T, Phillips KR, et al. 2015.. PNAS 112:(35):1084550
    [Crossref] [Google Scholar]
  65. 65.
    Feng L, Laderman B, Sacanna S, Chaikin P. 2015.. Nat. Mater. 14::6165
    [Crossref] [Google Scholar]
  66. 66.
    Chen G, Gallegos MJ, Soetrisno DD, Vekilov PG, Conrad JC. 2024.. Soft Matter 20::257583
    [Crossref] [Google Scholar]
  67. 67.
    Meng G, Arkus N, Brenner MP, Manoharan VN. 2010.. Science 327:(5965):56063
    [Crossref] [Google Scholar]
  68. 68.
    Griffiths SE, Koumakis N, Brown AT, Vissers T, Warren PB, Poon WCK. 2021.. J. Chem. Phys. 155:(7):074903
    [Crossref] [Google Scholar]
  69. 69.
    Sanz E, White KA, Clegg PS, Cates ME. 2009.. Phys. Rev. Lett. 103:(25):255502
    [Crossref] [Google Scholar]
  70. 70.
    Spannuth M, Conrad JC. 2012.. Phys. Rev. Lett. 109:(2):028301
    [Crossref] [Google Scholar]
  71. 71.
    Li B, Lou K, Kob W, Granick S. 2020.. Nature 587::22529
    [Crossref] [Google Scholar]
  72. 72.
    Singh N, Sood AK, Ganapthy R. 2020.. Nat. Commun. 11::4967
    [Crossref] [Google Scholar]
  73. 73.
    Ching H, Mohraz A. 2022.. Soft Matter 18:(22):422738
    [Crossref] [Google Scholar]
  74. 74.
    Cao C, Huang X, Roth CB, Weeks ER. 2017.. J. Chem. Phys. 147:(22):224505
    [Crossref] [Google Scholar]
  75. 75.
    Zhang B, Cheng X. 2016.. Phys. Rev. Lett. 116:(9):098302
    [Crossref] [Google Scholar]
  76. 76.
    Schmidt M, Löwen H. 1996.. Phys. Rev. Lett. 76:(24):455255
    [Crossref] [Google Scholar]
  77. 77.
    Neser S, Bechinger C, Leiderer P, Palberg T. 1997.. Phys. Rev. Lett. 79:(12):234851
    [Crossref] [Google Scholar]
  78. 78.
    Pansu B, Pieranski P, Pieranski P. 1984.. J. Phys. 45:(2):33139
    [Crossref] [Google Scholar]
  79. 79.
    Schmidt M, Löwen H. 1997.. Phys. Rev. E 55:(6):722841
    [Crossref] [Google Scholar]
  80. 80.
    Fortini A, Dijkstra M. 2006.. J. Phys.: Condens. Matter 18:(28):L371
    [Crossref] [Google Scholar]
  81. 81.
    Manoharan VN. 2006.. Solid State Commun. 139:(11):55761
    [Crossref] [Google Scholar]
  82. 82.
    Sarangapani PS, Yu Y, Zhao J, Zhu Y. 2008.. Phys. Rev. E 77:(6):061406
    [Crossref] [Google Scholar]
  83. 83.
    Cui B, Lin B, Frydel D, Rice SA. 2005.. Phys. Rev. E 72:(2):021402
    [Crossref] [Google Scholar]
  84. 84.
    Pandey R, Conrad JC. 2013.. Soft Matter 9:(44):1061726
    [Crossref] [Google Scholar]
  85. 85.
    Nugent CR, Edmond KV, Patel HN, Weeks ER. 2007.. Phys. Rev. Lett. 99:(2):025702
    [Crossref] [Google Scholar]
  86. 86.
    Sarangapani PS, Zhu Y. 2008.. Phys. Rev. E 77:(1):010501
    [Crossref] [Google Scholar]
  87. 87.
    Mittal J, Truskett TM, Errington JR, Hummer G. 2008.. Phys. Rev. Lett. 100:(14):145901
    [Crossref] [Google Scholar]
  88. 88.
    Watanabe K, Kawasaki T, Tanaka H. 2011.. Nat. Mater. 10::51220
    [Crossref] [Google Scholar]
  89. 89.
    Hima Nagamanasa K, Gokhale S, Sood A, Ganapathy R. 2015.. Nat. Phys. 11::4038
    [Crossref] [Google Scholar]
  90. 90.
    Kurzidim J, Coslovich D, Kahl G. 2009.. Phys. Rev. Lett. 103:(13):138303
    [Crossref] [Google Scholar]
  91. 91.
    Skinner TOE, Schnyder SK, Aarts DGAL, Horbach J, Dullens RPA. 2013.. Phys. Rev. Lett. 111:(12):128301
    [Crossref] [Google Scholar]
  92. 92.
    Roberts RC, Marioni N, Palmer JC, Conrad JC. 2020.. Mol. Phys. 118:(9–10):e1728407
    [Crossref] [Google Scholar]
  93. 93.
    Mandal S, Lang S, Gross M, Oettel M, Raabe D, et al. 2014.. Nat. Commun. 5:(1):18
    [Google Scholar]
  94. 94.
    Lutz C, Kollmann M, Bechinger C. 2004.. Phys. Rev. Lett. 93:(2):026001
    [Crossref] [Google Scholar]
  95. 95.
    Lin B, Meron M, Cui B, Rice SA, Diamant H. 2005.. Phys. Rev. Lett. 94:(21):216001
    [Crossref] [Google Scholar]
  96. 96.
    Taloni A, Flomenbom O, Castañeda-Priego R, Marchesoni F. 2017.. Soft Matter 13:(6):1096106
    [Crossref] [Google Scholar]
  97. 97.
    Cui B, Diamant H, Lin B. 2002.. Phys. Rev. Lett. 89:(18):188302
    [Crossref] [Google Scholar]
  98. 98.
    Xu X, Rice SA, Lin B, Diamant H. 2005.. Phys. Rev. Lett. 95:(15):158301
    [Crossref] [Google Scholar]
  99. 99.
    Valley DT, Rice SA, Cui B, Ho HM, Diamant H, Lin B. 2007.. J. Chem. Phys. 126:(13):134908
    [Crossref] [Google Scholar]
  100. 100.
    Brenner H. 1961.. Chem. Eng. Sci. 16:(3):24251
    [Crossref] [Google Scholar]
  101. 101.
    Lin B, Yu J, Rice SA. 2000.. Phys. Rev. E 62:(3):390919
    [Crossref] [Google Scholar]
  102. 102.
    Kluijtmans SGJM, Dhont JKG, Philipse AP. 1997.. Langmuir 13:(19):498287
    [Crossref] [Google Scholar]
  103. 103.
    Jacob JDC, He K, Retterer ST, Krishnamoorti R, Conrad JC. 2015.. Soft Matter 11:(38):751524
    [Crossref] [Google Scholar]
  104. 104.
    Cui B, Diamant H, Lin B, Rice SA. 2004.. Phys. Rev. Lett. 92:(25):258301
    [Crossref] [Google Scholar]
  105. 105.
    Sarangapani PS, Schofield AB, Zhu Y. 2012.. Soft Matter 8:(3):81418
    [Crossref] [Google Scholar]
  106. 106.
    Illing B, Fritschi S, Kaiser H, Klix CL, Maret G, Keim P. 2017.. PNAS 114:(8):185661
    [Crossref] [Google Scholar]
  107. 107.
    Vivek S, Kelleher CP, Chaikin PM, Weeks ER. 2017.. PNAS 114:(8):185055
    [Crossref] [Google Scholar]
  108. 108.
    Zhang B, Cheng X. 2019.. Soft Matter 15:(20):408797
    [Crossref] [Google Scholar]
  109. 109.
    Roberts RC, Palmer JC, Conrad JC. 2023.. J. Phys. Chem. B 127:(4):96169
    [Crossref] [Google Scholar]
  110. 110.
    Huang R, Chavez I, Taute KM, Lukić B, Jeney S, et al. 2011.. Nat. Phys. 7:(7):57680
    [Crossref] [Google Scholar]
  111. 111.
    Li T, Kheifets S, Medellin D, Raizen MG. 2010.. Science 328:(5986):167375
    [Crossref] [Google Scholar]
  112. 112.
    Pusey PN. 2011.. Science 332:(6031):8023
    [Crossref] [Google Scholar]
  113. 113.
    Harano K. 2021.. Bull. Chem. Soc. Jpn. 94:(2):46372
    [Crossref] [Google Scholar]
  114. 114.
    Blair DL, Kudrolli A. 2003.. Phys. Rev. E 67:(2):021302
    [Crossref] [Google Scholar]
  115. 115.
    Abate AR, Durian DJ. 2008.. Phys. Rev. Lett. 101:(24):245701
    [Crossref] [Google Scholar]
  116. 116.
    Abate AR, Durian DJ. 2006.. Phys. Rev. E 74:(3):031308
    [Crossref] [Google Scholar]
  117. 117.
    González-Gutiérrez J, Carrillo-Estrada JL, Ruiz-Suárez JC. 2013.. J. Phys. Conf. Ser. 475:(1):012003
    [Crossref] [Google Scholar]
  118. 118.
    Sperl M, Zippelius A. 2017.. Eur. Phys. J.: Spec. Top. 226:(14):307994
    [Crossref] [Google Scholar]
  119. 119.
    Russo KI, Merlino A, Vergara A, Sica F. 2013.. Int. J. Mol. Sci. 14:(6):1164391
    [Crossref] [Google Scholar]
  120. 120.
    Smeets B, Pešek J, Deckers T, Hall GN, Cuvelier M, et al. 2020.. Matter 2:(5):128395
    [Crossref] [Google Scholar]
  121. 121.
    Rahbari SHE, Vollmer J, Herminghaus S, Brinkmann M. 2010.. Phys. Rev. E 82:(6):061305
    [Crossref] [Google Scholar]
  122. 122.
    Sapozhnikov MV, Tolmachev YV, Aranson IS, Kwok WK. 2003.. Phys. Rev. Lett. 90:(11):114301
    [Crossref] [Google Scholar]
  123. 123.
    Grzybowski BA, Wiles JA, Whitesides GM. 2003.. Phys. Rev. Lett. 90:(8):083903
    [Crossref] [Google Scholar]
  124. 124.
    Grzybowski BA, Wilmer CE, Kim J, Browne KP, Bishop KJM. 2009.. Soft Matter 5:(6):111028
    [Crossref] [Google Scholar]
  125. 125.
    Rietz F, Radin C, Swinney HL, Schröter M. 2018.. Phys. Rev. Lett. 120:(5):055701
    [Crossref] [Google Scholar]
  126. 126.
    Escobar A, Tapia-Ignacio C, Donado F, Arauz-Lara JL, Moctezuma RE. 2020.. Phys. Rev. E 101:(5):052907
    [Crossref] [Google Scholar]
  127. 127.
    Grzybowski BA, Stone HA, Whitesides GM. 2000.. Nature 405:(6790):103336
    [Crossref] [Google Scholar]
  128. 128.
    Helgesen G, Svåsand E, Skjeltorp AT. 2008.. J. Condens. Matter Phys. 20:(20):204127
    [Crossref] [Google Scholar]
  129. 129.
    Daniels KE, Behringer RP. 2005.. Phys. Rev. Lett. 94:(16):168001
    [Crossref] [Google Scholar]
  130. 130.
    Maaß CC, Isert N, Maret G, Aegerter CM. 2008.. Phys. Rev. Lett. 100:(24):248001
    [Crossref] [Google Scholar]
  131. 131.
    Lim MX, Souslov A, Vitelli V, Jaeger HM. 2019.. Nat. Phys. 15:(5):46064
    [Crossref] [Google Scholar]
  132. 132.
    Donado F, Moctezuma RE, López-Flores L, Medina-Noyola M, Arauz-Lara JL. 2017.. Sci. Rep. 7:(1):12614
    [Crossref] [Google Scholar]
  133. 133.
    Tapia-Ignacio C, Garcia-Serrano J, Donado F. 2016.. Phys. Rev. E 94:(6):062902
    [Crossref] [Google Scholar]
  134. 134.
    Tapia-Ignacio C, Moctezuma RE, Donado F. 2018.. Phys. Rev. E 98:(3):032901
    [Crossref] [Google Scholar]
  135. 135.
    Escobar A, Ledesma-Motolinía M, Carrillo-Estrada JL, Donado F. 2023.. Sci. Rep. 13:(1):8552
    [Crossref] [Google Scholar]
  136. 136.
    Russo J, Tanaka H. 2016.. J. Chem. Phys. 145:(21):211801
    [Crossref] [Google Scholar]
  137. 137.
    Zhang TH, Liu XY. 2007.. J. Am. Chem. Soc. 129:(44):1352026
    [Crossref] [Google Scholar]
  138. 138.
    Savage JR, Dinsmore AD. 2009.. Phys. Rev. Lett. 102:(19):198302
    [Crossref] [Google Scholar]
  139. 139.
    Fang H, Hagan MF, Rogers WB. 2020.. PNAS 117:(45):2792733
    [Crossref] [Google Scholar]
  140. 140.
    Escobar A, Donado F, Moctezuma RE, Weeks ER. 2021.. Phys. Rev. E 104:(4):044904
    [Crossref] [Google Scholar]
  141. 141.
    Ledesma-Motolinía M, Carrillo-Estrada JL, Escobar A, Donado F, Castro-Villarreal P. 2023.. Phys. Rev. E 107:(2):024902
    [Crossref] [Google Scholar]
  142. 142.
    Carmo MPd. 1976.. Differential Geometry of Curves and Surfaces. Englewood Cliffs, NJ:: Prentice-Hall, , 1st ed..
    [Google Scholar]
  143. 143.
    Ledesma-Durán A, Juárez-Valencia LH. 2023.. Eur. Phys. J. E 46:(8):70
    [Crossref] [Google Scholar]
  144. 144.
    Castro-Villarreal P, Villada-Balbuena A, Méndez-Alcaraz JM, Castañeda-Priego R, Estrada-Jiménez S. 2014.. J. Chem. Phys. 140:(21):214115
    [Crossref] [Google Scholar]
  145. 145.
    Gardiner C. 2009.. Stochastic Methods: A Handbook for the Natural and Social Sciences. Berlin/Heidelberg:: Springer-Verlag
    [Google Scholar]
  146. 146.
    Villada-Balbuena A, Ortiz-Ambriz A, Castro-Villarreal P, Tierno P, et al. 2021.. Phys. Rev. Res. 3:(3):033246
    [Crossref] [Google Scholar]
  147. 147.
    Castro-Villarreal P, Sevilla FJ. 2018.. Phys. Rev. E 97:(5):052605
    [Crossref] [Google Scholar]
  148. 148.
    Apaza L, Sandoval M. 2018.. Soft Matter 14:(48):992836
    [Crossref] [Google Scholar]
  149. 149.
    Ramírez-Garza OA, Méndez-Alcaraz JM, González-Mozuelos P. 2017.. J. Chem. Phys. 146:(19):194903
    [Crossref] [Google Scholar]
  150. 150.
    Cavallaro M, Botto L, Lewandowski EP, Wang M, Stebe KJ. 2011.. PNAS 108:(52):2092328
    [Crossref] [Google Scholar]
  151. 151.
    van Blaaderen A. 2003.. Science 301:(5632):47071
    [Crossref] [Google Scholar]
  152. 152.
    Manoharan VN, Elsesser MT, Pine DJ. 2003.. Science 301:(5632):48387
    [Crossref] [Google Scholar]
  153. 153.
    Li W, Palis H, Mérindol R, Majimel J, Ravaine S, Duguet E. 2020.. Chem. Soc. Rev. 49:(6):195576
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-041124-120513
Loading
/content/journals/10.1146/annurev-conmatphys-041124-120513
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error