1932

Abstract

The flattening of single-particle band structures plays an important role in the quest for novel quantum states of matter owing to the crucial role of interactions. Recent advances in theory and experiment made it possible to construct and tune systems with nearly flat bands, ranging from graphene multilayers and moiré materials to kagome metals and ruthenates. Although theoretical models predict exactly flat bands under certain ideal conditions, evidence was provided that these systems host high-order Van Hove points, i.e., points of high local band flatness and power-law divergence in energy of the density of states. In this review, we examine recent developments in engineering and realizing such weakly dispersive bands. We focus on high-order Van Hove singularities and explore their connection to exactly flat bands. We provide classification schemes and discuss interaction effects. We also review experimental evidence for high-order Van Hove singularities and point out future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-042924-015000
2025-03-10
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/16/1/annurev-conmatphys-042924-015000.html?itemId=/content/journals/10.1146/annurev-conmatphys-042924-015000&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lifshitz I. 1960.. Sov. Phys. JETP 11:(5):113035
    [Google Scholar]
  2. 2.
    Van Hove L. 1953.. Phys. Rev. 89:(6):118993
    [Crossref] [Google Scholar]
  3. 3.
    Abrikosov AA. 2017.. Fundamentals of the Theory of Metals. Mineola, NY:: Dover Publ.
    [Google Scholar]
  4. 4.
    Chandrasekaran A, Shtyk A, Betouras JJ, Chamon C. 2020.. Phys. Rev. Res. 2:(1):013355
    [Crossref] [Google Scholar]
  5. 5.
    Yuan NFQ, Fu L. 2020.. Phys. Rev. B 101:(12):125120
    [Crossref] [Google Scholar]
  6. 6.
    Yuan NFQ, Isobe H, Fu L. 2019.. Nat. Commun. 10:(1):5769
    [Crossref] [Google Scholar]
  7. 7.
    Kerelsky A, McGilly LJ, Kennes DM, Xian L, Yankowitz M, et al. 2019.. Nature 572:(7767):95100
    [Crossref] [Google Scholar]
  8. 8.
    Aoki D, Seyfarth G, Pourret A, Gourgout A, McCollam A, et al. 2016.. Phys. Rev. Lett. 116:(3):037202
    [Crossref] [Google Scholar]
  9. 9.
    Barber ME, Lechermann F, Streltsov SV, Skornyakov SL, Ghosh S, et al. 2019.. Phys. Rev. B 100:(24):245139
    [Crossref] [Google Scholar]
  10. 10.
    Benhabib S, Sacuto A, Civelli M, Paul I, Cazayous M, et al. 2015.. Phys. Rev. Lett. 114:(14):147001
    [Crossref] [Google Scholar]
  11. 11.
    Coldea AI, Blake SF, Kasahara S, Haghighirad AA, Watson MD, et al. 2019.. NPJ Quantum Mater. 4:(1):2
    [Crossref] [Google Scholar]
  12. 12.
    Sherkunov Y, Chubukov AV, Betouras JJ. 2018.. Phys. Rev. Lett. 121:(9):097001
    [Crossref] [Google Scholar]
  13. 13.
    Slizovskiy S, Chubukov AV, Betouras JJ. 2015.. Phys. Rev. Lett. 114:(6):066403
    [Crossref] [Google Scholar]
  14. 14.
    Pfau H, Daou R, Lausberg S, Naren HR, Brando M, et al. 2013.. Phys. Rev. Lett. 110:(25):256403
    [Crossref] [Google Scholar]
  15. 15.
    Yelland E, Barraclough J, Wang W, Kamenev K, Huxley A. 2011.. Nat. Phys. 7:(11):89094
    [Crossref] [Google Scholar]
  16. 16.
    Classen L, Chubukov AV, Honerkamp C, Scherer MM. 2020.. Phys. Rev. B 102:(12):125141
    [Crossref] [Google Scholar]
  17. 17.
    Lin YP, Nandkishore RM. 2020.. Phys. Rev. B 102:(24):245122
    [Crossref] [Google Scholar]
  18. 18.
    Bi Z, Fu L. 2021.. Nat. Commun. 12:(1):642
    [Crossref] [Google Scholar]
  19. 19.
    Guerci D, Simon P, Mora C. 2022.. Phys. Rev. Res. 4:(1):L012013
    [Crossref] [Google Scholar]
  20. 20.
    Oriekhov DO, Gusynin VP, Loktev VM. 2021.. Phys. Rev. B 103:(19):195104
    [Crossref] [Google Scholar]
  21. 21.
    Efremov DV, Shtyk A, Rost AW, Chamon C, Mackenzie AP, Betouras JJ. 2019.. Phys. Rev. Lett. 123:(20):207202
    [Crossref] [Google Scholar]
  22. 22.
    Chandrasekaran A, Rhodes LC, Morales EA, Marques CA, King PDC, et al. 2024.. Nat Commun. 15:9521
    [Google Scholar]
  23. 23.
    Rosenzweig P, Karakachian H, Marchenko D, Küster K, Starke U. 2020.. Phys. Rev. Lett. 125:(17):176403
    [Crossref] [Google Scholar]
  24. 24.
    Kang M, Fang S, Kim JK, Ortiz BR, Ryu SH, et al. 2022.. Nat. Phys. 18:(3):3018
    [Crossref] [Google Scholar]
  25. 25.
    Hu Y, Wu X, Ortiz BR, Ju S, Han X, et al. 2022.. Nat. Commun. 13:(1):2220
    [Crossref] [Google Scholar]
  26. 26.
    Cao Y, Fatemi V, Demir A, Fang S, Tomarken SL, et al. 2018.. Nature 556:(7699):8084
    [Crossref] [Google Scholar]
  27. 27.
    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, et al. 2018.. Nature 556:(7699):4350
    [Crossref] [Google Scholar]
  28. 28.
    Seiler AM, Geisenhof FR, Winterer F, Watanabe K, Taniguchi T, et al. 2022.. Nature 608:(7922):298302
    [Crossref] [Google Scholar]
  29. 29.
    Zhou H, Holleis L, Saito Y, Cohen L, Huynh W, et al. 2022.. Science 375:(9582):77478
    [Crossref] [Google Scholar]
  30. 30.
    Castrigiano DP, Hayes SA. 2019.. Catastrophe Theory. Boca Raton, FL:: CRC
    [Google Scholar]
  31. 31.
    Wu F, Lovorn T, Tutuc E, MacDonald AH. 2018.. Phys. Rev. Lett. 121:(2):026402
    [Crossref] [Google Scholar]
  32. 32.
    Sutherland B. 1986.. Phys. Rev. B 34:(8):520811
    [Crossref] [Google Scholar]
  33. 33.
    Bergman DL, Wu C, Balents L. 2008.. Phys. Rev. B 78:(12):125104
    [Crossref] [Google Scholar]
  34. 34.
    Kollar AJ, Fitzpatrick M, Sarnak P, Houck AA. 2020.. Commun. Math. Phys. 376:(3):190956
    [Crossref] [Google Scholar]
  35. 35.
    Ma DS, Xu Y, Chiu CS, Regnault N, Houck AA, et al. 2020.. Phys. Rev. Lett. 125:(26):266403
    [Crossref] [Google Scholar]
  36. 36.
    Lieb EH. 1989.. Phys. Rev. Lett. 62:(10):12014
    [Crossref] [Google Scholar]
  37. 37.
    Neupert T, Santos L, Chamon C, Mudry C. 2011.. Phys. Rev. Lett. 106:(23):236804
    [Crossref] [Google Scholar]
  38. 38.
    Sun K, Gu Z, Katsura H, Das Sarma S. 2011.. Phys. Rev. Lett. 106:(23):236803
    [Crossref] [Google Scholar]
  39. 39.
    Ramachandran A, Andreanov A, Flach S. 2017.. Phys. Rev. B 96:(16):161104
    [Crossref] [Google Scholar]
  40. 40.
    Bi Z, Yuan NFQ, Fu L. 2019.. Phys. Rev. B 100:(3):035448
    [Crossref] [Google Scholar]
  41. 41.
    Xu Y, Pu H. 2020.. Phys. Rev. A 102:(5):053305
    [Crossref] [Google Scholar]
  42. 42.
    Călugăru D, Chew A, Elcoro L, Xu Y, Regnault N, et al. 2022.. Nat. Phys. 18:(2):18589
    [Crossref] [Google Scholar]
  43. 43.
    Röntgen M, Morfonios CV, Schmelcher P. 2018.. Phys. Rev. B 97:(3):035161
    [Crossref] [Google Scholar]
  44. 44.
    Rhim JW, Yang BJ. 2019.. Phys. Rev. B 99:(4):045107
    [Crossref] [Google Scholar]
  45. 45.
    Sun K, Yao H, Fradkin E, Kivelson SA. 2009.. Phys. Rev. Lett. 103:(4):046811
    [Crossref] [Google Scholar]
  46. 46.
    Bistritzer R, MacDonald AH. 2011.. PNAS 108:(30):1223337
    [Crossref] [Google Scholar]
  47. 47.
    Khalaf E, Kruchkov AJ, Tarnopolsky G, Vishwanath A. 2019.. Phys. Rev. B 100:(8):085109
    [Crossref] [Google Scholar]
  48. 48.
    Carr S, Li C, Zhu Z, Kaxiras E, Sachdev S, Kruchkov A. 2020.. Nano Lett. 20:(5):303038
    [Crossref] [Google Scholar]
  49. 49.
    Zhu Z, Carr S, Massatt D, Luskin M, Kaxiras E. 2020.. Phys. Rev. Lett. 125:(11):116404
    [Crossref] [Google Scholar]
  50. 50.
    Volkov PA, Wilson JH, Lucht KP, Pixley JH. 2023.. Phys. Rev. B 107:(17):174506
    [Crossref] [Google Scholar]
  51. 51.
    Can O, Tummuru T, Day RP, Elfimov I, Damascelli A, Franz M. 2021.. Nat. Phys. 17:(4):51924
    [Crossref] [Google Scholar]
  52. 52.
    Song XY, Zhang YH, Vishwanath A. 2022.. Phys. Rev. B 105:(20):L201102
    [Crossref] [Google Scholar]
  53. 53.
    Cano J, Fang S, Pixley JH, Wilson JH. 2021.. Phys. Rev. B 103:(15):155157
    [Crossref] [Google Scholar]
  54. 54.
    Wang T, Yuan NFQ, Fu L. 2021.. Phys. Rev. X 11:(2):021024
    [Google Scholar]
  55. 55.
    Dunbrack A, Cano J. 2022.. Phys. Rev. B 106:(7):075142
    [Crossref] [Google Scholar]
  56. 56.
    Wu F, Lovorn T, Tutuc E, Martin I, MacDonald AH. 2019.. Phys. Rev. Lett. 122:(8):086402
    [Crossref] [Google Scholar]
  57. 57.
    Pan H, Wu F, Das Sarma S. 2020.. Phys. Rev. Res. 2:(3):033087
    [Crossref] [Google Scholar]
  58. 58.
    Zang J, Wang J, Cano J, Millis AJ. 2021.. Phys. Rev. B 104:(7):075150
    [Crossref] [Google Scholar]
  59. 59.
    Li MR, He AL, Yao H. 2022.. Phys. Rev. Res. 4:(4):043151
    [Crossref] [Google Scholar]
  60. 60.
    Ahmadkhani S, Alihosseini M, Ghasemi S, Ahmadabadi I, Hassani N, et al. 2023.. Phys. Rev. B 107:(7):075401
    [Crossref] [Google Scholar]
  61. 61.
    Lu Q, Le C, Zhang X, Cook J, He X, et al. 2022.. Adv. Mater. 34:(26):2200625
    [Crossref] [Google Scholar]
  62. 62.
    Balents L, Dean CR, Efetov DK, Young AF. 2020.. Nat. Phys. 16:(7):72533
    [Crossref] [Google Scholar]
  63. 63.
    Andrei EY, Efetov DK, Jarillo-Herrero P, MacDonald AH, Mak KF, et al. 2021.. Nat. Rev. Mater. 6:(3):2016
    [Crossref] [Google Scholar]
  64. 64.
    Kennes DM, Claassen M, Xian L, Georges A, Millis AJ, et al. 2021.. Nat. Phys. 17:(2):15563
    [Crossref] [Google Scholar]
  65. 65.
    Sheffer Y, Queiroz R, Stern A. 2023.. Phys. Rev. X 13:(2):021012
    [Google Scholar]
  66. 66.
    Tarnopolsky G, Kruchkov AJ, Vishwanath A. 2019.. Phys. Rev. Lett. 122:(10):106405
    [Crossref] [Google Scholar]
  67. 67.
    Chandrasekaran A, Betouras JJ. 2023.. Adv. Phys. Res. 2:(5):2200061
    [Crossref] [Google Scholar]
  68. 68.
    Shtyk A, Goldstein G, Chamon C. 2017.. Phys. Rev. B 95:(3):035137
    [Crossref] [Google Scholar]
  69. 69.
    Kokkinis EK, Goldstein G, Efremov DV, Betouras JJ. 2022.. Phys. Rev. B 105:(15):155123
    [Crossref] [Google Scholar]
  70. 70.
    Zakharov VA, Bozkurt AM, Akhmerov AR, Oriekhov DO. 2024.. Phys. Rev. B 109:(8):L081103
    [Crossref] [Google Scholar]
  71. 71.
    Zang J, Wang J, Cano J, Georges A, Millis AJ. 2022.. Phys. Rev. X 12:(2):021064
    [Google Scholar]
  72. 72.
    Mousatov CH, Berg E, Hartnoll SA. 2020.. PNAS 117:(6):285257
    [Crossref] [Google Scholar]
  73. 73.
    Hlubina R. 1996.. Phys. Rev. B 53:(17):1134447
    [Crossref] [Google Scholar]
  74. 74.
    Buhmann JM. 2013.. Phys. Rev. B 88:(24):245128
    [Crossref] [Google Scholar]
  75. 75.
    Herman F, Buhmann J, Fischer MH, Sigrist M. 2019.. Phys. Rev. B 99:(18):184107
    [Crossref] [Google Scholar]
  76. 76.
    Chandrasekaran A, Betouras JJ. 2022.. Phys. Rev. B 105:(7):075144
    [Crossref] [Google Scholar]
  77. 77.
    Isobe H, Fu L. 2019.. Phys. Rev. Res. 1:(3):033206
    [Crossref] [Google Scholar]
  78. 78.
    Wu Z, Wu YM, Wu F. 2023.. Phys. Rev. B 107:(4):045122
    [Crossref] [Google Scholar]
  79. 79.
    Zervou A, Efremov DV, Betouras JJ. 2023.. Phys. Rev. Res. 5:(4):L042006
    [Crossref] [Google Scholar]
  80. 80.
    Sherkunov Y, Betouras JJ. 2018.. Phys. Rev. B 98:(20):205151
    [Crossref] [Google Scholar]
  81. 81.
    Isobe H, Yuan NFQ, Fu L. 2018.. Phys. Rev. X 8:(4):041041
    [Google Scholar]
  82. 82.
    Lu DC, Wang T, Chatterjee S, You YZ. 2022.. Phys. Rev. B 106:(15):155115
    [Crossref] [Google Scholar]
  83. 83.
    Hsu YT, Wu F, Das Sarma S. 2021.. Phys. Rev. B 104:(19):195134
    [Crossref] [Google Scholar]
  84. 84.
    Wu YM, Wu Z, Yao H. 2023.. Phys. Rev. Lett. 130:(12):126001
    [Crossref] [Google Scholar]
  85. 85.
    Klebl L, Fischer A, Classen L, Scherer MM, Kennes DM. 2023.. Phys. Rev. Res. 5:(1):L012034
    [Crossref] [Google Scholar]
  86. 86.
    Markiewicz RS, Singh B, Lane C, Bansil A. 2023.. Commun. Phys. 6:(1):292
    [Crossref] [Google Scholar]
  87. 87.
    Han X, Schnyder AP, Wu X. 2023.. Phys. Rev. B 107:(18):184504
    [Crossref] [Google Scholar]
  88. 88.
    Han X, Zhan J, Zhang FC, Hu J, Wu X. 2024.. Sci. Bull. 69:(3):31924
    [Crossref] [Google Scholar]
  89. 89.
    Castro P, Shaffer D, Wu YM, Santos LH. 2023.. Phys. Rev. Lett. 131:(2):026601
    [Crossref] [Google Scholar]
  90. 90.
    Aksoy OM, Chandrasekaran A, Tiwari A, Neupert T, Chamon C, Mudry C. 2023.. Phys. Rev. B 107:(20):205129
    [Crossref] [Google Scholar]
  91. 91.
    Igoshev PA, Katanin AA. 2023.. Phys. Rev. B 107:(11):115105
    [Crossref] [Google Scholar]
  92. 92.
    Lee Y-C, Chichinadze DV, Chubukov AV. 2024.. Phys. Rev. B 109::155118
    [Crossref] [Google Scholar]
  93. 93.
    Link S, Forti S, Stöhr A, Küster K, Rösner M, et al. 2019.. Phys. Rev. B 100:(12):121407
    [Crossref] [Google Scholar]
  94. 94.
    McChesney JL, Bostwick A, Ohta T, Seyller T, Horn K, et al. 2010.. Phys. Rev. Lett. 104:(13):136803
    [Crossref] [Google Scholar]
  95. 95.
    Gofron K, Campuzano JC, Abrikosov AA, Lindroos M, Bansil A, et al. 1994.. Phys. Rev. Lett. 73:(24):33025
    [Crossref] [Google Scholar]
  96. 96.
    King DM, Shen ZX, Dessau DS, Marshall DS, Park CH, et al. 1994.. Phys. Rev. Lett. 73:(24):3298301
    [Crossref] [Google Scholar]
  97. 97.
    Ma J, Quitmann C, Kelley RJ, Alméras P, Berger H, et al. 1995.. Phys. Rev. B 51:(6):383239
    [Crossref] [Google Scholar]
  98. 98.
    Lu DH, Schmidt M, Cummins TR, Schuppler S, Lichtenberg F, Bednorz JG. 1996.. Phys. Rev. Lett. 76::4845
    [Crossref] [Google Scholar]
  99. 99.
    Yokoya T, Chainani A, Takahashi T, Katayama-Yoshida H, Kasai M, Tokura Y. 1996.. Phys. Rev. Lett. 76::300912
    [Crossref] [Google Scholar]
  100. 100.
    Irkhin VY, Katanin AA, Katsnelson MI. 2002.. Phys. Rev. Lett. 89:(7):076401
    [Crossref] [Google Scholar]
  101. 101.
    Yudin D, Hirschmeier D, Hafermann H, Eriksson O, Lichtenstein AI, Katsnelson MI. 2014.. Phys. Rev. Lett. 112:(7):070403
    [Crossref] [Google Scholar]
  102. 102.
    Feldman J, Salmhofer M. 2008.. Rev. Math. Phys. 20:(03):275334
    [Crossref] [Google Scholar]
  103. 103.
    Tamai A, Allan MP, Mercure JF, Meevasana W, Dunkel R, et al. 2008.. Phys. Rev. Lett. 101:(2):026407
    [Crossref] [Google Scholar]
  104. 104.
    Lester C, Ramos S, Perry RS, Croft TP, Bewley RI, et al. 2015.. Nat. Mater. 14:(4):37378
    [Crossref] [Google Scholar]
  105. 105.
    Lester C, Ramos S, Perry RS, Croft TP, Laver M, et al. 2021.. Nat. Commun. 12:(1):5798
    [Crossref] [Google Scholar]
  106. 106.
    Damascelli A, Lu DH, Shen KM, Armitage NP, Ronning F, et al. 2000.. Phys. Rev. Lett. 85:(24):519497
    [Crossref] [Google Scholar]
  107. 107.
    Sunko V, Abarca Morales E, Marković I, Barber ME, Milosavljević D, et al. 2019.. NPJ Quantum Mater. 4:(1):46
    [Crossref] [Google Scholar]
  108. 108.
    Hicks CW, Brodsky DO, Yelland EA, Gibbs AS, Bruin JAN, et al. 2014.. Science 344:(6181):28385
    [Crossref] [Google Scholar]
  109. 109.
    Steppke A, Zhao L, Barber ME, Scaffidi T, Jerzembeck F, et al. 2017.. Science 355:(6321):eaaf9398
    [Crossref] [Google Scholar]
  110. 110.
    Noad HML, Ishida K, Li YS, Gati E, Stangier V, et al. 2023.. Science 382:(6669):44750
    [Crossref] [Google Scholar]
  111. 111.
    Matzdorf R, Ismail, Kimura T, Tokura Y, Plummer EW. 2002.. Phys. Rev. B 65:(8):085404
    [Crossref] [Google Scholar]
  112. 112.
    Marques CA, Rhodes LC, Fittipaldi R, Granata V, Yim CM, et al. 2021.. Adv. Mater. 33:(32):2100593
    [Crossref] [Google Scholar]
  113. 113.
    Abarca Morales E, Siemann GR, Zivanovic A, Murgatroyd PAE, Marković I, et al. 2023.. Phys. Rev. Lett. 130:(9):096401
    [Crossref] [Google Scholar]
  114. 114.
    Bergemann C, Mackenzie AP, Julian SR, Forsythe D, Ohmichi E. 2003.. Adv. Phys. 52:(7):639725
    [Crossref] [Google Scholar]
  115. 115.
    Tamai A, Zingl M, Rozbicki E, Cappelli E, Riccò S, et al. 2019.. Phys. Rev. X 9:(2):021048
    [Google Scholar]
  116. 116.
    Wang Z, Walkup D, Derry P, Scaffidi T, Rak M, et al. 2017.. Nat. Phys. 13:(8):799805
    [Crossref] [Google Scholar]
  117. 117.
    de Almeida Marques C, Murgatroyd P, Fittipaldi R, Osmolska W, Edwards BM, et al. 2024.. NPJ Quantum Mater. 9::35
    [Crossref] [Google Scholar]
  118. 118.
    Guo HM, Franz M. 2009.. Phys. Rev. B 80:(11):113102
    [Crossref] [Google Scholar]
  119. 119.
    Tang E, Mei JW, Wen XG. 2011.. Phys. Rev. Lett. 106:(23):236802
    [Crossref] [Google Scholar]
  120. 120.
    Xu G, Lian B, Zhang SC. 2015.. Phys. Rev. Lett. 115:(18):186802
    [Crossref] [Google Scholar]
  121. 121.
    Kang M, Ye L, Fang S, You JS, Levitan A, et al. 2020.. Nat. Mater. 19:(2):16369
    [Crossref] [Google Scholar]
  122. 122.
    Kang M, Fang S, Ye L, Po HC, Denlinger J, et al. 2020.. Nat. Commun. 11:(1):4004
    [Crossref] [Google Scholar]
  123. 123.
    Jiang Y, Hu H, Călugăru D, Felser C, Blanco-Canosa S, et al. 2023.. arxiv:2311.09290 [cond-mat.str-el]
  124. 124.
    Ye L, Kang M, Liu J, von Cube F, Wicker CR, et al. 2018.. Nature 555:(7698):63842
    [Crossref] [Google Scholar]
  125. 125.
    Yin JX, Ma W, Cochran TA, Xu X, Zhang SS, et al. 2020.. Nature 583:(7817):53336
    [Crossref] [Google Scholar]
  126. 126.
    Nakatsuji S, Kiyohara N, Higo T. 2015.. Nature 527:(7577):21215
    [Crossref] [Google Scholar]
  127. 127.
    Nayak AK, Fischer JE, Sun Y, Yan B, Karel J, et al. 2016.. Sci. Adv. 2:(4):e1501870
    [Crossref] [Google Scholar]
  128. 128.
    Liu E, Sun Y, Kumar N, Muechler L, Sun A, et al. 2018.. Nat. Phys. 14:(11):112531
    [Crossref] [Google Scholar]
  129. 129.
    Liu DF, Liang AJ, Liu EK, Xu QN, Li YW, et al. 2019.. Science 365:(6459):128285
    [Crossref] [Google Scholar]
  130. 130.
    Ortiz BR, Gomes LC, Morey JR, Winiarski M, Bordelon M, et al. 2019.. Phys. Rev. Mater. 3:(9):094407
    [Crossref] [Google Scholar]
  131. 131.
    Ortiz BR, Teicher SML, Hu Y, Zuo JL, Sarte PM, et al. 2020.. Phys. Rev. Lett. 125:(24):247002
    [Crossref] [Google Scholar]
  132. 132.
    Ortiz BR, Sarte PM, Kenney EM, Graf MJ, Teicher SML, et al. 2021.. Phys. Rev. Mater. 5:(3):034801
    [Crossref] [Google Scholar]
  133. 133.
    Yin Q, Tu Z, Gong C, Fu Y, Yan S, Lei H. 2021.. Chin. Phys. Lett. 38:(3):037403
    [Crossref] [Google Scholar]
  134. 134.
    Chen H, Yang H, Hu B, Zhao Z, Yuan J, et al. 2021.. Nature 599:(7884):22228
    [Crossref] [Google Scholar]
  135. 135.
    Kiesel ML, Thomale R. 2012.. Phys. Rev. B 86:(12):121105
    [Crossref] [Google Scholar]
  136. 136.
    Hu Y, Wu X, Yang Y, Gao S, Plumb NC, et al. 2022.. Sci. Adv. 8:(38):eadd2024
    [Crossref] [Google Scholar]
  137. 137.
    Seiler AM, Jacobsen N, Statz M, Fernandez N, Falorsi F, et al. 2024.. Nat. Commun. 15::3133
    [Crossref] [Google Scholar]
  138. 138.
    Varlet A, Bischoff D, Simonet P, Watanabe K, Taniguchi T, et al. 2014.. Phys. Rev. Lett. 113:(11):116602
    [Crossref] [Google Scholar]
  139. 139.
    Wu S, Zhang Z, Watanabe K, Taniguchi T, Andrei EY. 2021.. Nat. Mater. 20:(4):48894
    [Crossref] [Google Scholar]
  140. 140.
    Park JM, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P. 2021.. Nature 590:(7845):24955
    [Crossref] [Google Scholar]
  141. 141.
    Wang L, Shih EM, Ghiotto A, Xian L, Rhodes DA, et al. 2020.. Nat. Mater. 19:(8):86166
    [Crossref] [Google Scholar]
  142. 142.
    Regnault N, Xu Y, Li MR, Ma DS, Jovanovic M, et al. 2022.. Nature 603:(7903):82428
    [Crossref] [Google Scholar]
  143. 143.
    Shankar AS, Oriekhov DO, Mitchell AK, Fritz L. 2023.. Phys. Rev. B 107:(24):245102
    [Crossref] [Google Scholar]
  144. 144.
    Sheng DN, Gu ZC, Sun K, Sheng L. 2011.. Nat. Commun. 2::389
    [Crossref] [Google Scholar]
  145. 145.
    Regnault N, Bernevig BA. 2011.. Phys. Rev. X 1:(2):021014
    [Google Scholar]
  146. 146.
    Parameswaran SA, Roy R, Sondhi SL. 2013.. C. R. Phys. 14:(9):81639
    [Crossref] [Google Scholar]
  147. 147.
    Kopnin NB, Heikkila TT, Volovik GE. 2011.. Phys. Rev. B 83:(22):220503
    [Crossref] [Google Scholar]
  148. 148.
    Saha M, Agarwalla BK, Kulkarni M, Purkayastha A. 2024.. arXiv:2408.10103 [quant-ph]
  149. 149.
    Yu Y, Suh HG, Roig M, Agterberg DF. 2024.. arXiv:2402.05180 [cond-mat.str-el]
  150. 150.
    Peotta S, Törmä P. 2015.. Nat. Commun. 6:(1):8944
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-042924-015000
Loading
/content/journals/10.1146/annurev-conmatphys-042924-015000
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error