1932

Abstract

With the growing number of microscale devices from computer memory to microelectromechanical systems, such as lab-on-a-chip biosensors, and the increased ability to experimentally measure at the micro- and nanoscale, modeling systems with stochastic processes is a growing need across science. In particular, stochastic partial differential equations (SPDEs) naturally arise from continuum models—for example, a pillar magnet's magnetization or an elastic membrane's mechanical deflection. In this review, I seek to acquaint the reader with SPDEs from the point of view of numerically simulating their finite-difference approximations, without the rigorous mathematical details of assigning probability measures to the random field solutions. I stress that these simulations with spatially uncorrelated noise may not converge as the grid size goes to zero in the way that one expects from deterministic convergence of numerical schemes in two or more spatial dimensions. I then present some models with spatially correlated noise that maintain sampling of the physically relevant equilibrium distribution. Numerical simulations are presented to demonstrate the dynamics; the code is publicly available on GitHub.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-042624-033003
2025-03-10
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/16/1/annurev-conmatphys-042624-033003.html?itemId=/content/journals/10.1146/annurev-conmatphys-042624-033003&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Indergand R, Vidyasagar A, Nadkarni N, Kochmann DM. 2020.. J. Mech. Phys. Solids 144::104098
    [Crossref] [Google Scholar]
  2. 2.
    Bauer N, Neumayer SM, Maksymovych P, Lavrentovich MO. 2022.. Phys. Rev. Mater. 6:(12):124401
    [Crossref] [Google Scholar]
  3. 3.
    Khajehtourian R, Frazier MJ, Kochmann DM. 2022.. Extreme Mech. Lett. 50::101527
    [Crossref] [Google Scholar]
  4. 4.
    Baňas u, Brzeźniak Z, Prohl A. 2013.. SIAM J. Sci. Comput. 35:(1):B6281
    [Crossref] [Google Scholar]
  5. 5.
    Walsh JB. 1986.. In École d'Été de Probabilités de Saint Flour XIV, 1984, ed. R Carmona, H Kesten, JB Walsh, PL Hennequin , pp. 265439. Berlin/Heidelberg:: Springer
    [Google Scholar]
  6. 6.
    Da Prato G, Zabczyk J. 1992.. Stochastic Equations in Infinite Dimensions, Vol. 45: Encyclopedia of Mathematics and Its Applications. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  7. 7.
    Davie AM, Gaines JG. 2001.. Math. Comput. 70:(233):12134
    [Crossref] [Google Scholar]
  8. 8.
    Ryser MD, Nigam N, Tupper PF. 2012.. J. Comput. Phys. 231:(6):253750
    [Crossref] [Google Scholar]
  9. 9.
    Dalby JL, Majumdar A, Wu Y, Kisan Dond A. 2024.. Liq. Cryst. 51:(2):27696
    [Crossref] [Google Scholar]
  10. 10.
    Méndez V, Llopis I, Campos D, Horsthemke W. 2010.. Theor. Popul. Biol. 77:(4):25056
    [Crossref] [Google Scholar]
  11. 11.
    Stroock DW, Varadhan SRS. 2007.. Multidimensional Diffusion Processes. Berlin/Heidelberg:: Springer
    [Google Scholar]
  12. 12.
    Gao Y, Kirkpatrick K, Marzuola J, Mattingly J, Newhall KA. 2021.. Commun. Math. Sci. 19:(2):45394
    [Crossref] [Google Scholar]
  13. 13.
    Gao Y, Marzuola JL, Mattingly JC, Newhall KA. 2020.. Phys. Rev. E 102:(5):052112
    [Crossref] [Google Scholar]
  14. 14.
    Newhall KA, Vanden-Eijnden E. 2017.. J. Nonlinear Sci. 27:(3):100742
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-042624-033003
Loading
/content/journals/10.1146/annurev-conmatphys-042624-033003
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error