1932

Abstract

Solar cells are semiconductor devices that generate electricity through charge generation upon illumination. For optimal device efficiency, the photogenerated carriers must reach the electrical contact layers before they recombine. A deep understanding of the recombination process and transport behavior is essential to design better devices. Halide perovskite solar cells are commonly made of a polycrystalline absorber layer, but there is no consensus on the nature and role of grain boundaries. This review concerns theoretical approaches for the investigation of extended defects. We introduce recent computational studies on grain boundaries, and their influence on point-defect distributions, in halide perovskite solar cells. We conclude with a discussion of future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-042020-025347
2021-03-10
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/12/1/annurev-conmatphys-042020-025347.html?itemId=/content/journals/10.1146/annurev-conmatphys-042020-025347&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009. J. Am. Chem. Soc. 131:6050–51
  2. 2. 
    Huang J, Yuan Y, Shao Y, Yan Y 2017. Nat. Rev. Mater. 2:17042
  3. 3. 
    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N et al. 2014. J. Phys. Chem. Lett. 5:1004–11
  4. 4. 
    Noh JH, Im SH, Heo JH, Mandal TN, Seok SI 2013. Nano Lett. 13:1764–69
  5. 5. 
    Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ et al. 2013. Science 342:341–44
  6. 6. 
    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E et al. 2015. Science 347:519–22
  7. 7. 
    Tong J, Song Z, Kim DH, Chen X, Chen C et al. 2019. Science 364:475–79
  8. 8. 
    Steirer KX, Schulz P, Teeter G, Stevanovic V, Yang M et al. 2016. ACS Energy Lett. 1:360–66
  9. 9. 
    Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI 2014. Nat. Mater. 13:897–903
  10. 10. 
    Snaith HJ 2013. J. Phys. Chem. Lett. 4:3623–30
  11. 11. 
    Sahli F, Werner J, Kamino BA, Bräuninger M, Monnard R et al. 2018. Nat. Mater. 17:820–26
  12. 12. 
    Li Z, Klein TR, Kim DH, Yang M, Berry JJ et al. 2018. Nat. Rev. Mater. 3:18017
  13. 13. 
    Jung EH, Jeon NJ, Park EY, Moon CS, Shin TJ et al. 2019. Nature 567:511–15
  14. 14. 
    Bai S, Da P, Li C, Wang Z, Yuan Z et al. 2019. Nature 571:245–50
  15. 15. 
    Wang Q, Chen B, Liu Y, Deng Y, Bai Y et al. 2017. Energy Environ. Sci. 10:516–22
  16. 16. 
    Lee JW, Bae SH, De Marco N, Hsieh YT, Dai Z, Yang Y 2018. Mater. Today Energy 7:149–60
  17. 17. 
    Tennyson EM, Doherty TA, Stranks SD 2019. Nat. Rev. Mater. 4:573–87
  18. 18. 
    Castro-Méndez AF, Hidalgo J, Correa-Baena JP 2019. Adv. Energy Mater. 9:1901489
  19. 19. 
    Luo D, Su R, Zhang W, Gong Q, Zhu R 2020. Nat. Rev. Mater. 5:44–60
  20. 20. 
    Han TH, Tan S, Xue J, Meng L, Lee JW, Yang Y 2019. Adv. Mater. 31:1803515
  21. 21. 
    Chen J, Park NG 2019. Adv. Mater. 31:1803019
  22. 22. 
    Stranks SD 2017. ACS Energy Lett. 2:1515–25
  23. 23. 
    Sutton AP, Balluffi RW 2006. Interfaces in Crystalline Materials Oxford, UK: Clarendon
  24. 24. 
    Cai W, Nix WD 2016. Imperfections in Crystalline Solids Cambridge, UK: Cambridge Univ. Press
  25. 25. 
    Yin D, Chen C, Saito M, Inoue K, Ikuhara Y 2019. Nat. Mater. 18:19–23
  26. 26. 
    Lu K 2016. Nat. Rev. Mater. 1:16019
  27. 27. 
    Visoly-Fisher I, Cohen SR, Gartsman K, Ruzin A, Cahen D 2006. Adv. Funct. Mater. 16:649–60
  28. 28. 
    Li C, Wu Y, Pennycook TJ, Lupini AR, Leonard DN et al. 2013. Phys. Rev. Lett. 111:096403
  29. 29. 
    Visoly-Fisher I, Cohen SR, Ruzin A, Cahen D 2004. Adv. Mater. 16:879–83
  30. 30. 
    Li C, Wu Y, Poplawsky J, Pennycook TJ, Paudel N et al. 2014. Phys. Rev. Lett. 112:156103
  31. 31. 
    Chen C, Li K, Chen S, Wang L, Lu S et al. 2018. ACS Energy Lett. 3:2335–41
  32. 32. 
    Xu J, Liu JB, Liu BX, Wang J, Huang B 2019. Adv. Funct. Mater. 29:1805870
  33. 33. 
    Lu J, Wagener M, Rozgonyi G, Rand J, Jonczyk R 2003. J. Appl. Phys. 94:140–44
  34. 34. 
    Kohyama M, Yamamoto R, Ebata Y, Kinoshita M 1988. J. Phys. C: Solid State Phys. 21:3205–15
  35. 35. 
    Chelikowsky JR 1982. Phys. Rev. Lett. 49:1569–72
  36. 36. 
    Klie R, Buban J, Varela M, Franceschetti A, Jooss C et al. 2005. Nature 435:475–78
  37. 37. 
    Kuo JJ, Kang SD, Imasato K, Tamaki H, Ohno S et al. 2018. Energy Environ. Sci. 11:429–34
  38. 38. 
    Yan Y, Al-Jassim M, Jones K 2003. J. Appl. Phys. 94:2976–79
  39. 39. 
    Park JS, Kang J, Yang JH, Metzger W, Wei SH 2015. New J. Phys. 17:013027
  40. 40. 
    Park JS, Yang JH, Barnes T, Wei SH 2016. Appl. Phys. Lett. 109:042105
  41. 41. 
    Moseley J, Metzger WK, Moutinho HR, Paudel N, Guthrey HL et al. 2015. J. Appl. Phys. 118:025702
  42. 42. 
    Read WT, Shockley W 1950. Phys. Rev. 78:275–89
  43. 43. 
    Kliewer K, Koehler J 1965. Phys. Rev. 140:A1226–40
  44. 44. 
    Desu SB, Payne DA 1990. J. Am. Ceramic Soc. 73:3391–97
  45. 45. 
    Gregori G, Merkle R, Maier J 2017. Progress Mater. Sci. 89:252–305
  46. 46. 
    Grovenor C 1985. J. Phys. C: Solid State Phys. 18:4079–119
  47. 47. 
    Seto JY 1975. J. Appl. Phys. 46:5247–54
  48. 48. 
    Landsberg P, Abrahams M 1984. J. Appl. Phys. 55:4284–93
  49. 49. 
    Card HC, Yang ES 1977. IEEE Trans. Electron Devices 24:397–402
  50. 50. 
    Nelson J 2003. The Physics of Solar Cells London: Imp. Coll. Press
  51. 51. 
    Oualid J, Singal C, Dugas J, Crest J, Amzil H 1984. J. Appl. Phys. 55:1195–205
  52. 52. 
    Edmiston S, Heiser G, Sproul A, Green M 1996. J. Appl. Phys. 80:6783–95
  53. 53. 
    Kim S, Prieto JAM, Unold T, Walsh A 2020. Energy Environ. Sci. 13:1481–91
  54. 54. 
    Hasson G, Guillot J, Baroux B, Goux C 1970. Phys. Status Solidi (A) 2:551–58
  55. 55. 
    Weins MJ 1972. Surf. Sci. 31:138–60
  56. 56. 
    Olmsted DL, Foiles SM, Holm EA 2009. Acta Mater. 57:3694–703
  57. 57. 
    Holm EA, Olmsted DL, Foiles SM 2010. Scr. Mater. 63:905–8
  58. 58. 
    Restrepo SE, Giraldo ST, Thijsse BJ 2013. Model. Simul. Mater. Sci. Eng. 21:055017
  59. 59. 
    Ratanaphan S, Olmsted DL, Bulatov VV, Holm EA, Rollett AD, Rohrer GS 2015. Acta Mater. 88:346–54
  60. 60. 
    de Silva CG 1980. Phys. Rev. B 22:5945–52
  61. 61. 
    Thomson R, Chadi D 1984. Phys. Rev. B 29:889–92
  62. 62. 
    Chadi D 1985. Phys. Rev. B 32:6485–89
  63. 63. 
    Paxton A, Sutton A 1988. J. Phys. C: Solid State Phys. 21:L481–88
  64. 64. 
    DiVincenzo D, Alerhand O, Schlüter M, Wilkins J 1986. Phys. Rev. Lett. 56:1925–28
  65. 65. 
    Graser S, Hirschfeld PJ, Kopp T, Gutser R, Andersen BM, Mannhart J 2010. Nat. Phys. 6:609–14
  66. 66. 
    Lee GD, Yoon E, Wang CZ, Ho KM 2013. J. Phys. Condens. Matter 25:155301
  67. 67. 
    Kohn W 1999. Rev. Mod. Phys. 71:1253–66
  68. 68. 
    Whalley LD, Frost JM, Jung YK, Walsh A 2017. J. Chem. Phys. 146:220901
  69. 69. 
    Park JS, Jung YK, Butler KT, Walsh A 2018. J. Phys. Energy 1:016001
  70. 70. 
    Perdew JP 1985. Int. J. Quantum Chem. 28:497–523
  71. 71. 
    Heyd J, Scuseria GE, Ernzerhof M 2003. J. Chem. Phys. 118:8207–15
  72. 72. 
    Heyd J, Peralta JE, Scuseria GE, Martin RL 2005. J. Chem. Phys. 123:174101
  73. 73. 
    Yin WJ, Wu Y, Noufi R, Al-Jassim M, Yan Y 2013. Appl. Phys. Lett. 102:193905
  74. 74. 
    Yin WJ, Wu Y, Wei SH, Noufi R, Al-Jassim MM, Yan Y 2014. Adv. Energy Mater. 4:1300712
  75. 75. 
    Park JS 2019. Phys. Rev. Mater. 3:014602
  76. 76. 
    Pan J, Metzger WK, Lany S 2018. Phys. Rev. B 98:054108
  77. 77. 
    Park JS 2020. Curr. Appl. Phys. 20:379–83
  78. 78. 
    Humphreys F 2001. J. Mater. Sci. 36:3833–54
  79. 79. 
    Liebscher CH, Stoffers A, Alam M, Lymperakis L, Cojocaru-Mirédin O et al. 2018. Phys. Rev. Lett. 121:015702
  80. 80. 
    Chua ALS, Benedek NA, Chen L, Finnis MW, Sutton AP 2010. Nat. Mater. 9:418–22
  81. 81. 
    Marquis E, Hamilton J, Medlin D, Léonard F 2004. Phys. Rev. Lett. 93:156101
  82. 82. 
    Yun JS, Ho-Baillie A, Huang S, Woo SH, Heo Y et al. 2015. J. Phys. Chem. Lett. 6:875–80
  83. 83. 
    de Quilettes DW, Vorpahl SM, Stranks SD, Nagaoka H, Eperon GE et al. 2015. Science 348:683–86
  84. 84. 
    Kim GY, Oh SH, Nguyen BP, Jo W, Kim BJ et al. 2015. J. Phys. Chem. Lett. 6:2355–62
  85. 85. 
    Li JJ, Ma JY, Ge QQ, Hu JS, Wang D, Wan LJ 2015. ACS Appl. Mater. Interfaces 7:28518–23
  86. 86. 
    Yun JS, Seidel J, Kim J, Soufiani AM, Huang S et al. 2016. Adv. Energy Mater. 6:1600330
  87. 87. 
    Faraji N, Qin C, Matsushima T, Adachi C, Seidel J 2018. J. Phys. Chem. C 122:4817–21
  88. 88. 
    MacDonald GA, Yang M, Berweger S, Killgore JP, Kabos P et al. 2016. Energy Environ. Sci. 9:3642–49
  89. 89. 
    Reid OG, Yang M, Kopidakis N, Zhu K, Rumbles G 2016. ACS Energy Lett. 1:561–65
  90. 90. 
    Yang M, Zeng Y, Li Z, Kim DH, Jiang CS et al. 2017. Phys. Chem. Chem. Phys. 19:5043–50
  91. 91. 
    Snaider JM, Guo Z, Wang T, Yang M, Yuan L et al. 2018. ACS Energy Lett. 3:1402–8
  92. 92. 
    Sherkar TS, Momblona C, Gil-Escrig L, Avila J, Sessolo M et al. 2017. ACS Energy Lett. 2:1214–22
  93. 93. 
    Adhyaksa GW, Brittman S, Āboliņš H, Lof A, Li X et al. 2018. Adv. Mater. 30:1804792
  94. 94. 
    Yin WJ, Chen H, Shi T, Wei SH, Yan Y 2015. Adv. Electron. Mater. 1:1500044
  95. 95. 
    Yin WJ, Shi T, Yan Y 2014. Appl. Phys. Lett. 104:063903
  96. 96. 
    Guo Y, Wang Q, Saidi WA 2017. J. Phys. Chem. C 121:1715–22
  97. 97. 
    Thind AS, Luo G, Hachtel JA, Morrell MV, Cho SB et al. 2019. Adv. Mater. 31:1805047
  98. 98. 
    Du MH 2015. J. Phys. Chem. Lett. 6:1461–66
  99. 99. 
    Meggiolaro D, Motti SG, Mosconi E, Barker AJ, Ball J et al. 2018. Energy Environ. Sci. 11:702–13
  100. 100. 
    Shan W, Saidi WA 2017. J. Phys. Chem. Lett. 8:5935–42
  101. 101. 
    Park JS, Calbo J, Jung YK, Whalley LD, Walsh A 2019. ACS Energy Lett. 4:1321–27
  102. 102. 
    Whalley LD, Crespo-Otero R, Walsh A 2017. ACS Energy Lett. 2:2713–14
  103. 103. 
    Yang JH, Yin WJ, Park JS, Wei SH 2016. J. Mater. Chem. A 4:13105–12
  104. 104. 
    Futscher MH, Lee JM, McGovern L, Muscarella LA, Wang T et al. 2019. Mater. Horiz. 6:1497–503
  105. 105. 
    Meggiolaro D, Mosconi E, De Angelis F 2019. ACS Energy Lett. 4:779–85
  106. 106. 
    Hentz O, Singh A, Zhao Z, Gradečak S 2019. Small Methods 3:1900110
  107. 107. 
    Shao Y, Fang Y, Li T, Wang Q, Dong Q et al. 2016. Energy Environ. Sci. 9:1752–59
  108. 108. 
    Xing J, Wang Q, Dong Q, Yuan Y, Fang Y, Huang J 2016. Phys. Chem. Chem. Phys. 18:30484–90
  109. 109. 
    McKenna KP 2018. ACS Energy Lett. 3:2663–68
  110. 110. 
    Long R, Liu J, Prezhdo OV 2016. J. Am. Chem. Soc. 138:3884–90
  111. 111. 
    Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S et al. 2015. Nature 517:476–80
  112. 112. 
    Zheng X, Chen B, Dai J, Fang Y, Bai Y et al. 2017. Nat. Energy 2:17102
  113. 113. 
    Noel NK, Abate A, Stranks SD, Parrott ES, Burlakov VM et al. 2014. ACS Nano 8:9815–21
  114. 114. 
    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014. Nat. Commun. 5:5784
  115. 115. 
    Xu J, Buin A, Ip AH, Li W, Voznyy O et al. 2015. Nat. Commun. 6:7081
  116. 116. 
    Rothmann MU, Li W, Zhu Y, Bach U, Spiccia L et al. 2017. Nat. Commun. 8:14547
  117. 117. 
    Tan CS, Hou Y, Saidaminov MI, Proppe A, Huang YS et al. 2020. Adv. Sci. 7:1903166
  118. 118. 
    Kim TW, Uchida S, Matsushita T, Cojocaru L, Jono R et al. 2018. Adv. Mater. 30:1705230
  119. 119. 
    Li W, Yadavalli SK, Lizarazo-Ferro D, Chen M, Zhou Y et al. 2018. ACS Energy Lett. 3:2669–70
  120. 120. 
    Jones TW, Osherov A, Alsari M, Sponseller M, Duck BC et al. 2019. Energy Environ. Sci. 12:596–606
  121. 121. 
    Jariwala S, Sun H, Adhyaksa GW, Lof A, Muscarella LA et al. 2019. Joule 3:3048–60
  122. 122. 
    Jiang X, Hoffman J, Stoumpos CC, Kanatzidis MG, Harel E 2019. ACS Energy Lett. 4:1741–47
/content/journals/10.1146/annurev-conmatphys-042020-025347
Loading
/content/journals/10.1146/annurev-conmatphys-042020-025347
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error