1932

Abstract

We recognize sounds by analyzing their frequency content. Different frequency components evoke distinct mechanical waves that each travel within the hearing organ, or cochlea, to a frequency-specific place. These signals are detected by hair cells, the ear's sensory receptors, in response to vibrations of mechanically sensitive antennas termed hair bundles. An active process enhances the sensitivity, sharpens the frequency tuning, and broadens the dynamic range of hair cells through several mechanisms, including active hair-bundle motility. A dynamic interplay between negative stiffness mediated by ion channels’ gating forces and delayed force feedback owing to myosin motors and channel reclosure by calcium ions brings the hair bundle to the vicinity of an oscillatory instability—a Hopf bifurcation. Operation near a Hopf bifurcation provides nonlinear generic features that are characteristic of hearing. Multiple gradients at molecular, cellular, and supercellular scales tune hair cells to characteristic frequencies that cover our auditory range.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-061020-053041
2021-03-10
2025-02-15
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/12/1/annurev-conmatphys-061020-053041.html?itemId=/content/journals/10.1146/annurev-conmatphys-061020-053041&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Retzius G. 1884. Das Gehörorgan der Wirbelthiere. II. Das Gehörorgan der Reptilien, der Vögel und der Säugethiere Stockholm: Samson & Wallin
    [Google Scholar]
  2. 2. 
    Manley GA. 2000. PNAS 97:2211736–43
    [Google Scholar]
  3. 3. 
    Fettiplace R. 2020. Trends Neurosci 43:288–102
    [Google Scholar]
  4. 4. 
    von Békésy G. 1960. Experiments in Hearing New York: McGraw-Hill
    [Google Scholar]
  5. 5. 
    Aranyosi AJ, Freeman DM. 2004. Biophys. J. 87:53536–46
    [Google Scholar]
  6. 6. 
    Freeman DM, Weiss TF. 1990. Hear. Res. 48:1–237–67
    [Google Scholar]
  7. 7. 
    Fettiplace R, Crawford AC. 1980. Hear. Res. 2:3–4447–54
    [Google Scholar]
  8. 8. 
    Crawford AC, Fettiplace R. 1980. J. Physiol. 306:79–125
    [Google Scholar]
  9. 9. 
    Crawford AC, Fettiplace R. 1981. J. Physiol. 312:377–412
    [Google Scholar]
  10. 10. 
    Hudspeth AJ, Lewis RS. 1988. J. Physiol. 400:237–74
    [Google Scholar]
  11. 11. 
    Hudspeth AJ, Lewis RS. 1988. J. Physiol. 400:275–97
    [Google Scholar]
  12. 12. 
    Bruns V, Schmieszek E. 1980. Hear. Res. 3:127–43
    [Google Scholar]
  13. 13. 
    Kössl M, Vater M. 1985. J. Comp. Physiol. A 157:5687–97
    [Google Scholar]
  14. 14. 
    Vater M, Kössl M. 2011. Hear. Res. 273:1–289–99
    [Google Scholar]
  15. 15. 
    Dierkes K, Lindner B, Julicher F 2008. PNAS 105:4818669–74
    [Google Scholar]
  16. 16. 
    Barral J, Dierkes K, Lindner B, Jülicher F, Martin P 2010. PNAS 107:188079–84
    [Google Scholar]
  17. 17. 
    Hudspeth AJ. 2014. Nat. Rev. Neurosci. 15:9600–14
    [Google Scholar]
  18. 18. 
    Reichenbach T, Hudspeth AJ. 2014. Rep. Prog. Phys. Phys. Soc. G. B 77:7076601
    [Google Scholar]
  19. 19. 
    Aibara R, Welsh JT, Puria S, Goode RL 2001. Hear. Res. 152:1–2100–9
    [Google Scholar]
  20. 20. 
    Emadi G, Richter C-P, Dallos P 2004. J. Neurophysiol. 91:1474–88
    [Google Scholar]
  21. 21. 
    Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L 1997. J. Acoust. Soc. Am. 101:42151–63
    [Google Scholar]
  22. 22. 
    Robles L, Ruggero MA, Rich NC 1986. J. Acoust. Soc. Am. 80:51364–74
    [Google Scholar]
  23. 23. 
    Ren T, Nuttall AL. 2001. Hear. Res. 151:1–248–60
    [Google Scholar]
  24. 24. 
    Fisher JAN, Nin F, Reichenbach T, Uthaiah RC, Hudspeth AJ 2012. Neuron 76:5989–97
    [Google Scholar]
  25. 25. 
    Cooper NP, Vavakou A, van der Heijden M 2018. Nat. Commun. 9:13054
    [Google Scholar]
  26. 26. 
    Jacobs RA, Hudspeth AJ. 1990. Cold Spring Harb. Symp. Quant. Biol. 55:547–61
    [Google Scholar]
  27. 27. 
    Tilney LG, Tilney MS, DeRosier DJ 1992. Annu. Rev. Cell Biol. 8:257–74
    [Google Scholar]
  28. 28. 
    Wright A. 1984. Hear. Res. 13:189–98
    [Google Scholar]
  29. 29. 
    Roth B, Bruns V. 1992. Anat. Embryol. (Berl.) 185:6571–81
    [Google Scholar]
  30. 30. 
    Flock A, Strelioff D. 1984. Nature 310:5978597–99
    [Google Scholar]
  31. 31. 
    Tobin M, Chaiyasitdhi A, Michel V, Michalski N, Martin P 2019. eLife 8:e43473
    [Google Scholar]
  32. 32. 
    Hudspeth AJ, Corey DP. 1977. PNAS 74:62407–11
    [Google Scholar]
  33. 33. 
    Shotwell SL, Jacobs R, Hudspeth AJ 1981. Ann. N. Y. Acad. Sci. 374:1–10
    [Google Scholar]
  34. 34. 
    Hudspeth AJ. 2008. Neuron 59:4530–45
    [Google Scholar]
  35. 35. 
    Pickles JO, Comis SD, Osborne MP 1984. Hear. Res. 15:2103–12
    [Google Scholar]
  36. 36. 
    Lumpkin EA, Hudspeth AJ. 1995. PNAS 92:2210297–301
    [Google Scholar]
  37. 37. 
    Beurg M, Fettiplace R, Nam J-H, Ricci AJ 2009. Nat. Neurosci. 12:5553–58
    [Google Scholar]
  38. 38. 
    Keen EC, Hudspeth AJ. 2006. PNAS 103:145537–42
    [Google Scholar]
  39. 39. 
    Li G-L, Keen E, Andor-Ardó D, Hudspeth AJ, von Gersdorff H 2009. J. Neurosci. 29:237558–68
    [Google Scholar]
  40. 40. 
    Moser T, Beutner D. 2000. PNAS 97:2883–88
    [Google Scholar]
  41. 41. 
    Marquis RE, Hudspeth AJ. 1997. PNAS 94:2211923–28
    [Google Scholar]
  42. 42. 
    Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA et al. 2007. Nature 449:715887–91
    [Google Scholar]
  43. 43. 
    Bartsch TF, Hengel FE, Oswald A, Dionne G, Chipendo IV et al. 2019. PNAS 116:2211048–56
    [Google Scholar]
  44. 44. 
    Gillespie PG, Wagner MC, Hudspeth AJ 1993. Neuron 11:4581–94
    [Google Scholar]
  45. 45. 
    Garcia JA, Yee AG, Gillespie PG, Corey DP 1998. J. Neurosci. 18:218637–47
    [Google Scholar]
  46. 46. 
    Holt JR, Gillespie SKH, Provance DW, Shah K, Shokat KM et al. 2002. Cell 108:3371–81
    [Google Scholar]
  47. 47. 
    Stauffer EA, Scarborough JD, Hirono M, Miller ED, Shah K et al. 2005. Neuron 47:4541–53
    [Google Scholar]
  48. 48. 
    Grati M, Kachar B. 2011. PNAS 108:2811476–81
    [Google Scholar]
  49. 49. 
    Kros CJ, Marcotti W, van Netten SM, Self TJ, Libby RT et al. 2002. Nat. Neurosci. 5:141–47
    [Google Scholar]
  50. 50. 
    Jia Y, Zhao Y, Kusakizako T, Wang Y, Pan C et al. 2020. Neuron 105:2310–321.e3
    [Google Scholar]
  51. 51. 
    Pan B, Geleoc GS, Asai Y, Horwitz GC, Kurima K et al. 2013. Neuron 79:3504–15
    [Google Scholar]
  52. 52. 
    Pan B, Akyuz N, Liu X-P, Asai Y, Nist-Lund C et al. 2018. Neuron 99:4736–753.e6
    [Google Scholar]
  53. 53. 
    Ricci AJ, Crawford AC, Fettiplace R 2003. Neuron 40:5983–90
    [Google Scholar]
  54. 54. 
    Beurg M, Xiong W, Zhao B, Müller U, Fettiplace R 2015. PNAS 112:51589–94
    [Google Scholar]
  55. 55. 
    Beurg M, Cui R, Goldring AC, Ebrahim S, Fettiplace R, Kachar B 2018. Nat. Commun. 9:12185
    [Google Scholar]
  56. 56. 
    Ramamoorthy S, Deo NV, Grosh K 2007. J. Acoust. Soc. Am. 121:52758
    [Google Scholar]
  57. 57. 
    Tinevez JY, Julicher F, Martin P 2007. Biophys. J. 93:114053–67
    [Google Scholar]
  58. 58. 
    Martin P, Bozovic D, Choe Y, Hudspeth AJ 2003. J. Neurosci. 23:114533–48
    [Google Scholar]
  59. 59. 
    Kennedy HJ, Evans MG, Crawford AC, Fettiplace R 2003. Nat. Neurosci. 6:8832–36
    [Google Scholar]
  60. 60. 
    Corey DP, Hudspeth AJ. 1983. J. Neurosci. 3:5962–76
    [Google Scholar]
  61. 61. 
    Markin VS, Hudspeth AJ. 1995. Annu. Rev. Biophys. Biomol. Struct. 24:59–83
    [Google Scholar]
  62. 62. 
    Assad JA, Shepherd GM, Corey DP 1991. Neuron 7:6985–94
    [Google Scholar]
  63. 63. 
    Hudspeth AJ. 1992. Soc. Gen. Physiol. Ser. 47:357–70
    [Google Scholar]
  64. 64. 
    Hudspeth AJ, Gillespie PG. 1994. Neuron 12:11–9
    [Google Scholar]
  65. 65. 
    Hirokawa N, Tilney LG. 1982. J. Cell Biol. 95:1249–61
    [Google Scholar]
  66. 66. 
    Tilney LG, Derosier DJ, Mulroy MJ 1980. J. Cell Biol. 86:1244–59
    [Google Scholar]
  67. 67. 
    Russell I, Kössl M. 1992. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 336:1278317–24
    [Google Scholar]
  68. 68. 
    Chiappe ME, Kozlov AS, Hudspeth AJ 2007. J. Neurosci. 27:4411978–85
    [Google Scholar]
  69. 69. 
    Russell I, Sellick P. 1983. J. Physiol. 338:1179–206
    [Google Scholar]
  70. 70. 
    Corns LF, Johnson SL, Kros CJ, Marcotti W 2014. PNAS 111:4114918–23
    [Google Scholar]
  71. 71. 
    Kirk DL, Moleirinho A, Patuzzi RB 1997. Hear. Res. 112:1–269–86
    [Google Scholar]
  72. 72. 
    Patuzzi R, Rajan R. 1990. Hear. Res. 45:1–215–32
    [Google Scholar]
  73. 73. 
    Bobbin RP, Salt AN. 2005. Hear. Res. 205:1–235–43
    [Google Scholar]
  74. 74. 
    Ashmore JF. 1987. J. Physiol. 388:323–47
    [Google Scholar]
  75. 75. 
    Nadrowski B, Martin P, Jülicher F 2004. PNAS 101:3312195–200
    [Google Scholar]
  76. 76. 
    Eatock RA, Corey DP, Hudspeth AJ 1987. J. Neurosci. 7:92821–36
    [Google Scholar]
  77. 77. 
    Howard J, Hudspeth AJ. 1987. PNAS 84:93064–68
    [Google Scholar]
  78. 78. 
    Assad JA, Corey DP. 1992. J. Neurosci. 12:93291–309
    [Google Scholar]
  79. 79. 
    Hacohen N, Assad JA, Smith WJ, Corey DP 1989. J. Neurosci. 9:113988–97
    [Google Scholar]
  80. 80. 
    Choe Y, Magnasco MO, Hudspeth AJ 1998. PNAS 95:2615321–26
    [Google Scholar]
  81. 81. 
    Cheung ELM, Corey DP. 2006. Biophys. J. 90:1124–39
    [Google Scholar]
  82. 82. 
    Peng AW, Effertz T, Ricci AJ 2013. Neuron 80:4960–72
    [Google Scholar]
  83. 83. 
    Peng AW, Gnanasambandam R, Sachs F, Ricci AJ 2016. J. Neurosci. 36:102945–56
    [Google Scholar]
  84. 84. 
    Effertz T, Becker L, Peng AW, Ricci AJ 2017. J. Neurosci. 37:4811632–46
    [Google Scholar]
  85. 85. 
    Crawford AC, Fettiplace R. 1985. J. Physiol. 364:359–79
    [Google Scholar]
  86. 86. 
    Howard J, Ashmore JF. 1986. Hear. Res. 23:193–104
    [Google Scholar]
  87. 87. 
    Salvi JD, Ó Maoiléidigh D, Fabella BA, Tobin M, Hudspeth AJ 2015. PNAS 112:9E1000–9
    [Google Scholar]
  88. 88. 
    Jaramillo F, Hudspeth AJ. 1993. PNAS 90:41330–34
    [Google Scholar]
  89. 89. 
    Howard J, Hudspeth AJ. 1988. Neuron 1:3189–99
    [Google Scholar]
  90. 90. 
    Martin P, Mehta AD, Hudspeth AJ 2000. PNAS 97:2212026–31
    [Google Scholar]
  91. 91. 
    Bormuth V, Barral J, Joanny J-F, Jülicher F, Martin P 2014. PNAS 111:207185–90
    [Google Scholar]
  92. 92. 
    Barral J, Jülicher F, Martin P 2018. Biophys. J. 114:2425–36
    [Google Scholar]
  93. 93. 
    Ricci AJ, Kennedy HJ, Crawford AC, Fettiplace R 2005. J. Neurosci. 25:347831–39
    [Google Scholar]
  94. 94. 
    Huxley AF, Simmons RM. 1971. Nature 233:5321533–38
    [Google Scholar]
  95. 95. 
    Caruel M, Allain JM, Truskinovsky L 2013. Phys. Rev. Lett. 110:24248103
    [Google Scholar]
  96. 96. 
    Vilfan A, Duke T. 2003. Biophys. J. 85:2818–27
    [Google Scholar]
  97. 97. 
    Tilney LG, Tilney MS. 1988. J. Cell Biol. 107:6 Pt 22563–74
    [Google Scholar]
  98. 98. 
    Frishkopf LS, DeRosier DJ. 1983. Hear. Res. 12:3393–404
    [Google Scholar]
  99. 99. 
    Holton T, Hudspeth AJ. 1983. Science 222:4623508–10
    [Google Scholar]
  100. 100. 
    Gummer AW, Hemmert W, Zenner HP 1996. PNAS 93:168727–32
    [Google Scholar]
  101. 101. 
    Kossl M, Russell IJ. 1995. PNAS 92:1276–79
    [Google Scholar]
  102. 102. 
    Hudspeth AJ, Jülicher F, Martin P 2010. J. Neurophysiol. 104:31219–29
    [Google Scholar]
  103. 103. 
    Benser ME, Marquis RE, Hudspeth AJ 1996. J. Neurosci. 16:185629–43
    [Google Scholar]
  104. 104. 
    Kennedy HJ, Crawford AC, Fettiplace R 2005. Nature 433:7028880–83
    [Google Scholar]
  105. 105. 
    Martin P, Hudspeth AJ. 1999. PNAS 96:2514306–11
    [Google Scholar]
  106. 106. 
    Probst R. 1990. Adv. Otolaryngol. 44:1–97
    [Google Scholar]
  107. 107. 
    Salvi JD, Ó Maoiléidigh D, Hudspeth AJ 2016. Biophys. J. 111:4798–812
    [Google Scholar]
  108. 108. 
    Strimbu CE, Fredrickson-Hemsing L, Bozovic D 2012. PLOS ONE 7:3e33862
    [Google Scholar]
  109. 109. 
    Camalet S, Duke T, Jülicher F, Prost J 2000. PNAS 97:73183–88
    [Google Scholar]
  110. 110. 
    Milewski AR, Ó Maoiléidigh D, Salvi JD, Hudspeth AJ 2017. PNAS 114:33E6794–803
    [Google Scholar]
  111. 111. 
    Martin P, Hudspeth AJ, Jülicher F 2001. PNAS 98:2514380–85
    [Google Scholar]
  112. 112. 
    Shera CA. 2007. J Acoust Soc. Am. 122:52738–58
    [Google Scholar]
  113. 113. 
    Zweig G. 2015. J. Acoust. Soc. Am. 138:21102–21
    [Google Scholar]
  114. 114. 
    Altoè A, Shera CA. 2020. Phys. Rev. Res. 2:1013218
    [Google Scholar]
  115. 115. 
    Assad JA, Hacohen N, Corey DP 1989. PNAS 86:82918–22
    [Google Scholar]
  116. 116. 
    Crawford AC, Evans MG, Fettiplace R 1991. J. Physiol. 434:369–98
    [Google Scholar]
  117. 117. 
    Guerin T, Prost J, Martin P, Joanny JF 2010. Curr. Opin. Cell Biol. 22:114–20
    [Google Scholar]
  118. 118. 
    Jülicher F, Prost J. 1997. Phys. Rev. Lett. 78:234510–13
    [Google Scholar]
  119. 119. 
    Placais PY, Balland M, Guerin T, Joanny JF, Martin P 2009. Phys. Rev. Lett. 103:15158102
    [Google Scholar]
  120. 120. 
    Vilfan A, Duke T. 2003. Biophys. J. 85:1191–203
    [Google Scholar]
  121. 121. 
    Riazuddin S, Belyantseva IA, Giese APJ, Lee K, Indzhykulian AA et al. 2012. Nat. Genet. 44:111265–71
    [Google Scholar]
  122. 122. 
    Giese APJ, Tang Y-Q, Sinha GP, Bowl MR, Goldring AC et al. 2017. Nat. Commun. 8:143
    [Google Scholar]
  123. 123. 
    Hackney CM, Mahendrasingam S, Penn A, Fettiplace R 2005. J. Neurosci. 25:347867–75
    [Google Scholar]
  124. 124. 
    Avan P, Buki B, Petit C 2013. Physiol. Rev. 93:41563–619
    [Google Scholar]
  125. 125. 
    Goldstein JL. 1967. J. Acoust. Soc. Am. 41:3676–89
    [Google Scholar]
  126. 126. 
    Jaramillo F, Markin VS, Hudspeth AJ 1993. Nature 364:6437527–29
    [Google Scholar]
  127. 127. 
    Smoorenburg GF. 1972. J. Acoust. Soc. Am. 52:615–32
    [Google Scholar]
  128. 128. 
    Jülicher F, Andor D, Duke T 2001. PNAS 98:169080–85
    [Google Scholar]
  129. 129. 
    Stoop R, Kern A. 2004. PNAS 101:259179–81
    [Google Scholar]
  130. 130. 
    Eguiluz VM, Ospeck M, Choe Y, Hudspeth AJ, Magnasco MO 2000. Phys. Rev. Lett. 84:225232–35
    [Google Scholar]
  131. 131. 
    Martin P, Hudspeth AJ. 2001. PNAS 98:2514386–91
    [Google Scholar]
  132. 132. 
    Robbles L, Ruggero MA. 2001. Physiol. Rev. 81:31305–52
    [Google Scholar]
  133. 133. 
    Barral J, Martin P. 2012. PNAS 109:21E1344–51
    [Google Scholar]
  134. 134. 
    Mhatre N. 2015. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 201:119–37
    [Google Scholar]
  135. 135. 
    Duke T, Julicher F. 2003. Phys. Rev. Lett. 90:15158101
    [Google Scholar]
  136. 136. 
    Magnasco MO. 2003. Phys. Rev. Lett. 90:5058101
    [Google Scholar]
  137. 137. 
    Fruth F, Julicher F, Lindner B 2014. Biophys. J. 107:4815–24
    [Google Scholar]
  138. 138. 
    Meaud J, Grosh K. 2010. J. Acoust. Soc. Am. 127:31411–21
    [Google Scholar]
  139. 139. 
    Julicher F, Dierkes K, Lindner B, Prost J, Martin P 2009. Eur. Phys. J. E Soft Matter. 29:4449–60
    [Google Scholar]
  140. 140. 
    Dinis L, Martin P, Barral J, Prost J, Joanny JF 2012. Phys. Rev. Lett. 109:16160602
    [Google Scholar]
  141. 141. 
    Shera CA, Guinan JJ Jr., Oxenham AJ 2002. PNAS 99:53318–23
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-061020-053041
Loading
/content/journals/10.1146/annurev-conmatphys-061020-053041
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error