1932

Abstract

We discuss the emerging advances and opportunities at the intersection of machine learning (ML) and climate physics, highlighting the use of ML techniques, including supervised, unsupervised, and equation discovery, to accelerate climate knowledge discoveries and simulations. We delineate two distinct yet complementary aspects: () ML for climate physics and () ML for climate simulations. Although physics-free ML-based models, such as ML-based weather forecasting, have demonstrated success when data are abundant and stationary, the physics knowledge and interpretability of ML models become crucial in the small-data/nonstationary regime to ensure generalizability. Given the absence of observations, the long-term future climate falls into the small-data regime. Therefore, ML for climate physics holds a critical role in addressing the challenges of ML for climate simulations. We emphasize the need for collaboration among climate physics, ML theory, and numerical analysis to achieve reliable ML-based models for climate applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-043024-114758
2025-03-10
2025-06-18
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/16/1/annurev-conmatphys-043024-114758.html?itemId=/content/journals/10.1146/annurev-conmatphys-043024-114758&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Keisler R. 2022.. arXiv:2202.07575 [physics.ao-ph]
  2. 2.
    Pathak J, Subramanian S, Harrington P, Raja S, Chattopadhyay A, et al. 2022.. arXiv:2202.11214 [physics.ao-ph]
  3. 3.
    Bi K, Xie L, Zhang H, Chen X, Gu X, Tian Q. 2023.. Nature 619::53338
    [Crossref] [Google Scholar]
  4. 4.
    Lam R, Sanchez-Gonzalez A, Willson M, Wirnsberger P, Fortunato M, et al. 2023.. Science 382::141621
    [Crossref] [Google Scholar]
  5. 5.
    Chen L, Zhong X, Zhang F, Cheng Y, Xu Y, et al. 2023.. NPJ Clim. Atmos. Sci. 6::190
    [Crossref] [Google Scholar]
  6. 6.
    Sonnewald M, Wunsch C, Heimbach P. 2019.. Earth Space Sci. 6::78494
    [Crossref] [Google Scholar]
  7. 7.
    Xiao Q, Balwada D, Jones CS, Herrero-González M, Smith KS, Abernathey R. 2023.. J. Adv. Model. Earth Syst. 15::e2023MS003709
    [Crossref] [Google Scholar]
  8. 8.
    Wang R, Walters R, Yu R. 2021.. Paper presented at the International Conference on Learning Representations (ICLR) 2021, Virtual Event, Austria:, May 3–7
  9. 9.
    Yuval J, O'Gorman PA. 2020.. Nat. Commun. 11::3295
    [Crossref] [Google Scholar]
  10. 10.
    Watt-Meyer O, Dresdner G, McGibbon J, Clark SK, Henn B, et al. 2023.. arXiv:2310.02074 [physics.ao-ph]
  11. 11.
    Duncan JP, Wu E, Golaz JC, Caldwell PM, Watt-Meyer O, et al. 2024.. Mach. Learn. Comput. 1:(3):e2024JH000136
    [Google Scholar]
  12. 12.
    Hornik K, Stinchcombe M, White H. 1989.. Neural Netw. 2::35966
    [Crossref] [Google Scholar]
  13. 13.
    Chen T, Chen H. 1995.. IEEE Trans. Neural Netw. 6::91117
    [Crossref] [Google Scholar]
  14. 14.
    Ravuri S, Lenc K, Willson M, Kangin D, Lam R, et al. 2021.. Nature 597::67277
    [Crossref] [Google Scholar]
  15. 15.
    Ben Bouallègue Z, Clare MC, Magnusson L, Gascon E, Maier-Gerber M, et al. 2024.. Bull. Am. Meteorol. Soc. 105::E86483
    [Crossref] [Google Scholar]
  16. 16.
    Ham YG, Kim JH, Luo JJ. 2019.. Nature 573::56872
    [Crossref] [Google Scholar]
  17. 17.
    Rasp S, Hoyer S, Merose A, Langmore I, Battaglia P, et al. 2024.. J. Adv. Model. Earth Syst. 16::e2023MS004019
    [Crossref] [Google Scholar]
  18. 18.
    Pathak J, Hunt B, Girvan M, Lu Z, Ott E. 2018.. Phys. Rev. Lett. 120::024102
    [Crossref] [Google Scholar]
  19. 19.
    Dueben PD, Bauer P. 2018.. Geosci. Model Dev. 11::39994009
    [Crossref] [Google Scholar]
  20. 20.
    Weyn JA, Durran DR, Caruana R. 2019.. J. Adv. Model. Earth Syst. 11::268093
    [Crossref] [Google Scholar]
  21. 21.
    Chattopadhyay A, Nabizadeh E, Hassanzadeh P. 2020.. J. Adv. Model. Earth Syst. 12::e2019MS001958
    [Crossref] [Google Scholar]
  22. 22.
    Rasp S, Dueben PD, Scher S, Weyn JA, Mouatadid S, Thuerey N. 2020.. J. Adv. Model. Earth Syst. 12::e2020MS002203
    [Crossref] [Google Scholar]
  23. 23.
    Rasp S, Thuerey N. 2021.. J. Adv. Model. Earth Syst. 13::e2020MS002405
    [Crossref] [Google Scholar]
  24. 24.
    Clare MCA, Jamil O, Morcrette CJ. 2021.. Q. J. R. Meteorol. Soc. 147::433757
    [Crossref] [Google Scholar]
  25. 25.
    Price I, Sanchez-Gonzalez A, Alet F, Ewalds T, El-Kadi A, et al. 2023.. arXiv:2312.15796 [cs.LG]
  26. 26.
    Watson-Parris D. 2021.. Philos. Trans. R. Soc. A 379::20200098
    [Crossref] [Google Scholar]
  27. 27.
    Schneider T, Behera S, Boccaletti G, Deser C, Emanuel K, et al. 2023.. Nat. Climate Change 13::88789
    [Crossref] [Google Scholar]
  28. 28.
    Palmer TN. 1999.. J. Climate 12::57591
    [Crossref] [Google Scholar]
  29. 29.
    Held IM. 2005.. Bull. Am. Meteorol. Soc. 86::160914
    [Crossref] [Google Scholar]
  30. 30.
    Walker G. 1928.. Q. J. R. Meteorol. Soc. 54::7987
    [Crossref] [Google Scholar]
  31. 31.
    Corti S, Molteni F, Palmer T. 1999.. Nature 398::799802
    [Crossref] [Google Scholar]
  32. 32.
    Thompson DW, Solomon S. 2002.. Science 296::89599
    [Crossref] [Google Scholar]
  33. 33.
    Monahan AH, Fyfe JC, Ambaum MH, Stephenson DB, North GR. 2009.. J. Climate 22::650114
    [Crossref] [Google Scholar]
  34. 34.
    Page J, Brenner MP, Kerswell RR. 2021.. Phys. Rev. Fluids 6::034402
    [Crossref] [Google Scholar]
  35. 35.
    Lusch B, Kutz JN, Brunton SL. 2018.. Nat. Commun. 9::4950
    [Crossref] [Google Scholar]
  36. 36.
    Shamekh S, Lamb KD, Huang Y, Gentine P. 2023.. PNAS 120::e2216158120
    [Crossref] [Google Scholar]
  37. 37.
    Souza AN. 2023.. arXiv:2304.03362 [physics.flu-dyn]
  38. 38.
    Geogdzhayev G, Souza AN, Ferrari R. 2024.. Phys. D Nonlinear Phenom. 462::134107
    [Crossref] [Google Scholar]
  39. 39.
    Wang X, Slawinska J, Giannakis D. 2020.. Sci. Rep. 10::2636
    [Crossref] [Google Scholar]
  40. 40.
    Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson DS. 2009.. J. Fluid Mech. 641::11527
    [Crossref] [Google Scholar]
  41. 41.
    Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, et al. 2019.. Nature 566::195204
    [Crossref] [Google Scholar]
  42. 42.
    Landy JC, Dawson GJ, Tsamados M, Bushuk M, Stroeve JC, et al. 2022.. Nature 609::51722
    [Crossref] [Google Scholar]
  43. 43.
    Martin SA, Manucharyan G, Klein P. 2024.. Geophys. Res. Lett. 51:(17):e2024GL110059
    [Crossref] [Google Scholar]
  44. 44.
    Rezvanbehbahani S, Stearns LA, Keramati R, Shankar S, van der Veen C. 2020.. Commun. Earth Environ. 1::31
    [Crossref] [Google Scholar]
  45. 45.
    Surawy-Stepney T, Hogg AE, Cornford SL, Davison BJ. 2023.. Nat. Geosci. 16::3743
    [Crossref] [Google Scholar]
  46. 46.
    Lai CY, Kingslake J, Wearing MG, Chen PHC, Gentine P, et al. 2020.. Nature 584::57478
    [Crossref] [Google Scholar]
  47. 47.
    Lorenz EN. 1963.. J. Atmos. Sci. 20::13041
    [Crossref] [Google Scholar]
  48. 48.
    Iglesias MA, Law KJ, Stuart AM. 2013.. Inverse Probl. 29::045001
    [Crossref] [Google Scholar]
  49. 49.
    Cleary E, Garbuno-Inigo A, Lan S, Schneider T, Stuart AM. 2021.. J. Comput. Phys. 424::109716
    [Crossref] [Google Scholar]
  50. 50.
    Dunbar OR, Garbuno-Inigo A, Schneider T, Stuart AM. 2021.. J. Adv. Model. Earth Syst. 13::e2020MS002454
    [Crossref] [Google Scholar]
  51. 51.
    Lopez-Gomez I, Christopoulos C, Langeland Ervik HL, Dunbar OR, Cohen Y, Schneider T. 2022.. J. Adv. Model. Earth Syst. 14::e2022MS003105
    [Crossref] [Google Scholar]
  52. 52.
    Mansfield L, Sheshadri A. 2022.. J. Adv. Model. Earth Syst. 14:e2022MS003245
    [Crossref] [Google Scholar]
  53. 53.
    Souza AN, Wagner G, Ramadhan A, Allen B, Churavy V, et al. 2020.. J. Adv. Model. Earth Syst. 12::e2020MS002108
    [Crossref] [Google Scholar]
  54. 54.
    Evensen G. 1994.. J. Geophys. Res. Oceans 99::1014362
    [Crossref] [Google Scholar]
  55. 55.
    Houtekamer PL, Zhang F. 2016.. Mon. Weather Rev. 144::4489532
    [Crossref] [Google Scholar]
  56. 56.
    Kovachki NB, Stuart AM. 2019.. Inverse Probl. 35::095005
    [Crossref] [Google Scholar]
  57. 57.
    Watson-Parris D, Williams A, Deaconu L, Stier P. 2021.. Geosci. Model Dev. 14::765972
    [Crossref] [Google Scholar]
  58. 58.
    Raissi M, Perdikaris P, Karniadakis GE. 2019.. J. Comput. Phys. 378::686707
    [Crossref] [Google Scholar]
  59. 59.
    Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. 2021.. Nat. Rev. Phys. 3::42240
    [Crossref] [Google Scholar]
  60. 60.
    Tarantola A. 2005.. Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia:: SIAM
    [Google Scholar]
  61. 61.
    Kalnay E. 2003.. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  62. 62.
    Geer AJ. 2021.. Philos. Trans. R. Soc. A 379::20200089
    [Crossref] [Google Scholar]
  63. 63.
    Brajard J, Carrassi A, Bocquet M, Bertino L. 2021.. Philos. Trans. R. Soc. A 379::20200086
    [Crossref] [Google Scholar]
  64. 64.
    Cheng S, Quilodrán-Casas C, Ouala S, Farchi A, Liu C, et al. 2023.. IEEE/CAA J. Automat. Sin. 10::136187
    [Crossref] [Google Scholar]
  65. 65.
    Farchi A, Laloyaux P, Bonavita M, Bocquet M. 2021.. Q. J. R. Meteorol. Soc. 147::306784
    [Crossref] [Google Scholar]
  66. 66.
    Brajard J, Carrassi A, Bocquet M, Bertino L. 2020.. J. Comput. Sci. 44::101171
    [Crossref] [Google Scholar]
  67. 67.
    Eusebi R, Vecchi GA, Lai CY, Tong M. 2024.. Commun. Earth Environ. 5::8
    [Crossref] [Google Scholar]
  68. 68.
    Wang Y, Lai CY, Prior D, Cowen-Breen C. 2025.. Science https://doi.org/10.1126/science.adp3300
    [Google Scholar]
  69. 69.
    Lu X, Wang X, Tong M, Tallapragada V. 2017.. Mon. Weather Rev. 145::487798
    [Crossref] [Google Scholar]
  70. 70.
    Kochkov D, Yuval J, Langmore I, Norgaard P, Smith J, et al. 2024.. Nature 632::106066
    [Crossref] [Google Scholar]
  71. 71.
    Jouvet G, Cordonnier G. 2023.. J. Glaciol. 69::194155
    [Crossref] [Google Scholar]
  72. 72.
    Schmidt M, Lipson H. 2009.. Science 324::8185
    [Crossref] [Google Scholar]
  73. 73.
    Brunton SL, Proctor JL, Kutz JN. 2016.. PNAS 113::393237
    [Crossref] [Google Scholar]
  74. 74.
    Schneider T, Stuart AM, Wu JL. 2022.. J. Comput. Phys. 470::111559
    [Crossref] [Google Scholar]
  75. 75.
    Lang M, Jan Van Leeuwen P, Browne P. 2016.. Tellus A Dyn. Meteorol. Oceanogr. 68::29012
    [Crossref] [Google Scholar]
  76. 76.
    Mojgani R, Chattopadhyay A, Hassanzadeh P. 2024.. J. Adv. Model. Earth Syst. 16:(3):e2023MS004033
    [Crossref] [Google Scholar]
  77. 77.
    Chen N, Zhang Y. 2023.. Phys. D Nonlinear Phenom. 449::133743
    [Crossref] [Google Scholar]
  78. 78.
    Zanna L, Bolton T. 2020.. Geophys. Res. Lett. 47::e2020GL088376
    [Crossref] [Google Scholar]
  79. 79.
    Anstey JA, Zanna L. 2017.. Ocean Model. 112::99111
    [Crossref] [Google Scholar]
  80. 80.
    Jakhar K, Guan Y, Mojgani R, Chattopadhyay A, Hassanzadeh P. 2024.. J. Adv. Model. Earth Syst. 16:(7):e2023MS003874
    [Crossref] [Google Scholar]
  81. 81.
    Koza JR. 1994.. Stat. Comput. 4::87112
    [Crossref] [Google Scholar]
  82. 82.
    Chen Y, Luo Y, Liu Q, Xu H, Zhang D. 2022.. Phys. Rev. Res. 4::023174
    [Crossref] [Google Scholar]
  83. 83.
    Grundner A, Beucler T, Gentine P, Eyring V. 2024.. J. Adv. Model. Earth Syst. 16::e2023MS003763
    [Crossref] [Google Scholar]
  84. 84.
    Ross A, Li Z, Perezhogin P, Fernandez-Granda C, Zanna L. 2023.. J. Adv. Model. Earth Syst. 15::e2022MS003258
    [Crossref] [Google Scholar]
  85. 85.
    Smagorinsky J. 1963.. Mon. Weather Rev. 91::99164
    [Crossref] [Google Scholar]
  86. 86.
    Hawkins E, Sutton R. 2009.. Bull. Am. Meteorol. Soc. 90::1095108
    [Crossref] [Google Scholar]
  87. 87.
    Guan Y, Chattopadhyay A, Subel A, Hassanzadeh P. 2022.. J. Comput. Phys. 458::111090
    [Crossref] [Google Scholar]
  88. 88.
    Bolton T, Zanna L. 2019.. J. Adv. Model. Earth Syst. 11::37699
    [Crossref] [Google Scholar]
  89. 89.
    Sane A, Reichl BG, Adcroft A, Zanna L. 2023.. J. Adv. Model. Earth Syst. 15::e2023MS003890
    [Crossref] [Google Scholar]
  90. 90.
    Gentine P, Pritchard M, Rasp S, Reinaudi G, Yacalis G. 2018.. Geophys. Res. Lett. 45::574251
    [Crossref] [Google Scholar]
  91. 91.
    Gentine P, Eyring V, Beucler T. 2021.. In Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science and Geosciences, ed. G Camps-Valls, D Tuia, XX Zhu, M Reichstein , pp. 30714. Hoboken, NJ:: Wiley
    [Google Scholar]
  92. 92.
    Yuval J, O'Gorman PA. 2023.. J. Adv. Model. Earth Syst. 15::e2023MS003606
    [Crossref] [Google Scholar]
  93. 93.
    Rasp S, Pritchard MS, Gentine P. 2018.. PNAS 115::968489
    [Crossref] [Google Scholar]
  94. 94.
    Grundner A, Beucler T, Gentine P, Iglesias-Suarez F, Giorgetta MA, Eyring V. 2022.. J. Adv. Model. Earth Syst. 14::e2021MS002959
    [Crossref] [Google Scholar]
  95. 95.
    Arcomano T, Szunyogh I, Wikner A, Hunt BR, Ott E. 2023.. Geophys. Res. Lett. 50::e2022GL102649
    [Crossref] [Google Scholar]
  96. 96.
    Watt-Meyer O, Brenowitz ND, Clark SK, Henn B, Kwa A, et al. 2024.. J. Adv. Model. Earth Syst. 16::e2023MS003668
    [Crossref] [Google Scholar]
  97. 97.
    Matsuoka D, Watanabe S, Sato K, Kawazoe S, Yu W, Easterbrook S. 2020.. Geophys. Res. Lett. 47::e2020GL089436
    [Crossref] [Google Scholar]
  98. 98.
    Espinosa ZI, Sheshadri A, Cain GR, Gerber EP, DallaSanta KJ. 2022.. Geophys. Res. Lett. 49::e2022GL098174
    [Crossref] [Google Scholar]
  99. 99.
    Hardiman SC, Scaife AA, van Niekerk A, Prudden R, Owen A, et al. 2023.. Artif. Intel. Earth Syst. 2::e220081
    [Google Scholar]
  100. 100.
    Pahlavan HA, Hassanzadeh P, Alexander MJ. 2024.. Geophys. Res. Lett. 51::e2023GL106324
    [Crossref] [Google Scholar]
  101. 101.
    Frezat H, Le Sommer J, Fablet R, Balarac G, Lguensat R. 2022.. J. Adv. Model. Earth Syst. 14:e2022MS003124
    [Crossref] [Google Scholar]
  102. 102.
    McNally A, Lessig C, Lean P, Boucher E, Alexe M, et al. 2024.. arXiv:2407.15586 [physics.ao-ph]
  103. 103.
    Beusch L, Gudmundsson L, Seneviratne SI. 2020.. Earth Syst. Dyn. 11::13959
    [Crossref] [Google Scholar]
  104. 104.
    Tebaldi C, Snyder A, Dorheim K. 2022.. Earth Syst. Dyn. 13::1557609
    [Crossref] [Google Scholar]
  105. 105.
    Watson-Parris D, Rao Y, Olivié D, Seland Ø, Nowack P, et al. 2022.. J. Adv. Model. Earth Syst. 14::e2021MS002954
    [Crossref] [Google Scholar]
  106. 106.
    Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, et al. 2020.. Q. J. R. Meteorol. Soc. 146::19992049
    [Crossref] [Google Scholar]
  107. 107.
    Bire S, Lütjens B, Azizzadenesheli K, Anandkumar A, Hill CN. 2023.. https://doi.org/10.22541/essoar.170110658.85641696/v1
  108. 108.
    Subel A, Zanna L. 2024.. arXiv:2402.04342 [physics.ao-ph]
  109. 109.
    Andersson TR, Hosking JS, Pérez-Ortiz M, Paige B, Elliott A, et al. 2021.. Nat. Commun. 12::5124
    [Crossref] [Google Scholar]
  110. 110.
    Wang Y, Yuan X, Ren Y, Bushuk M, Shu Q, et al. 2023.. Geophys. Res. Lett. 50::e2023GL104347
    [Crossref] [Google Scholar]
  111. 111.
    Zhu Y, Qin M, Dai P, Wu S, Fu Z, et al. 2023.. J. Geophys. Res. Atmos. 128::e2023JD039521
    [Crossref] [Google Scholar]
  112. 112.
    Chattopadhyay Ashesh SYQ, Hassanzadeh P. 2023.. arXiv:2304.07029 [physics.flu-dyn]
  113. 113.
    Selz T, Craig GC. 2023.. Geophys. Res. Lett. 50::e2023GL105747
    [Crossref] [Google Scholar]
  114. 114.
    Kashinath K, Mustafa M, Wu J, Jiang C, Wang R, et al. 2021.. Philos. Trans. R. Soc. A 379::20200093
    [Crossref] [Google Scholar]
  115. 115.
    Beucler T, Pritchard M, Rasp S, Ott J, Baldi P, Gentine P. 2021.. Phys. Rev. Lett. 126::098302
    [Crossref] [Google Scholar]
  116. 116.
    Chattopadhyay A, Mustafa M, Hassanzadeh P, Bach E, Kashinath K. 2022.. Geosci. Model Dev. 15::222137
    [Crossref] [Google Scholar]
  117. 117.
    Guan Y, Subel A, Chattopadhyay A, Hassanzadeh P. 2023.. Phys. D Nonlinear Phenom. 443::133568
    [Crossref] [Google Scholar]
  118. 118.
    Psaros AF, Meng X, Zou Z, Guo L, Karniadakis GE. 2023.. J. Comput. Phys. 477::111902
    [Crossref] [Google Scholar]
  119. 119.
    Abdar M, Pourpanah F, Hussain S, Rezazadegan D, Liu L, et al. 2021.. Inform. Fusion 76::24397
    [Crossref] [Google Scholar]
  120. 120.
    Sonnewald M, Lguensat R. 2021.. J. Adv. Model. Earth Syst. 13:e2021MS002496
    [Crossref] [Google Scholar]
  121. 121.
    Yik W, Sonnewald M, Clare MCA, Lguensat R. 2023.. arXiv:2310.13916 [physics.ao-ph]
  122. 122.
    Mansfield LA, Sheshadri A. 2024.. J. Adv. Model. Earth. Syst. 16:(7):e2024MS004292
    [Crossref] [Google Scholar]
  123. 123.
    Sun YQ, Pahlavan HA, Chattopadhyay A, Hassanzadeh P, Lubis SW, et al. 2024.. J. Adv. Model. Earth Syst. 16::e2023MS004145
    [Crossref] [Google Scholar]
  124. 124.
    Dräger S, Sonnewald M. 2024.. arXiv:2402.13979 [cs.LG]
  125. 125.
    Guillaumin AP, Zanna L. 2021.. J. Adv. Model. Earth Syst. 13::e2021MS002534
    [Crossref] [Google Scholar]
  126. 126.
    Foster D, Gagne DJ, Whitt DB. 2021.. J. Adv. Model. Earth Syst. 13::e2021MS002474
    [Crossref] [Google Scholar]
  127. 127.
    Barnes EA, Barnes RJ. 2021.. J. Adv. Model. Earth Syst. 13::e2021MS002575
    [Crossref] [Google Scholar]
  128. 128.
    Haynes K, Lagerquist R, McGraw M, Musgrave K, Ebert-Uphoff I. 2023.. Artif. Intel. Earth Syst. 2::220061
    [Google Scholar]
  129. 129.
    Rahaman N, Baratin A, Arpit D, Draxler F, Lin M, et al. 2019.. In Proceedings of the 36th International Conference on Machine Learning, PMLR. 97:530110
    [Google Scholar]
  130. 130.
    Xu ZQJ, Zhang Y, Luo T, Xiao Y, Ma Z. 2019.. arXiv:1901.06523 [cs.LG]
  131. 131.
    Rybchuk A, Hassanaly M, Hamilton N, Doubrawa P, Fulton MJ, Martínez-Tossas LA. 2023.. Phys. Fluids 35::126604
    [Crossref] [Google Scholar]
  132. 132.
    Ng J, Wang Y, Lai CY. 2024.. arXiv:2407.17213 [cs.LG]
  133. 133.
    Wang Y, Lai CY. 2024.. J. Comput. Phys. 504:(C):112865
    [Crossref] [Google Scholar]
  134. 134.
    Tancik M, Srinivasan P, Mildenhall B, Fridovich-Keil S, Raghavan N, et al. 2020.. Adv. Neural Inf. Proc. Syst. 33::753747
    [Google Scholar]
  135. 135.
    Wang S, Wang H, Perdikaris P. 2021.. Comput. Methods Appl. Mech. Eng. 384::113938
    [Crossref] [Google Scholar]
  136. 136.
    Miloshevich G, Cozian B, Abry P, Borgnat P, Bouchet F. 2023.. Phys. Rev. Fluids 8::040501
    [Crossref] [Google Scholar]
  137. 137.
    Lopez-Gomez I, McGovern A, Agrawal S, Hickey J. 2023.. Artif. Intel. Earth Syst. 2::e220035
    [Google Scholar]
  138. 138.
    Rudy SH, Sapsis TP. 2023.. Phys. D Nonlinear Phenom. 443::133570
    [Crossref] [Google Scholar]
  139. 139.
    Ragone F, Wouters J, Bouchet F. 2018.. PNAS 115::2429
    [Crossref] [Google Scholar]
  140. 140.
    Finkel J, Webber RJ, Gerber EP, Abbot DS, Weare J. 2021.. Mon. Weather Rev. 149::364769
    [Crossref] [Google Scholar]
  141. 141.
    Subel A, Guan Y, Chattopadhyay A, Hassanzadeh P. 2023.. PNAS Nexus 2::pgad015
    [Crossref] [Google Scholar]
  142. 142.
    Beucler T, Gentine P, Yuval J, Gupta A, Peng L, et al. 2024.. Sci. Adv. 10::eadj7250
    [Crossref] [Google Scholar]
  143. 143.
    Shen Z, Sridhar A, Tan Z, Jaruga A, Schneider T. 2022.. J. Adv. Model. Earth Syst. 14::e2021MS002631
    [Crossref] [Google Scholar]
  144. 144.
    Sun YQ, Hassanzadeh P, Alexander MJ, Kruse CG. 2023.. J. Adv. Model. Earth Syst. 15::e2022MS003585
    [Crossref] [Google Scholar]
  145. 145.
    Satoh M, Stevens B, Judt F, Khairoutdinov M, Lin SJ, et al. 2019.. Curr. Climate Change Rep. 5::17284
    [Crossref] [Google Scholar]
  146. 146.
    Mamalakis A, Barnes EA, Ebert-Uphoff I. . Artif. Intel. Earth Syst. 1::e220012
    [Google Scholar]
  147. 147.
    Camps-Valls G, Reichstein M, Zhu X, Tuia D. 2020.. In IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, pp. 397982. Piscataway, NJ:: IEEE
    [Google Scholar]
  148. 148.
    Mayer KJ, Barnes EA. 2021.. Geophys. Res. Lett. 48::e2020GL092092
    [Crossref] [Google Scholar]
  149. 149.
    Bommer PL, Kretschmer M, Hedström A, Bareeva D, Höhne MMC. 2024.. Artif. Intel. Earth Syst. 3::e230074
    [Google Scholar]
  150. 150.
    Flora M, Potvin C, McGovern A, Handler S. 2023.. Artif. Intel. Earth Syst. 3:e230018
    [Google Scholar]
  151. 151.
    Irrgang C, Boers N, Sonnewald M, Barnes EA, Kadow C, et al. 2021.. Nat. Mach. Intel. 3::66774
    [Crossref] [Google Scholar]
  152. 152.
    Sonnewald M, Lguensat R, Jones DC, Dueben PD, Brajard J, Balaji V. 2021.. Environ. Res. Lett. 16::073008
    [Crossref] [Google Scholar]
  153. 153.
    Toms BA, Barnes EA, Ebert-Uphoff I. 2020.. J. Adv. Model. Earth Syst. 12::e2019MS002002
    [Crossref] [Google Scholar]
  154. 154.
    Labe ZM, Barnes EA. 2022.. Earth Space Sci. 9::e2022EA002348
    [Crossref] [Google Scholar]
  155. 155.
    Farge M. 1992.. Annu. Rev. Fluid Mech. 24::395458
    [Crossref] [Google Scholar]
  156. 156.
    Mallat S. 2016.. Philos. Trans. R. Soc. A 374::20150203
    [Crossref] [Google Scholar]
  157. 157.
    Olshausen BA, Field DJ. 1996.. Nature 381::6079
    [Crossref] [Google Scholar]
  158. 158.
    Bassetti S, Hutchinson B, Tebaldi C, Kravitz B. 2023.. J. Adv. Model. Earth Syst. 16:(10):e2023MS004194
    [Crossref] [Google Scholar]
  159. 159.
    Finn TS, Durand C, Farchi A, Bocquet M, Brajard J. 2024.. arXiv:2406.18417 [cs.LG]
  160. 160.
    Zhou A, Hawkins L, Gentine P. 2024.. arXiv:2405.00018 [cs.DC]
  161. 161.
    Mukkavilli SK, Civitarese DS, Schmude J, Jakubik J, Jones A, et al. 2023.. arXiv:2309.10808 [cs.LG]
  162. 162.
    Gupta A, Sheshadri A, Roy S, Gaur V, Maskey M, Ramachandran R. 2024.. arXiv:2406.14775 [physics.ao-ph]
  163. 163.
    Balaji V. 2021.. Philos. Trans. R. Soc. A 379::20200085
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-043024-114758
Loading
/content/journals/10.1146/annurev-conmatphys-043024-114758
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error