1932

Abstract

The fracture of highly deformable soft materials is of great practical importance in a wide range of technological applications, emerging in fields such as soft robotics, stretchable electronics, and tissue engineering. From a basic physics perspective, the failure of these materials poses fundamental challenges due to the strongly nonlinear and dissipative deformation involved. In this review, we discuss the physics of cracks in soft materials and highlight two length scales that characterize the strongly nonlinear elastic and dissipation zones near crack tips in such materials. We discuss physical processes, theoretical concepts, and mathematical results that elucidate the nature of the two length scales and show that the two length scales can classify a wide range of materials. The emerging multiscale physical picture outlines the theoretical ingredients required for the development of predictive theories of the fracture of soft materials. We conclude by listing open challenges and directions for future investigations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-042020-023937
2021-03-10
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/12/1/annurev-conmatphys-042020-023937.html?itemId=/content/journals/10.1146/annurev-conmatphys-042020-023937&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Polygerinos P, Correll N, Morin SA, Mosadegh B, Onal CD et al. 2017. Adv. Eng. Mater. 19:1700016
    [Google Scholar]
  2. 2. 
    Cianchetti M, Laschi C, Menciassi A, Dario P 2018. Nat. Rev. Mater. 3:143–53
    [Google Scholar]
  3. 3. 
    Wallin TJ, Pikul J, Shepherd RF 2018. Nat. Rev. Mater. 3:84–100
    [Google Scholar]
  4. 4. 
    Rogers JA, Someya T, Huang Y 2010. Science 327:1603–7
    [Google Scholar]
  5. 5. 
    Lin S, Yuk H, Zhang T, Parada GA, Koo H et al. 2016. Adv. Mater. 28:4497–505
    [Google Scholar]
  6. 6. 
    Yang C, Suo Z 2018. Nat. Rev. Mater. 3:125–42
    [Google Scholar]
  7. 7. 
    Drury JL, Mooney DJ 2003. Biomaterials 24:4337–51
    [Google Scholar]
  8. 8. 
    Yasuda K, Gong JP, Katsuyama Y, Nakayama A, Tanabe Y et al. 2005. Biomaterials 26:4468–75
    [Google Scholar]
  9. 9. 
    Stapleton F, Stretton S, Papas E, Skotnitsky C, Sweeney DF 2006. Ocular Surf. 4:24–43
    [Google Scholar]
  10. 10. 
    Li J, Celiz AD, Yang J, Yang Q, Wamala I et al. 2017. Science 357:378–81
    [Google Scholar]
  11. 11. 
    Blacklow SO, Li J, Freedman BR, Zeidi M, Chen C, Mooney DJ 2019. Sci. Adv. 5:eaaw3963
    [Google Scholar]
  12. 12. 
    Orowan E 1949. Rep. Prog. Phys. 12:185–232
    [Google Scholar]
  13. 13. 
    Freund LB 1998. Dynamic Fracture Mechanics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  14. 14. 
    Broberg KB 1999. Cracks and Fracture San Diego: Academic
    [Google Scholar]
  15. 15. 
    Bouchbinder E, Fineberg J, Marder M 2010. Annu. Rev. Condens. Matter Phys. 1:371–95
    [Google Scholar]
  16. 16. 
    Bouchbinder E, Goldman T, Fineberg J 2014. Rep. Prog. Phys. 77:046501
    [Google Scholar]
  17. 17. 
    Littleton JT 1923. Phys. Rev. 22:510–16
    [Google Scholar]
  18. 18. 
    Kasunic KJ 2015. Optomechanical Systems Engineering Hoboken, NJ: Wiley
    [Google Scholar]
  19. 19. 
    Griffith AA 1921. Philos. Trans. R. Soc. Lond. A 221:163–98
    [Google Scholar]
  20. 20. 
    Anderson T 2017. Fracture Mechanics: Fundamentals and Applications Boca Raton, FL: CRC Press
    [Google Scholar]
  21. 21. 
    Zehnder AT 2012. Fracture Mechanics London: Springer
    [Google Scholar]
  22. 22. 
    Rivlin RS, Thomas AG 1953. J. Polym. Sci. 10:291–318
    [Google Scholar]
  23. 23. 
    Zhao X 2014. Soft Matter 10:672–87
    [Google Scholar]
  24. 24. 
    Creton C, Ciccotti M 2016. Rep. Prog. Phys. 79:046601
    [Google Scholar]
  25. 25. 
    Gong JP, Katsuyama Y, Kurokawa T, Osada Y 2003. Adv. Mater. 15:1155–58
    [Google Scholar]
  26. 26. 
    Gong JP 2010. Soft Matter 6:2583–90
    [Google Scholar]
  27. 27. 
    Haque MA, Kamita G, Kurokawa T, Tsujii K, Gong JP 2010. Adv. Mater. 22:5110–14
    [Google Scholar]
  28. 28. 
    Haque MA, Kurokawa T, Kamita G, Gong JP 2011. Macromolecules 44:8916–24
    [Google Scholar]
  29. 29. 
    Sun JY, Zhao X, Illeperuma WR, Chaudhuri O, Oh KH et al. 2012. Nature 489:133–36
    [Google Scholar]
  30. 30. 
    Shull KR 2012. Nature 489:36–37
    [Google Scholar]
  31. 31. 
    Livne A, Bouchbinder E, Svetlizky I, Fineberg J 2010. Science 327:1359–63
    [Google Scholar]
  32. 32. 
    Lefranc M, Bouchaud E 2014. Extrem. Mech. Lett. 1:97–103
    [Google Scholar]
  33. 33. 
    Lake GJ, Thomas AG 1967. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 300:108–19
    [Google Scholar]
  34. 34. 
    Baumberger T, Caroli C, Martina D 2006. Nat. Mater. 5:552–55
    [Google Scholar]
  35. 35. 
    Baumberger T, Caroli C, Martina D 2006. Eur. Phys. J. E 21:81–89
    [Google Scholar]
  36. 36. 
    Brown HR 2007. Macromolecules 40:3815–18
    [Google Scholar]
  37. 37. 
    Tanaka Y 2007. EPL 78:56005
    [Google Scholar]
  38. 38. 
    Zhang T, Lin S, Yuk H, Zhao X 2015. Extrem. Mech. Lett. 4:1–8
    [Google Scholar]
  39. 39. 
    Hui CY, Jagota A, Bennison SJ, Londono JD 2003. Proc. R. Soc. A: Math., Phys. Eng. Sci. 459:1489–516
    [Google Scholar]
  40. 40. 
    Seitz ME, Martina D, Baumberger T, Krishnan VR, Hui CY, Shull KR 2009. Soft Matter 5:447–56
    [Google Scholar]
  41. 41. 
    Long R, Hui CY 2015. Extrem. Mech. Lett. 4:131–55
    [Google Scholar]
  42. 42. 
    Long R, Hui CY 2016. Soft Matter 12:8069–86
    [Google Scholar]
  43. 43. 
    Bai R, Yang J, Suo Z 2019. Eur. J. Mech., A Solids 74:337–70
    [Google Scholar]
  44. 44. 
    Hui CY, Ruina A 1985. Int. J. Fract. 72:97–120
    [Google Scholar]
  45. 45. 
    Bouchbinder E, Livne A, Fineberg J 2009. J. Mech. Phys. Solids 57:1568–77
    [Google Scholar]
  46. 46. 
    Livne A, Bouchbinder E, Fineberg J 2008. Phys. Rev. Lett. 101:264301
    [Google Scholar]
  47. 47. 
    Bouchbinder E, Livne A, Fineberg J 2008. Phys. Rev. Lett. 101:264302
    [Google Scholar]
  48. 48. 
    Shull KR, Creton C 2004. J. Polym. Sci., Part B: Polym. Phys. 42:4023–43
    [Google Scholar]
  49. 49. 
    Bažant ZP 1997. Int. J. Fract. 83:19–40
    [Google Scholar]
  50. 50. 
    Berry J 1964. J. Polym. Sci. Part A: Gen. Pap. 2:4069–76
    [Google Scholar]
  51. 51. 
    Berry J 1961. J. Polym. Sci. 50:313–21
    [Google Scholar]
  52. 52. 
    Brown HR 1991. Macromolecules 24:2752–56
    [Google Scholar]
  53. 53. 
    De Silva CW 2013. Mechanics of Materials Boca Raton, FL: CRC Press
    [Google Scholar]
  54. 54. 
    Li X, Yang Q, Zhao Y, Long S, Zheng J 2017. Soft Matter 13:911–20
    [Google Scholar]
  55. 55. 
    Takahashi R, Shimano K, Okazaki H, Kurokawa T, Nakajima T et al. 2018. Adv. Mater. Interfaces 5:1801018
    [Google Scholar]
  56. 56. 
    Chen C, Wang Z, Suo Z 2017. Extrem. Mech. Lett. 10:50–57
    [Google Scholar]
  57. 57. 
    Yang C, Yin T, Suo Z 2019. J. Mech. Phys. Solids 131:43–55
    [Google Scholar]
  58. 58. 
    Long R, Lefranc M, Bouchaud E, Hui CY 2016. Extrem. Mech. Lett. 9:66–73
    [Google Scholar]
  59. 59. 
    Akagi Y, Sakurai H, Gong JP, Chung UI, Sakai T 2013. J. Chem. Phys. 139:144905
    [Google Scholar]
  60. 60. 
    Ducrot E, Chen Y, Bulters M, Sijbesma RP, Creton C 2014. Science 344:186–89
    [Google Scholar]
  61. 61. 
    Nakajima T, Kurokawa T, Ahmed S, Wu WL, Gong JP 2013. Soft Matter 9:1955–66
    [Google Scholar]
  62. 62. 
    Ahmed S, Nakajima T, Kurokawa T, Haque MA, Gong JP 2014. Polymer 55:914–23
    [Google Scholar]
  63. 63. 
    Thomas AG 1958. J. Polym. Sci. 31:467–80
    [Google Scholar]
  64. 64. 
    Greensmith HW 1960. J. Appl. Polym. Sci. 3:183–93
    [Google Scholar]
  65. 65. 
    Millereau P, Ducrot E, Clough JM, Wiseman ME, Brown HR et al. 2018. PNAS 115:9110–15
    [Google Scholar]
  66. 66. 
    Knowles JK 1977. Int. J. Fract. 13:611–39
    [Google Scholar]
  67. 67. 
    Holzapfel GA 2000. Nonlinear Solid Mechanics: A Continuum Approach for Engineering Chichester, UK: Wiley
    [Google Scholar]
  68. 68. 
    Qi Y, Zou Z, Xiao J, Long R 2019. J. Mech. Phys. Solids 125:326–46
    [Google Scholar]
  69. 69. 
    Geubelle PH, Knauss WG 1994. J. Elast. 35:61–98
    [Google Scholar]
  70. 70. 
    Long R, Krishnan VR, Hui CY 2011. J. Mech. Phys. Solids 59:672–95
    [Google Scholar]
  71. 71. 
    Knowles JK, Sternberg E 1973. J. Elast. 3:67–107
    [Google Scholar]
  72. 72. 
    Rice JR 1968. J. Appl. Mech. Trans. ASME 35:379–86
    [Google Scholar]
  73. 73. 
    Shih CF 1981. J. Mech. Phys. Solids 29:305–26
    [Google Scholar]
  74. 74. 
    MacDonald KA, Ravichandran G 2020. Int. J. Fract. 222:37–52
    [Google Scholar]
  75. 75. 
    Bouchbinder E 2009. Phys. Rev. Lett. 103:164301
    [Google Scholar]
  76. 76. 
    Livne A, Ben-David O, Fineberg J 2007. Phys. Rev. Lett. 98:124301
    [Google Scholar]
  77. 77. 
    Goldman T, Harpaz R, Bouchbinder E, Fineberg J 2012. Phys. Rev. Lett. 108:104303
    [Google Scholar]
  78. 78. 
    Chen CH, Bouchbinder E, Karma A 2017. Nat. Phys. 13:1186–90
    [Google Scholar]
  79. 79. 
    Lubomirsky Y, Chen CH, Karma A, Bouchbinder E 2018. Phys. Rev. Lett. 121:134301
    [Google Scholar]
  80. 80. 
    Kolvin I, Kolinski JM, Gong JP, Fineberg J 2018. Phys. Rev. Lett. 121:135501
    [Google Scholar]
  81. 81. 
    Sakai T, Akagi Y, Matsunaga T, Kurakazu M, Chung Ui, Shibayama M 2010. Macromol. Rapid Commun. 31:1954–59
    [Google Scholar]
  82. 82. 
    Tang J, Li J, Vlassak JJ, Suo Z 2017. Extrem. Mech. Lett. 10:24–31
    [Google Scholar]
  83. 83. 
    Hoshino KI, Nakajima T, Matsuda T, Sakai T, Gong JP 2018. Soft Matter 14:9693–701
    [Google Scholar]
  84. 84. 
    Sakai T, Kurakazu M, Akagi Y, Shibayama M, Chung U 2012. Soft Matter 8:2730–36
    [Google Scholar]
  85. 85. 
    Cai S, Suo Z 2012. EPL 97:34009
    [Google Scholar]
  86. 86. 
    Trabelsi S, Albouy PA, Rault J 2002. Macromolecules 35:10054–61
    [Google Scholar]
  87. 87. 
    Persson BNJ, Albohr O, Heinrich G, Ueba H 2005. J. Phys.: Condens. Matter 17:R1071–142
    [Google Scholar]
  88. 88. 
    Wang Z, Xiang C, Yao X, Le Floch P, Mendez J, Suo Z 2019. PNAS 116:5967–72
    [Google Scholar]
  89. 89. 
    Xiang C, Wang Z, Yang C, Yao X, Wang Y, Suo Z 2020. Mater. Today. 34:7–16
    [Google Scholar]
  90. 90. 
    King DR, Sun TL, Huang Y, Kurokawa T, Nonoyama T et al. 2015. Mater. Horiz. 2:584–91
    [Google Scholar]
  91. 91. 
    Huang Y, King DR, Cui W, Sun TL, Guo H et al. 2019. J. Mater. Chem. A 7:13431–40
    [Google Scholar]
  92. 92. 
    Hui CY, Liu Z, Phoenix SL 2019. Extrem. Mech. Lett. 33:100573
    [Google Scholar]
  93. 93. 
    Mullins L 1969. Rubber Chem. Technol. 42:339–62
    [Google Scholar]
  94. 94. 
    Diani J, Fayolle B, Gilormini P 2009. Eur. Polym. J. 45:601–12
    [Google Scholar]
  95. 95. 
    Qi Y, Caillard J, Long R 2018. J. Mech. Phys. Solids 118:341–64
    [Google Scholar]
  96. 96. 
    Persson B, Brener E 2005. Phys. Rev. E 71:036123
    [Google Scholar]
  97. 97. 
    Knauss WG. 1973. Deformation and Fracture of High Polymers H Kausch, J Hassell, R Jaffee 501–41 New York: Springer
    [Google Scholar]
  98. 98. 
    Schapery RA 1975. Int. J. Fract. 11:141–59
    [Google Scholar]
  99. 99. 
    de Gennes PG 1996. Langmuir 12:4497–500
    [Google Scholar]
  100. 100. 
    Rice J. 1979. Proceedings of the U.S. National Congress of Applied Mechanics, 8th, Los Angeles, June 26–30, 1978 RE Kelly 191–216 North Hollywood, CA: West. Period.
    [Google Scholar]
  101. 101. 
    Knauss WG 2015. Int. J. Fract. 196:99–146
    [Google Scholar]
  102. 102. 
    Hui CY, Xu DB, Kramer EJ 1992. J. Appl. Phys. 72:3294–304
    [Google Scholar]
  103. 103. 
    Saulnier F, Ondarçuhu T, Aradian A, Raphaël E 2004. Macromolecules 37:1067–75
    [Google Scholar]
  104. 104. 
    Xu DB, Hui CY, Kramer EJ 1992. J. Appl. Phys. 72:3305–16
    [Google Scholar]
  105. 105. 
    Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T et al. 2013. Nat. Mater. 12:932–37
    [Google Scholar]
  106. 106. 
    Wineman A 2009. Math. Mech. Solids 14:300–66
    [Google Scholar]
  107. 107. 
    Bergström JS, Boyce MC 1998. J. Mech. Phys. Solids 46:931–54
    [Google Scholar]
  108. 108. 
    Vernerey FJ, Long R, Brighenti R 2017. J. Mech. Phys. Solids 107:1–20
    [Google Scholar]
  109. 109. 
    Mao Y, Lin S, Zhao X, Anand L 2017. J. Mech. Phys. Solids 100:103–30
    [Google Scholar]
  110. 110. 
    Guo J, Liu M, Zehnder AT, Zhao J, Narita T et al. 2018. J. Mech. Phys. Solids 120:79–95
    [Google Scholar]
  111. 111. 
    Liu M, Guo J, Hui CY, Zehnder A 2019. Extrem. Mech. Lett. 29:100457
    [Google Scholar]
  112. 112. 
    Gent AN 1996. Langmuir 12:4492–95
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-042020-023937
Loading
/content/journals/10.1146/annurev-conmatphys-042020-023937
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error