1932

Abstract

Even when ideal solids are insulating, their states with crystallographic defects may have superfluid properties. It became clear recently that edge dislocations in 4He featuring a combination of microscopic quantum roughness and superfluidity of their cores may represent a new paradigmatic class of quasi-one-dimensional superfluids. The new state of matter, termed transverse quantum fluid (TQF), is found in a variety of physical setups. The key ingredient defining the class of TQF systems is infinite compressibility, which is responsible for all other unusual properties such as the quadratic spectrum of normal modes (or even the absence of sharp quasiparticles), irrelevance of the Landau criterion, off-diagonal long-range order at = 0, and the exponential dependence of the phase slip probability on the inverse flow velocity. From a conceptual point of view, the TQF state is a striking demonstration of the conditional character of many dogmas associated with superfluidity, including the necessity of elementary excitations, in general, and the ones obeying the Landau criterion in particular.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-042924-103908
2025-03-10
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/16/1/annurev-conmatphys-042924-103908.html?itemId=/content/journals/10.1146/annurev-conmatphys-042924-103908&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kim E, Chan MHW. 2004.. Nature 427::22527
    [Crossref] [Google Scholar]
  2. 2.
    Meisel MW. 1992.. Physica B 178::12128
    [Crossref] [Google Scholar]
  3. 3.
    Prokof'ev N, Svistunov B. 2005.. Phys. Rev. Lett. 94::155302
    [Crossref] [Google Scholar]
  4. 4.
    Gross EP. 1957.. Phys. Rev. 106::16162
    [Crossref] [Google Scholar]
  5. 5.
    Gross EP. 1958.. Ann. Phys. 4::5774
    [Crossref] [Google Scholar]
  6. 6.
    Andreev AF, Lifshitz IM. 1969.. Sov. Phys. JETP 29::110713
    [Google Scholar]
  7. 7.
    Chester GV. 1970.. Phys. Rev. A 2::25658
    [Crossref] [Google Scholar]
  8. 8.
    Ceperley DM, Bernu B. 2004.. Phys. Rev. Lett. 93::155303
    [Crossref] [Google Scholar]
  9. 9.
    Boninsegni M, Prokof'ev N. 2012.. Rev. Mod. Phys. 84::75976
    [Crossref] [Google Scholar]
  10. 10.
    Hallock RB. 2019.. J. Low Temp. Phys. 197::16786
    [Crossref] [Google Scholar]
  11. 11.
    Beamish J, Balibar S. 2020.. Rev. Mod. Phys. 92::045002
    [Crossref] [Google Scholar]
  12. 12.
    Yukalov VI. 2020.. Physics 2::4966
    [Crossref] [Google Scholar]
  13. 13.
    Chan MHW. 2021.. J. Low Temp. Phys. 205::23552
    [Crossref] [Google Scholar]
  14. 14.
    Fil DV, Shevchenko SI. 2022.. Low Temp. Phys. 48::42951
    [Crossref] [Google Scholar]
  15. 15.
    Shevchenko SI. 1987.. Sov. J. Low Temp. Phys. 13::6169
    [Crossref] [Google Scholar]
  16. 16.
    Boninsegni M, Prokof'ev N, Svistunov B. 2006.. Phys. Rev. Lett. 96::070601
    [Crossref] [Google Scholar]
  17. 17.
    Boninsegni M, Prokof'ev NV, Svistunov BV. 2006.. Phys. Rev. E 74::036701
    [Crossref] [Google Scholar]
  18. 18.
    Pollet L, Boninsegni M, Kuklov AB, Prokof'ev NV, Svistunov BV, Troyer M. 2007.. Phys. Rev. Lett. 98::135301
    [Crossref] [Google Scholar]
  19. 19.
    Boninsegni M, Kuklov AB, Pollet L, Prokof'ev NV, Svistunov BV, Troyer M. 2007.. Phys. Rev. Lett. 99::035301
    [Crossref] [Google Scholar]
  20. 20.
    Boninsegni M, Prokof'ev N, Svistunov B. 2006.. Phys. Rev. Lett. 96::105301
    [Crossref] [Google Scholar]
  21. 21.
    Söyler SG, Kuklov AB, Pollet L, Prokof'ev NV, Svistunov BV. 2009.. Phys. Rev. Lett. 103::175301
    [Crossref] [Google Scholar]
  22. 22.
    Burovski E, Kozik E, Kuklov A, Prokof'ev N, Svistunov B. 2005.. Phys. Rev. Lett. 94::165301
    [Crossref] [Google Scholar]
  23. 23.
    Söyler SG, Capogrosso-Sansone B, Prokof'ev NV, Svistunov BV. 2007.. Phys. Rev. A 76::043628
    [Crossref] [Google Scholar]
  24. 24.
    Day J, Beamish J. 2007.. Nature 450::85356
    [Crossref] [Google Scholar]
  25. 25.
    Hull D, Bacon DJ. 2011.. Introduction to Dislocations. Amsterdam/Tokyo:: Elsevier
    [Google Scholar]
  26. 26.
    Rojas X, Haziot A, Bapst V, Balibar S, Maris HJ. 2010.. Phys. Rev. Lett. 105::145302
    [Crossref] [Google Scholar]
  27. 27.
    Haziot A, Rojas X, Fefferman AD, Beamish JR, Balibar S. 2013.. Phys. Rev. Lett. 110::035301
    [Crossref] [Google Scholar]
  28. 28.
    Ray MW, Hallock RB. 2008.. Phys. Rev. Lett. 100::235301
    [Crossref] [Google Scholar]
  29. 29.
    Ray MW, Hallock RB. 2009.. Phys. Rev. B 81::214523
    [Crossref] [Google Scholar]
  30. 30.
    Anderson PM, Hirth JP, Lothe J. 2017.. Theory of Dislocations. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  31. 31.
    Amir A, Nelson DR. 2012.. PNAS 109::983338
    [Crossref] [Google Scholar]
  32. 32.
    Cheng ZG, Beamish J, Fefferman AD, Souris F, Balibar S, Dauvois V. 2015.. Phys. Rev. Lett. 114::165301
    [Crossref] [Google Scholar]
  33. 33.
    Cheng ZG, Beamish J. 2016.. Phys. Rev. Lett. 117::025301
    [Crossref] [Google Scholar]
  34. 34.
    Shin J, Kim DY, Haziot A, Chan MHW. 2017.. Phys. Rev. Lett. 118::235301
    [Crossref] [Google Scholar]
  35. 35.
    Shin J, Chan MHW. 2019.. Phys. Rev. B 99::140502(R)
    [Crossref] [Google Scholar]
  36. 36.
    Vekhov Ye, Mullin WJ, Hallock RB. 2014.. Phys. Rev. Lett. 113::035302
    [Crossref] [Google Scholar]
  37. 37.
    Kuklov AB, Pollet L, Prokof'ev NV, Svistunov BV. 2022.. Phys. Rev. Lett. 128::255301
    [Crossref] [Google Scholar]
  38. 38.
    Radzihovsky L, Kuklov A, Prokof'ev N, Svistunov B. 2023.. Phys. Rev. Lett. 131::196001
    [Crossref] [Google Scholar]
  39. 39.
    Kuklov AB, Prokof'ev NV, Svistunov BV. 2011.. Physics 4::109
    [Crossref] [Google Scholar]
  40. 40.
    Kuklov A, Prokof'ev N, Radzihovsky L, Svistunov B. 2024.. Phys. Rev. B 109::L100502
    [Crossref] [Google Scholar]
  41. 41.
    Kuklov A, Pollet L, Prokof'ev N, Radzihovsky L, Svistunov B. 2024.. Phys. Rev. A 109::L011302
    [Crossref] [Google Scholar]
  42. 42.
    Clark BK, Ceperley DM. 2006.. Phys. Rev. Lett. 96::105302
    [Crossref] [Google Scholar]
  43. 43.
    Boninsegni M, Kuklov A, Pollet L, Prokof'ev N, Svistunov B, Troyer M. 2006.. Phys. Rev. Lett. 97::080401
    [Crossref] [Google Scholar]
  44. 44.
    Rossi M, Vitali E, Galli DE, Reatto L. 2008.. J. Low Temp. Phys. 153::25065
    [Crossref] [Google Scholar]
  45. 45.
    Rossi M, Vitali E, Galli DE, Reatto L. 2009.. J. Phys. Conf. Ser. 150::032090
    [Crossref] [Google Scholar]
  46. 46.
    Rossi M, Vitali E, Galli DE, Reatto L. 2010.. J. Phys. Condens. Matter 22::145401
    [Crossref] [Google Scholar]
  47. 47.
    Rossi M, Reatto L, Galli DE. 2012.. J. Low Temp. Phys. 168::23550
    [Crossref] [Google Scholar]
  48. 48.
    Pollet L, Boninsegni M, Kuklov AB, Prokof'ev NV, Svistunov BV, Troyer M. 2008.. Phys. Rev. Lett. 101::097202
    [Crossref] [Google Scholar]
  49. 49.
    Pollet L, Kuklov AB. 2014.. Phys. Rev. Lett. 113::045301
    [Crossref] [Google Scholar]
  50. 50.
    Khairallah SA, Ceperley DM. 2005.. Phys. Rev. Lett 95::185301
    [Crossref] [Google Scholar]
  51. 51.
    Del Maestro A, Boninsegni M, Affleck I. 2011.. Phys. Rev. Lett. 106::105303
    [Crossref] [Google Scholar]
  52. 52.
    Boninsegni M. 2015. Phys. Rev. B 92::174112
    [Crossref] [Google Scholar]
  53. 53.
    Granato A, Lücke K. 1956.. J. Appl. Phys. 27::58393
    [Crossref] [Google Scholar]
  54. 54.
    Syschenko O, Day J, Beamish J. 2010.. Phys. Rev. Lett. 104::195301
    [Crossref] [Google Scholar]
  55. 55.
    Corboz P, Pollet L, Prokof'ev NV, Troyer M. 2008.. Phys. Rev. Lett. 101::155302
    [Crossref] [Google Scholar]
  56. 56.
    Haziot A, Fefferman AD, Souris F, Beamish JR, Maris HJ, Balibar S. 2013.. Phys. Rev. B 88::014106
    [Crossref] [Google Scholar]
  57. 57.
    Kuklov AB, Pollet L, Prokof'ev NV, Svistunov BV. 2014.. Phys. Rev. B 90::184508
    [Crossref] [Google Scholar]
  58. 58.
    Shin J, Chan MHW. 2020.. Phys. Rev. B 101::014507
    [Crossref] [Google Scholar]
  59. 59.
    Haldane FDM. 1981.. Phys. Rev. Lett. 47::184043
    [Crossref] [Google Scholar]
  60. 60.
    Giamarchi T. 2006.. Quantum Physics in One Dimension. Oxford, UK:: Clarendon Press
    [Google Scholar]
  61. 61.
    Kuklov AB, Svistunov BV. 2003.. Phys. Rev. Lett. 90::100401
    [Crossref] [Google Scholar]
  62. 62.
    Zhang C, Boninsegni M, Kuklov A, Prokof'ev N, Svistunov B. 2024.. Phys. Rev. B 109::214519
    [Crossref] [Google Scholar]
  63. 63.
    Prokof'ev NV, Svistunov BV, Tupitsyn IS. 1998.. Zh. Eksp. Teor. Fiz. 114::57090 [Sov. Phys. JETP 87:310–21]
    [Google Scholar]
  64. 64.
    Svistunov B, Babaev E, Prokof'ev N. 2015.. Superfluid States of Matter. Boca Raton, FL:: Taylor & Francis
    [Google Scholar]
  65. 65.
    Radzihovsky L, Kuklov A, Prokof'ev N, Svistunov B. 2023.. Phys. Rev. Lett. 131::196001
    [Crossref] [Google Scholar]
  66. 66.
    Coleman S. 1985.. Aspects of Symmetry. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  67. 67.
    Yarmolinsky M, Kuklov AB. 2017.. Phys. Rev. B 96::024505
    [Crossref] [Google Scholar]
  68. 68.
    Kuklov A, Prokof'ev N, Svistunov B. 2024.. Phys. Rev. Res. 6::033008
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-042924-103908
Loading
/content/journals/10.1146/annurev-conmatphys-042924-103908
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error