1932

Abstract

Feedback control is essential to the performance of dynamical systems, helping to drive nonequilibrium systems from one state to another. In this review, we discuss feedback control applied to living and synthetic active matter—systems that are constantly dynamical and out of equilibrium. We review the experimental and theoretical work in controlling the trajectory and distribution of active matter, from single particles to collective populations. Modern advances in microscopy and numerical computation have enabled data-rich studies of active systems, aided by data-driven approaches to model, forecast, and control the complex and chaotic behaviors of active matter. We describe the basic mathematical structure of active Brownian particles, with a focus on observability and time delay embedding to control particle motion using density data alone. Finally, we comment on the future outlook of controlling complex systems with multibody interparticle and hydrodynamic interactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-042424-043926
2025-03-10
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/16/1/annurev-conmatphys-042424-043926.html?itemId=/content/journals/10.1146/annurev-conmatphys-042424-043926&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Berg HC. 1993.. Random Walks in Biology. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  2. 2.
    Xavier JB, Kim W, Foster KR. 2011.. Mol. Microbiol. 79:(1):16679
    [Crossref] [Google Scholar]
  3. 3.
    Armitage JP. 1999.. Adv. Microb. Physiol. 41::22989
    [Crossref] [Google Scholar]
  4. 4.
    Alexandre G, Greer-Phillips S, Zhulin IB. 2004.. FEMS Microbiol. Rev. 28:(1):11326
    [Crossref] [Google Scholar]
  5. 5.
    Taylor BL, Zhulin IB, Johnson MS. 1999.. Annu. Rev. Microbiol. 53::10328
    [Crossref] [Google Scholar]
  6. 6.
    Frangipane G, Dell'Arciprete D, Petracchini S, Maggi C, Saglimbeni F, et al. 2018.. eLife 7::e36608
    [Crossref] [Google Scholar]
  7. 7.
    Massana-Cid H, Maggi C, Frangipane G, Di Leonardo R. 2022.. Nat. Commun. 13:(1):2740
    [Crossref] [Google Scholar]
  8. 8.
    Pellicciotta N, Paoluzzi M, Buonomo D, Frangipane G, Angelani L, Di Leonardo R. 2023.. Nat. Commun. 14:(1):4191
    [Crossref] [Google Scholar]
  9. 9.
    Arlt J, Martinez VA, Dawson A, Pilizota T, Poon WC. 2019.. Nat. Commun. 10::2321
    [Crossref] [Google Scholar]
  10. 10.
    Arlt J, Martinez VA, Dawson A, Pilizota T, Poon WC. 2018.. Nat. Commun. 9::768
    [Crossref] [Google Scholar]
  11. 11.
    Koumakis N, Brown AT, Arlt J, Griffiths SE, Martinez VA, Poon WCK. 2019.. Soft Matter 15:(35):702632
    [Crossref] [Google Scholar]
  12. 12.
    Mano T, Delfau JB, Iwasawa J, Sano M. 2017.. PNAS 114:(13):E258089
    [Crossref] [Google Scholar]
  13. 13.
    Vutukuri HR, Lisicki M, Lauga E, Vermant J. 2020.. Nat. Commun. 11::2628
    [Crossref] [Google Scholar]
  14. 14.
    Takatori SC, De Dier R, Vermant J, Brady JF. 2016.. Nat. Commun. 7::10694
    [Crossref] [Google Scholar]
  15. 15.
    Campbell AI, Ebbens SJ. 2013.. Langmuir 29:(46):1406673
    [Crossref] [Google Scholar]
  16. 16.
    Muiños-Landin S, Fischer A, Holubec V, Cichos F. 2020.. Sci. Robot. 6:(52):eabd9285
    [Crossref] [Google Scholar]
  17. 17.
    Fernandez-Rodriguez MA, Grillo F, Alvarez L, Rathlef M, Buttinoni I, et al. 2020.. Nat. Commun. 11::4223
    [Crossref] [Google Scholar]
  18. 18.
    Pinçe E, Velu SKP, Callegari A, Elahi P, Gigan S, et al. 2016.. Nat. Commun. 7::10907
    [Crossref] [Google Scholar]
  19. 19.
    Grober D, Palaia I, Uçar MC, Hannezo E, Šarić A, Palacci J. 2023.. Nat. Phys. 19:(11):168088
    [Crossref] [Google Scholar]
  20. 20.
    Ramananarivo S, Ducrot E, Palacci J. 2019.. Nat. Commun. 10::3380
    [Crossref] [Google Scholar]
  21. 21.
    Zhao Y, Zhang Y, Wang S, Nautrup HP, Metger T, et al. 2022.. N. J. Phys. 24:(7):073042
    [Crossref] [Google Scholar]
  22. 22.
    Schneider E, Stark H. 2019.. EPL 127:(6):64003
    [Crossref] [Google Scholar]
  23. 23.
    Mirzakhanloo M, Esmaeilzadeh S, Alam MR. 2020.. J. Fluid Mech. 903::A34
    [Crossref] [Google Scholar]
  24. 24.
    Yang Y, Bevan MA, Li B. 2020.. Adv. Intel. Syst. 2:(1):1900106
    [Crossref] [Google Scholar]
  25. 25.
    Durve M, Peruani F, Celani A. 2020.. Phys. Rev. E 102:(1):012601
    [Crossref] [Google Scholar]
  26. 26.
    Falk MJ, Alizadehyazdi V, Jaeger H, Murugan A. 2021.. Phys. Rev. Res. 3:(3):033291
    [Crossref] [Google Scholar]
  27. 27.
    Tsang ACH, Tong PW, Nallan S, Pak OS. 2020.. Phys. Rev. Fluids 5:(7):074101
    [Crossref] [Google Scholar]
  28. 28.
    Zhu G, Fang WZ, Zhu L. 2022.. J. Fluid Mech. 944::A3
    [Crossref] [Google Scholar]
  29. 29.
    Alageshan JK, Verma AK, Bec J, Pandit R. 2020.. Phys. Rev. E 101:(4):043110
    [Crossref] [Google Scholar]
  30. 30.
    Gunnarson P, Mandralis I, Novati G, Koumoutsakos P, Dabiri JO. 2021.. Nat. Commun. 12:(1):7143
    [Crossref] [Google Scholar]
  31. 31.
    Rodwell C, Tallapragada P. 2023.. Sci. Rep. 13:(1):10754
    [Crossref] [Google Scholar]
  32. 32.
    Watkins CJCH, Dayan P. 1992.. Mach. Learn. 8:(3):27992
    [Google Scholar]
  33. 33.
    Colabrese S, Gustavsson K, Celani A, Biferale L. 2017.. Phys. Rev. Lett. 118:(15):158004
    [Crossref] [Google Scholar]
  34. 34.
    Hartl B, Hübl M, Kahl G, Zöttl A. 2021.. PNAS 118:(19):e2019683118
    [Crossref] [Google Scholar]
  35. 35.
    Reuther C, Catalano R, Salhotra A, Vemula V, Korten T, et al. 2021.. N. J. Phys. 23:(7):75007
    [Crossref] [Google Scholar]
  36. 36.
    Schuppler M, Keber FC, Kröger M, Bausch AR. 2016.. Nat. Commun. 7:(1):13120
    [Crossref] [Google Scholar]
  37. 37.
    Ross TD, Lee HJ, Qu Z, Banks RA, Phillips R, Thomson M. 2019.. Nature 572:(7768):22429
    [Crossref] [Google Scholar]
  38. 38.
    Zhang R, Redford SA, Ruijgrok PV, Kumar N, Mozaffari A, et al. 2021.. Nat. Mater. 20:(6):87582
    [Crossref] [Google Scholar]
  39. 39.
    Zhang R, Mozaffari A, de Pablo JJ. 2021.. Nat. Rev. Mater. 6:(5):43753
    [Crossref] [Google Scholar]
  40. 40.
    Kumar N, Zhang R, De Pablo JJ, Gardel ML. 2018.. Sci. Adv. 4:(10)s: eaat7779
    [Crossref] [Google Scholar]
  41. 41.
    Guillamat P, Ignés-Mullol J, Sagués F. 2016.. PNAS 113:(20):5498502
    [Crossref] [Google Scholar]
  42. 42.
    Wu KT, Hishamunda JB, Chen DTN, DeCamp SJ, Chang YW, et al. 2017.. Science 355:(6331):eaal1979
    [Crossref] [Google Scholar]
  43. 43.
    Hardoüin J, Doré C, Laurent J, Lopez-Leon T, Ignés-Mullol J, Sagués F. 2022.. Nat. Commun. 13:(1):6675
    [Crossref] [Google Scholar]
  44. 44.
    Suzuki H, Oiwa K, Yamada A, Sakakibara H, Nakayama H, Mashiko S. 1995.. Jpn. J. Appl. Phys. 34:(7S):3937
    [Crossref] [Google Scholar]
  45. 45.
    Suzuki H, Yamada A, Oiwa K, Nakayama H, Mashiko S. 1997.. Biophys. J. 72:(5):19972001
    [Crossref] [Google Scholar]
  46. 46.
    Nicolau DV, Suzuki H, Mashiko S, Taguchi T, Yoshikawa S. 1999.. Biophys. J. 77:(2):112634
    [Crossref] [Google Scholar]
  47. 47.
    Jaber JA, Chase PB, Schlenoff JB. 2003.. Nano Lett. 3:(11):15059
    [Crossref] [Google Scholar]
  48. 48.
    Hanson KL, Fulga F, Dobroiu S, Solana G, Kaspar O, et al. 2017.. Biosens. Bioelectron. 93::30514
    [Crossref] [Google Scholar]
  49. 49.
    Sundberg M, Balaz M, Bunk R, Rosengren-Holmberg JP, Montelius L, et al. 2006.. Langmuir 22:(17):730212
    [Crossref] [Google Scholar]
  50. 50.
    Hiratsuka Y, Tada T, Oiwa K, Kanayama T, Uyeda TQP. 2001.. Biophys. J. 81:(3):155561
    [Crossref] [Google Scholar]
  51. 51.
    Clemmens J, Hess H, Howard J, Vogel V. 2003.. Langmuir 19:(5):173844
    [Crossref] [Google Scholar]
  52. 52.
    Clemmens J, Hess H, Lipscomb R, Hanein Y, Böhringer KF, et al. 2003.. Langmuir 19:(26):1096774
    [Crossref] [Google Scholar]
  53. 53.
    Clemmens J, Hess H, Doot R, Matzke CM, Bachand GD, Vogel V. 2004.. Lab Chip 4:(2):8386
    [Crossref] [Google Scholar]
  54. 54.
    Nicolau DV, Lard M, Korten T, van Delft FCMJM, Persson M, et al. 2016.. PNAS 113:(10):259196
    [Crossref] [Google Scholar]
  55. 55.
    Bunk R, Klinth J, Montelius L, Nicholls IA, Omling P, et al. 2003.. Biochem. Biophys. Res. Commun. 301:(3):78388
    [Crossref] [Google Scholar]
  56. 56.
    Bunk R, Sundberg M, Mansson A, Nicholls IA, Omling P, et al. 2005.. Nanotechnology 16:(6):710
    [Crossref] [Google Scholar]
  57. 57.
    Lindberg FW, Norrby M, Rahman MA, Salhotra A, Takatsuki H, et al. 2018.. Langmuir 34:(30):877784
    [Crossref] [Google Scholar]
  58. 58.
    Lard M, ten Siethoff L, Kumar S, Persson M, te Kronnie G, et al. 2013.. Biosens. Bioelectron. 48::14552
    [Crossref] [Google Scholar]
  59. 59.
    Sundberg M, Bunk R, Albet-Torres N, Kvennefors A, Persson F, et al. 2006.. Langmuir 22:(17):728695
    [Crossref] [Google Scholar]
  60. 60.
    Cheng LJ, Kao MT, Meyhöfer E, Guo LJ. 2005.. Small 1:(4):40914
    [Crossref] [Google Scholar]
  61. 61.
    Barakat JM, Modica KJ, Lu L, Anujarerat S, Choi KH, Takatori SC. 2024.. ACS Appl. Nano Mater. 7::1214252
    [Crossref] [Google Scholar]
  62. 62.
    Inoue D, Gutmann G, Nitta T, Kabir AMR, Konagaya A, et al. 2019.. ACS Nano 13:(11):1245260
    [Crossref] [Google Scholar]
  63. 63.
    Thijssen K, Khaladj DA, Aghvami SA, Gharbi MA, Fraden S, et al. 2021.. PNAS 118:(38):e2106038118
    [Crossref] [Google Scholar]
  64. 64.
    Khaladj DA, Hirst LS. 2022.. Front. Phys. 10::880941
    [Crossref] [Google Scholar]
  65. 65.
    Striebel M, Graf IR, Frey E. 2020.. Biophys. J. 118:(2):31324
    [Crossref] [Google Scholar]
  66. 66.
    Saintillan D, Shelley MJ. 2013.. C. R. Phys. 14:(6):497517
    [Crossref] [Google Scholar]
  67. 67.
    Ramaswamy S, Rao M. 2007.. N. J. Phys. 9:(11):423
    [Crossref] [Google Scholar]
  68. 68.
    Doostmohammadi A, Ignés-Mullol J, Yeomans JM, Sagués F. 2018.. Nat. Commun. 9:(1):3246
    [Crossref] [Google Scholar]
  69. 69.
    Denk J, Frey E. 2020.. PNAS 117:(50):3162330
    [Crossref] [Google Scholar]
  70. 70.
    Bertin E, Baskaran A, Chaté H, Marchetti MC. 2015.. Phys. Rev. E 92:(4):42141
    [Crossref] [Google Scholar]
  71. 71.
    Baskaran A, Marchetti MC. 2008.. Phys. Rev. Lett. 101:(26):268101
    [Crossref] [Google Scholar]
  72. 72.
    Baskaran A, Marchetti MC. 2008.. Phys. Rev. E 77:(1):011920
    [Crossref] [Google Scholar]
  73. 73.
    Baskaran A, Marchetti CM. 2010.. J. Stat. Mech. Theory Exp. 2010:(04):P04019
    [Crossref] [Google Scholar]
  74. 74.
    Baskaran A, Marchetti MC. 2012.. Eur. Phys. J. E 35:(9):95
    [Crossref] [Google Scholar]
  75. 75.
    Ghosh S, Joshi C, Baskaran A, Hagan MF. 2024.. arXiv:2408.14596 [cond-mat.soft]
  76. 76.
    Ghosh S, Joshi C, Baskaran A, Hagan MF. 2024.. arXiv:2405.07942 [cond-mat.soft]
  77. 77.
    Nishiyama K, Berezney J, Norton MM, Aggarwal A, Ghosh S, et al. 2024.. arXiv:2408.14414 [cond-mat.soft]
  78. 78.
    Tran PN, Ray S, Lemma L, Li Y, Sweeney R, et al. 2024.. Soft Matter 20::724657
    [Crossref] [Google Scholar]
  79. 79.
    Nasouri B, Vilfan A, Golestanian R. 2021.. Phys. Rev. Lett. 126:(3):034503
    [Crossref] [Google Scholar]
  80. 80.
    Daddi-Moussa-Ider A, Löwen H, Liebchen B. 2021.. Commun. Phys. 4:(1):15
    [Crossref] [Google Scholar]
  81. 81.
    Daddi-Moussa-Ider A, Nasouri B, Vilfan A, Golestanian R. 2021.. J. Fluid Mech. 922::R5
    [Crossref] [Google Scholar]
  82. 82.
    Liebchen B, Löwen H. 2019.. EPL 127:(3):34003
    [Crossref] [Google Scholar]
  83. 83.
    Piro L, Tang E, Golestanian R. 2021.. Phys. Rev. Res. 3:(2):023125
    [Crossref] [Google Scholar]
  84. 84.
    Zanovello L, Faccioli P, Franosch T, Caraglio M. 2021.. J. Chem. Phys. 155:(8):084901
    [Crossref] [Google Scholar]
  85. 85.
    Selmke M, Khadka U, Bregulla AP, Cichos F, Yang H. 2018.. Phys. Chem. Chem. Phys. 20:(15):1050220
    [Crossref] [Google Scholar]
  86. 86.
    Norton MM, Grover P, Hagan MF, Fraden S. 2020.. Phys. Rev. Lett. 125::178005
    [Crossref] [Google Scholar]
  87. 87.
    Cavagna A, Culla A, Feng X, Giardina I, Grigera TS, et al. 2022.. Nat. Commun. 13:(1):2315
    [Crossref] [Google Scholar]
  88. 88.
    Shankar S, Raju V, Mahadevan L. 2022.. PNAS 119:(35):e2121985119
    [Crossref] [Google Scholar]
  89. 89.
    Shankar S, Scharrer LV, Bowick MJ, Marchetti MC. 2024.. PNAS 121:(21):e2400933121
    [Crossref] [Google Scholar]
  90. 90.
    Davis LK, Proesmans K, Fodor E. 2024.. Phys. Rev. X 14:(1):011012
    [Google Scholar]
  91. 91.
    Chennakesavalu S, Rotskoff GM. 2021.. J. Chem. Phys. 155:(19):194114
    [Crossref] [Google Scholar]
  92. 92.
    Schwenzer M, Ay M, Bergs T, Abel D. 2021.. Int. J. Adv. Manuf. Technol. 117:(5):132749
    [Crossref] [Google Scholar]
  93. 93.
    Wensink HH, Dunkel J, Heidenreich S, Drescher K, Goldstein RE, et al. 2012.. PNAS 109:(36):1430813
    [Crossref] [Google Scholar]
  94. 94.
    Dunkel J, Heidenreich S, Bär M, Goldstein RE. 2013.. N. J. Phys. 15:(4):045016
    [Crossref] [Google Scholar]
  95. 95.
    Bratanov V, Jenko F, Frey E. 2015.. PNAS 112:(49):1504853
    [Crossref] [Google Scholar]
  96. 96.
    Toner J, Tu Y. 1998.. Phys. Rev. E 58:(4):482858
    [Crossref] [Google Scholar]
  97. 97.
    Toner J, Tu Y, Ramaswamy S. 2005.. Ann. Phys. 318:(1):170244
    [Crossref] [Google Scholar]
  98. 98.
    Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J, et al. 2013.. Rev. Mod. Phys. 85:(3):114389
    [Crossref] [Google Scholar]
  99. 99.
    Hartmann R, Singh PK, Pearce P, Mok R, Song B, et al. 2018.. Nat. Phys. 15:(3):25156
    [Crossref] [Google Scholar]
  100. 100.
    Shah G, Thierbach K, Schmid B, Waschke J, Reade A, et al. 2019.. Nat. Commun. 10:(1):5753
    [Crossref] [Google Scholar]
  101. 101.
    Stelzer EH. 2014.. Nat. Methods 12:(1):2326
    [Crossref] [Google Scholar]
  102. 102.
    Anderson JA, Glaser J, Glotzer SC. 2020.. Comput. Mater. Sci. 173::109363
    [Crossref] [Google Scholar]
  103. 103.
    Shaebani MR, Wysocki A, Winkler RG, Gompper G, Rieger H. 2020.. Nat. Rev. Phys. 2:(4):18199
    [Crossref] [Google Scholar]
  104. 104.
    Brücknerbr DB, Broedersz CP. 2024.. Rep. Prog. Phys. 87::056601
    [Crossref] [Google Scholar]
  105. 105.
    Cichos F, Gustavsson K, Mehlig B, Volpe G. 2020.. Nat. Mach. Intel. 2:(2):94103
    [Crossref] [Google Scholar]
  106. 106.
    Colen J, Han M, Zhang R, Redford SA, Lemma LM, et al. 2021.. PNAS 118:(10):e2016708118
    [Crossref] [Google Scholar]
  107. 107.
    Joshi C, Ray S, Lemma LM, Varghese M, Sharp G, et al. 2022.. Phys. Rev. Lett. 129:(25):258001
    [Crossref] [Google Scholar]
  108. 108.
    Supekar R, Song B, Hastewell A, Choi GP, Mietke A, Dunkel J. 2023.. PNAS 120:(7):e2206994120
    [Crossref] [Google Scholar]
  109. 109.
    Hansen E, Brunton SL, Song Z. 2022.. IEEE Access 10::5950821
    [Crossref] [Google Scholar]
  110. 110.
    Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. 1995.. Phys. Rev. Lett. 75:(6):122629
    [Crossref] [Google Scholar]
  111. 111.
    Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. 2021.. Nat. Rev. Phys. 3:(6):42240
    [Crossref] [Google Scholar]
  112. 112.
    Raissi M, Perdikaris P, Karniadakis GE. 2019.. J. Comput. Phys. 378::686707
    [Crossref] [Google Scholar]
  113. 113.
    Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE. 2021.. Nat. Mach. Intel. 3:(3):21829
    [Crossref] [Google Scholar]
  114. 114.
    Rico-Martinez R, Krischer K, Kevrekidis I, Kube M, Hudson J. 1992.. Chem. Eng. Commun. 118:(1):2548
    [Crossref] [Google Scholar]
  115. 115.
    Rico-Martinez R, Anderson JS, Kevrekidis IG. 1994.. In Proceedings of the 4th IEEE Workshop on Neural Networks for Signal Processing (NNSP'94), Ermioni, Greece, pp. 596605. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  116. 116.
    Lovelett RJ, Avalos JL, Kevrekidis IG. 2020.. Ind. Eng. Chem. Res. 59:(6):261120
    [Crossref] [Google Scholar]
  117. 117.
    Psichogios DC, Ungar LH. 1992.. AIChE J. 38:(10):1499511
    [Crossref] [Google Scholar]
  118. 118.
    Brunton SL, Proctor JL, Kutz JN. 2016.. PNAS 113:(15):393237
    [Crossref] [Google Scholar]
  119. 119.
    Champion K, Lusch B, Kutz JN, Brunton SL. 2019.. PNAS 116:(45):2244551
    [Crossref] [Google Scholar]
  120. 120.
    Maddu S, Weady S, Shelley MJ. 2024.. J. Comput. Phys. 504::112869
    [Crossref] [Google Scholar]
  121. 121.
    Rubenstein M, Ahler C, Hoff N, Cabrera A, Nagpal R. 2014.. Robot. Auton. Syst. 62:(7):96675
    [Crossref] [Google Scholar]
  122. 122.
    Rubenstein M, Cornejo A, Nagpal R. 2014.. Science 345:(6198):79599
    [Crossref] [Google Scholar]
  123. 123.
    Takatori SC, Brady JF. 2014.. Soft Matter 10:(47):943345
    [Crossref] [Google Scholar]
  124. 124.
    Saintillan D, Shelley MJ. 2008.. Phys. Rev. Lett. 100:(17):178103
    [Crossref] [Google Scholar]
  125. 125.
    Cates ME, Tailleur J. 2013.. EPL 101:(2):20010
    [Crossref] [Google Scholar]
  126. 126.
    Yan W, Brady JF. 2015.. Soft Matter 11:(31):623544
    [Crossref] [Google Scholar]
  127. 127.
    Modica KJ, Takatori SC. 2024.. Soft Matter 20:(10):233137
    [Crossref] [Google Scholar]
  128. 128.
    Omar AK, Wang ZG, Brady JF. 2020.. Phys. Rev. E 101:(1):012604
    [Crossref] [Google Scholar]
  129. 129.
    Solon AP, Stenhammar J, Cates ME, Kafri Y, Tailleur J. 2018.. N. J. Phys. 20:(7):075001
    [Crossref] [Google Scholar]
  130. 130.
    Fily Y, Kafri Y, Solon AP, Tailleur J, Turner A. 2017.. J. Phys. A Math. Theor. 51:(4):044003
    [Crossref] [Google Scholar]
  131. 131.
    Paliwal S, Rodenburg J, Van Roij R, Dijkstra M. 2018.. N. J. Phys. 20:(1):015003
    [Crossref] [Google Scholar]
  132. 132.
    Beris AN, Edwards BJ. 1994.. Thermodynamics of Flowing Systems: With Internal Microstructure. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  133. 133.
    Doi M. 2013.. Soft Matter Physics. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  134. 134.
    Takens F. 1981.. In Dynamical Systems and Turbulence, Lecture Notes in Mathematics. Berlin/Heidelberg:: Springer
    [Google Scholar]
  135. 135.
    Chen RTQ, Rubanova Y, Bettencourt J, Duvenaud D. 2018.. In 32nd Conference on Advances in Neural Information Processing Systems (NeurIPS 2018), ed. S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, R Garnett , pp. 113. Red Hook, NY:: Curran Assoc.
    [Google Scholar]
  136. 136.
    Modica KJ, Xi Y, Takatori SC. 2022.. Front. Phys. 10::869175
    [Crossref] [Google Scholar]
  137. 137.
    Modica KJ, Omar AK, Takatori SC. 2023.. Soft Matter 19:(10):189099
    [Crossref] [Google Scholar]
  138. 138.
    Martínez-Calvo A, Trenado-Yuste C, Datta SS. 2023.. Out-of-Equilibrium Soft Matter, ed. C Kurzthaler, L Gentile, HA Stone , pp. 151218. London:: R. Soc. Chem.
    [Google Scholar]
  139. 139.
    Sugihara G, May R, Ye H, Hsieh CH, Deyle E, et al. 2012.. Science 338:(6106):496500
    [Crossref] [Google Scholar]
  140. 140.
    Hespanha JP. 2018.. Linear Systems Theory. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  141. 141.
    Rawlings JB, Mayne DQ, Diehl MM. 2020.. Model Predictive Control: Theory, Design, and Computation. Santa Barbara, CA:: Nob Hill Publ. , 2nd ed..
    [Google Scholar]
  142. 142.
    Quah T, Modica KJ, Rawlings JB, Takatori SC. 2024.. Soft Matter 20(43):858188
    [Google Scholar]
  143. 143.
    Cates ME, Tailleur J. 2015.. Annu. Rev. Condens. Matter Phys. 6::21944
    [Crossref] [Google Scholar]
  144. 144.
    Zhao H, Košmrlj A, Datta SS. 2023.. Phys. Rev. Lett. 131:(11):118301
    [Crossref] [Google Scholar]
  145. 145.
    Brauns F, Marchetti MC. 2023.. Phys. Rev. X 14:(2):021014
    [Google Scholar]
  146. 146.
    Saha S, Agudo-Canalejo J, Golestanian R. 2020.. Phys. Rev. X 10:(4):041009
    [Google Scholar]
  147. 147.
    Marconi UMB, Tarazona P. 1999.. J. Chem. Phys. 110:(16):8032
    [Crossref] [Google Scholar]
  148. 148.
    Archer AJ, Evans R. 2004.. J. Chem. Phys. 121:(9):4246
    [Crossref] [Google Scholar]
  149. 149.
    Hansen JP, McDonald IR. 2013.. Theory of Simple Liquids: With Applications to Soft Matter. Cambridge, MA:: Academic
    [Google Scholar]
  150. 150.
    Ornstein L, Zernike F. 1914.. Proc. R. Neth. Acad. Arts Sci. 17::793806
    [Google Scholar]
  151. 151.
    Van Teeffelen S, Likos CN, Löwen H. 2008.. Phys. Rev. Lett. 100:(10):108302
    [Crossref] [Google Scholar]
  152. 152.
    Likos CN, Mladek BM, Gottwald D, Kahl G. 2007.. J. Chem. Phys. 126:(22):224502
    [Crossref] [Google Scholar]
  153. 153.
    Lichtner K, Klapp SH. 2010.. EPL 92:(4):40007
    [Crossref] [Google Scholar]
  154. 154.
    Wensink HH, Löwen H. 2008.. Phys. Rev. E 78:(3):031409
    [Crossref] [Google Scholar]
  155. 155.
    Zhang J, Yang J, Zhang Y, Bevan MA. 2020.. Sci. Adv. 6:(48):eabd6716
    [Crossref] [Google Scholar]
  156. 156.
    Leal LG. 2007.. Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge, UK:: Cambridge Univ. Press. , 1st ed..
    [Google Scholar]
  157. 157.
    Guazzelli l, Morris JF. 2011.. A Physical Introduction to Suspension Dynamics. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  158. 158.
    Baskaran A, Marchetti MC. 2009.. PNAS 106:(37):1556772
    [Crossref] [Google Scholar]
  159. 159.
    Drescher K, Dunkel J, Cisneros LH, Ganguly S, Goldstein RE. 2011.. PNAS 108:(27):1094045
    [Crossref] [Google Scholar]
  160. 160.
    Ramaswamy S. 2010.. Annu. Rev. Condens. Matter Phys. 1::32345
    [Crossref] [Google Scholar]
  161. 161.
    Lushi E, Wioland H, Goldstein RE. 2014.. PNAS 111:(27):973338
    [Crossref] [Google Scholar]
  162. 162.
    Brady JF, Phillips RJ, Lester JC, Bossis G. 1988.. J. Fluid Mech. 195::25780
    [Crossref] [Google Scholar]
  163. 163.
    Whitaker KA, Varga Z, Hsiao LC, Solomon MJ, Swan JW, Furst EM. 2019.. Nat. Commun. 10:(1):2237
    [Crossref] [Google Scholar]
  164. 164.
    Varga Z, Hofmann JL, Swan JW. 2018.. J. Fluid Mech. 856::101444
    [Crossref] [Google Scholar]
  165. 165.
    Happel J, Brenner H. 1983.. Low Reynolds Number Hydrodynamics, 1: Mechanics of Fluids and Transport Processes. Dordrecht, Neth:.: Springer
    [Google Scholar]
  166. 166.
    Kim S, Karrila SJ. 1991.. Microhydrodynamics: Principles and Selected Applications. Oxford, UK:: Butterworth-Heinemann
    [Google Scholar]
  167. 167.
    Jeffrey DJ, Onishi Y. 1984.. J. Fluid Mech. 139::26190
    [Crossref] [Google Scholar]
  168. 168.
    Xu Y, Choi KH, Nagella SG, Takatori SC. 2023.. Soft Matter 19:(30):5692700
    [Crossref] [Google Scholar]
  169. 169.
    Lennon KR, McKinley GH, Swan JW. 2023.. PNAS 120:(27):e2304669120
    [Crossref] [Google Scholar]
  170. 170.
    Zia RN, Swan JW, Su Y. 2015.. J. Chem. Phys. 143:(22):224901
    [Crossref] [Google Scholar]
  171. 171.
    Swan JW, Wang G. 2016.. Phys. Fluids 28:(1):011902
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-042424-043926
Loading
/content/journals/10.1146/annurev-conmatphys-042424-043926
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error