1932

Abstract

In this review, we discuss recent advances in the investigation of colloidal systems interacting via a combination of short-range attraction and long-range repulsion. The prototypical examples of this phenomenology are charged colloids with depletion interactions, but the results apply, to a large extent, also to suspensions of globular proteins, clays, and, in general, to systems with competing attractive (hydrophobic) and repulsive (polar) contributions. After a brief introduction to the problem, we focus on the three disordered states that characterize these systems: equilibrium cluster phase, equilibrium gel, and Wigner glass of clusters. We provide a comparison of their static and dynamic observables, mainly by means of numerical simulations. Next, we discuss the few available studies on their viscoelastic properties and on their response to an external shear. Finally, we provide a summary of the current findings and also raise the main open questions and challenges for the future in this topic.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-061020-053046
2021-03-10
2024-09-09
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/12/1/annurev-conmatphys-061020-053046.html?itemId=/content/journals/10.1146/annurev-conmatphys-061020-053046&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Leunissen ME, Christova CG, Hynninen AP, Royall CP, Campbell AI et al. 2005. Nature 437:235–40
    [Google Scholar]
  2. 2. 
    Chen Q, Bae SC, Granick S 2011. Nature 469:381–84
    [Google Scholar]
  3. 3. 
    Dotera T, Oshiro T, Ziherl P 2014. Nature 506:208–11
    [Google Scholar]
  4. 4. 
    Rossi L, Soni V, Ashton DJ, Pine DJ, Philipse AP et al. 2015. PNAS 112:5286–90
    [Google Scholar]
  5. 5. 
    Grillo F, Fernandez-Rodriguez MA, Antonopoulou MN, Gerber D, Isa L 2020. Nature 582:219–24
    [Google Scholar]
  6. 6. 
    Pusey PN, Van Megen W 1986. Nature 320:340–42
    [Google Scholar]
  7. 7. 
    Pham KN, Puertas AM, Bergenholtz J, Egelhaaf SU, Moussaïd A et al. 2002. Science 296:104–6
    [Google Scholar]
  8. 8. 
    Lu PJ, Zaccarelli E, Ciulla F, Schofield AB, Sciortino F, Weitz DA 2008. Nature 453:499–503
    [Google Scholar]
  9. 9. 
    Mayer C, Zaccarelli E, Stiakakis E, Likos C, Sciortino F et al. 2008. Nat. Mater. 7:780–84
    [Google Scholar]
  10. 10. 
    Ruzicka B, Zaccarelli E, Zulian L, Angelini R, Sztucki M et al. 2011. Nat. Mater. 10:56–60
    [Google Scholar]
  11. 11. 
    Sciortino F, Zaccarelli E 2017. Curr. Opin. Colloid Interface Sci. 30:90–96
    [Google Scholar]
  12. 12. 
    Stradner A, Sedgwick H, Cardinaux F, Poon WC, Egelhaaf SU, Schurtenberger P 2004. Nature 432:492–95
    [Google Scholar]
  13. 13. 
    Sedgwick H, Egelhaaf S, Poon W 2004. J. Phys. Condens. Matter 16:S4913
    [Google Scholar]
  14. 14. 
    Campbell AI, Anderson VJ, van Duijneveldt JS, Bartlett P 2005. Phys. Rev. Lett. 94:208301
    [Google Scholar]
  15. 15. 
    Sanchez R, Bartlett P 2005. J. Phys. Condens. Matter 17:S355156
    [Google Scholar]
  16. 16. 
    Klix CL, Royall CP, Tanaka H 2010. Phys. Rev. Lett. 104:165702
    [Google Scholar]
  17. 17. 
    Kohl M, Capellmann R, Laurati M, Egelhaaf S, Schmiedeberg M 2016. Nat. Commun. 7:11817
    [Google Scholar]
  18. 18. 
    Liu Y, Porcar L, Chen J, Chen WR, Falus P et al. 2011. J. Phys. Chem. B 115:7238–47
    [Google Scholar]
  19. 19. 
    Liu J, Nguyen MD, Andya JD, Shire SJ 2005. J. Pharm. Sci. 94:1928–40
    [Google Scholar]
  20. 20. 
    Yearley EJ, Godfrin PD, Perevozchikova T, Zhang H, Falus P et al. 2014. Biophys. J. 106:1763–70
    [Google Scholar]
  21. 21. 
    Ciach A, Pekalski J, Góźdź W 2013. Soft Matter 9:6301–8
    [Google Scholar]
  22. 22. 
    Reddy NK, Zhang Z, Lettinga MP, Dhont JK, Vermant J 2012. J. Rheol. 56:1153–74
    [Google Scholar]
  23. 23. 
    Ruzicka B, Zulian L, Zaccarelli E, Angelini R, Sztucki M et al. 2010. Phys. Rev. Lett. 104:085701
    [Google Scholar]
  24. 24. 
    Angelini R, Zaccarelli E, de Melo Marques FA, Sztucki M, Fluerasu A et al. 2014. Nat. Commun. 5:4049
    [Google Scholar]
  25. 25. 
    Sear RP, Gelbart WM 1999. J. Chem. Phys. 110:4582–88
    [Google Scholar]
  26. 26. 
    Groenewold J, Kegel WK 2001. J. Phys. Chem. B 105:11702–9
    [Google Scholar]
  27. 27. 
    Sciortino F, Mossa S, Zaccarelli E, Tartaglia P 2004. Phys. Rev. Lett. 93:055701
    [Google Scholar]
  28. 28. 
    Zhuang Y, Charbonneau P 2016. J. Phys. Chem. B 120:6178–88
    [Google Scholar]
  29. 29. 
    Liu Y, Xi Y 2019. Curr. Opin. Colloid Interface Sci. 9:123–36
    [Google Scholar]
  30. 30. 
    Asakura S, Oosawa F 1958. J. Polym. Sci. 33:183–92
    [Google Scholar]
  31. 31. 
    Vrij A 1976. Pure Appl. Chem. 48:471–83
    [Google Scholar]
  32. 32. 
    Hunter RJ 2001. Foundations of Colloid Science Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  33. 33. 
    Pini D, Jialin G, Parola A, Reatto L 2000. Chem. Phys. Lett. 327:209–15
    [Google Scholar]
  34. 34. 
    Archer AJ, Pini D, Evans R, Reatto L 2007. J. Chem. Phys. 126:014104
    [Google Scholar]
  35. 35. 
    Sciortino F, Tartaglia P, Zaccarelli E 2005. J. Phys. Chem. B 109:21942–53
    [Google Scholar]
  36. 36. 
    Jadrich RB, Bollinger JA, Johnston KP, Truskett TM 2015. Phys. Rev. E 91:042312
    [Google Scholar]
  37. 37. 
    Vliegenthart G, Lodge J, Lekkerkerker H 1999. Physica A 263:378–88
    [Google Scholar]
  38. 38. 
    Hansen JP, McDonald IR 2013. Theory of Simple Liquids: With Applications to Soft Matter Oxford, UK: Academic
    [Google Scholar]
  39. 39. 
    Pini D, Parola A, Reatto L 2006. J. Phys. Condens. Matter 18:S2305
    [Google Scholar]
  40. 40. 
    Henderson D 1992. Fundamentals of Inhomogeneous Fluids Boca Raton, FL: CRC
    [Google Scholar]
  41. 41. 
    Archer AJ 2008. Phys. Rev. E 78:031402
    [Google Scholar]
  42. 42. 
    Chacko B, Chalmers C, Archer AJ 2015. J. Chem. Phys. 143:244904
    [Google Scholar]
  43. 43. 
    Godfrin PD, Valadez-Pérez NE, Castaneda-Priego R, Wagner NJ, Liu Y 2014. Soft Matter 10:5061–71
    [Google Scholar]
  44. 44. 
    Archer AJ, Wilding NB 2007. Phys. Rev. E 76:031501
    [Google Scholar]
  45. 45. 
    Archer AJ, Ionescu C, Pini D, Reatto L 2008. J. Phys. Condens. Matter 20:415106
    [Google Scholar]
  46. 46. 
    Zhuang Y, Zhang K, Charbonneau P 2016. Phys. Rev. Lett. 116:098301
    [Google Scholar]
  47. 47. 
    Noro MG, Frenkel D 2000. J. Chem. Phys. 113:2941–44
    [Google Scholar]
  48. 48. 
    Gibaud T, Cardinaux F, Bergenholtz J, Stradner A, Schurtenberger P 2011. Soft Matter 7:857–60
    [Google Scholar]
  49. 49. 
    Godfrin PD, Falus P, Porcar L, Hong K, Hudson SD et al. 2018. Soft Matter 14:8570–79
    [Google Scholar]
  50. 50. 
    Sciortino F, Buldyrev SV, De Michele C, Foffi G, Ghofraniha N et al. 2005. Comput. Phys. Commun. 169:166–71
    [Google Scholar]
  51. 51. 
    Hill TL 1986. An Introduction to Statistical Thermodynamics New York: Dover Publ.
    [Google Scholar]
  52. 52. 
    Bollinger JA, Truskett TM 2016. J. Chem. Phys. 145:064903
    [Google Scholar]
  53. 53. 
    Mossa S, Sciortino F, Tartaglia P, Zaccarelli E 2004. Langmuir 20:10756–63
    [Google Scholar]
  54. 54. 
    De Candia A, Del Gado E, Fierro A, Sator N, Tarzia M, Coniglio A 2006. Phys. Rev. E 74:010403
    [Google Scholar]
  55. 55. 
    Toledano JCF, Sciortino F, Zaccarelli E 2009. Soft Matter 5:2390–98
    [Google Scholar]
  56. 56. 
    Stradner A, Cardinaux F, Schurtenberger P 2006. J. Phys. Chem. B 110:21222–31
    [Google Scholar]
  57. 57. 
    Cardinaux F, Stradner A, Schurtenberger P, Sciortino F, Zaccarelli E 2007. Europhys. Lett. 77:48004
    [Google Scholar]
  58. 58. 
    Shukla A, Mylonas E, Di Cola E, Finet S, Timmins P et al. 2008. PNAS 105:5075–80
    [Google Scholar]
  59. 59. 
    Porcar L, Falus P, Chen WR, Faraone A, Fratini E et al. 2010. J. Phys. Chem. Lett. 1:126–29
    [Google Scholar]
  60. 60. 
    Cardinaux F, Zaccarelli E, Stradner A, Bucciarelli S, Farago B et al. 2011. J. Phys. Chem. B 115:7227–37
    [Google Scholar]
  61. 61. 
    von Bülow S, Siggel M, Linke M, Hummer G 2019. PNAS 116:9843–52
    [Google Scholar]
  62. 62. 
    Bergman MJ, Garting T, Schurtenberger P, Stradner A 2019. J. Phys. Chem. B 123:2432–38
    [Google Scholar]
  63. 63. 
    Godfrin PD, Castañeda-Priego R, Liu Y, Wagner NJ 2013. J. Chem. Phys. 139:154904
    [Google Scholar]
  64. 64. 
    Bollinger JA, Truskett TM 2016. J. Chem. Phys. 145:064902
    [Google Scholar]
  65. 65. 
    Hansen JP, Verlet L 1969. Phys. Rev. 184:151–61
    [Google Scholar]
  66. 66. 
    Zaccarelli E 2007. J. Phys. Condens. Matter 19:323101
    [Google Scholar]
  67. 67. 
    Wu J, Liu Y, Chen WR, Cao J, Chen SH 2004. Phys. Rev. E 70:050401
    [Google Scholar]
  68. 68. 
    Laurati M, Egelhaaf S, Petekidis G 2011. J. Rheol. 55:673–706
    [Google Scholar]
  69. 69. 
    Koumakis N, Petekidis G 2011. Soft Matter 7:2456–70
    [Google Scholar]
  70. 70. 
    Trappe V, Prasad V, Cipelletti L, Segre P, Weitz DA 2001. Nature 411:772–75
    [Google Scholar]
  71. 71. 
    Weis C, Oelschlaeger C, Dijkstra D, Ranft M, Willenbacher N 2016. Sci. Rep. 6:33498
    [Google Scholar]
  72. 72. 
    Gordon MB, Kloxin CJ, Wagner NJ 2017. J. Rheol. 61:23–34
    [Google Scholar]
  73. 73. 
    Koumakis N, Moghimi E, Besseling R, Poon WC, Brady JF, Petekidis G 2015. Soft Matter 11:4640–48
    [Google Scholar]
  74. 74. 
    Boromand A, Jamali S, Maia JM 2017. Soft Matter 13:458–73
    [Google Scholar]
  75. 75. 
    Kohl M, Schmiedeberg M 2017. Eur. Phys. J. E 40:71
    [Google Scholar]
  76. 76. 
    Verweij JE, Leermakers FA, Sprakel J, Van Der Gucht J 2019. Soft Matter 15:6447–54
    [Google Scholar]
  77. 77. 
    Johnson LC, Zia RN, Moghimi E, Petekidis G 2019. J. Rheol. 63:583–608
    [Google Scholar]
  78. 78. 
    Ruiz-Franco J, Gnan N, Zaccarelli E 2019. J. Chem. Phys. 150:024905
    [Google Scholar]
  79. 79. 
    Ruiz-Franco J, Camerin F, Gnan N, Zaccarelli E 2020. Phys. Rev. Mater. 4:045601
    [Google Scholar]
  80. 80. 
    Imperio A, Reatto L, Zapperi S 2008. Phys. Rev. E 78:021402
    [Google Scholar]
  81. 81. 
    Stopper D, Roth R 2018. Phys. Rev. E 97:062602
    [Google Scholar]
  82. 82. 
    Kadulkar S, Banerjee D, Khabaz F, Bonnecaze RT, Truskett TM, Ganesan V 2019. J. Chem. Phys. 150:214903
    [Google Scholar]
  83. 83. 
    Banerjee D, Lindquist BA, Jadrich RB, Truskett TM 2019. J. Chem. Phys. 150:124903
    [Google Scholar]
  84. 84. 
    Ciach A, Góźdź WT 2010. Condens. Matter Phys. 13:23603
    [Google Scholar]
  85. 85. 
    Imperio A, Reatto L 2004. J. Phys. Condens. Matter 16:S376990
    [Google Scholar]
  86. 86. 
    Imperio A, Reatto L 2006. J. Chem. Phys. 124:164712
    [Google Scholar]
  87. 87. 
    Law AD, Auriol M, Smith D, Horozov TS, Buzza DMA 2013. Phys. Rev. Lett. 110:138301
    [Google Scholar]
  88. 88. 
    Imperio A, Reatto L 2007. Phys. Rev. E 76:040402
    [Google Scholar]
  89. 89. 
    Serna H, Noya EG, Góźdź WT 2020. Soft Matter 16:718–27
    [Google Scholar]
  90. 90. 
    Mura F, Zaccone A 2016. Phys. Rev. E 93:042803
    [Google Scholar]
  91. 91. 
    Archer AJ, Evans R 2004. J. Chem. Phys. 121:4246–54
    [Google Scholar]
  92. 92. 
    Stopper D, Roth R 2017. Phys. Rev. E 96:042607
    [Google Scholar]
  93. 93. 
    Pekalski J, Rzadkowski W, Panagiotopoulos AZ 2020. J. Chem. Phys. 152:204905
    [Google Scholar]
  94. 94. 
    Wu J, Cao J 2006. Physica A 371:249–55
    [Google Scholar]
  95. 95. 
    Pini D, Parola A 2017. Soft Matter 13:9259–72
    [Google Scholar]
  96. 96. 
    Zhuang Y, Charbonneau P 2017. J. Chem. Phys. 147:091102
    [Google Scholar]
  97. 97. 
    Klix CL, Murata Ki, Tanaka H, Williams SR, Malins A, Royall CP 2013. Sci. Rep. 3:2072
    [Google Scholar]
  98. 98. 
    Matsen MW, Schick M 1996. Curr. Opin. Colloid Interface Sci. 1:329–36
    [Google Scholar]
  99. 99. 
    Kim HC, Park SM, Hinsberg WD 2010. Chem. Rev. 110:146–77
    [Google Scholar]
  100. 100. 
    Yamamoto R, Kim K, Nakayama Y, Miyazaki K, Reichman DR 2008. J. Phys. Soc. Jpn. 77:084804
    [Google Scholar]
  101. 101. 
    Furukawa A, Tanaka H 2010. Phys. Rev. Lett. 104:245702
    [Google Scholar]
  102. 102. 
    Royall CP, Eggers J, Furukawa A, Tanaka H 2015. Phys. Rev. Lett. 114:258302
    [Google Scholar]
  103. 103. 
    De Graaf J, Poon WC, Haughey MJ, Hermes M 2019. Soft Matter 15:10–16
    [Google Scholar]
  104. 104. 
    Riest J, Nägele G, Liu Y, Wagner NJ, Godfrin PD 2018. J. Chem. Phys. 148:065101
    [Google Scholar]
  105. 105. 
    Varga Z, Swan J 2016. Soft Matter 12:7670–81
    [Google Scholar]
  106. 106. 
    Ruzicka B, Zaccarelli E 2011. Soft Matter 7:1268–86
    [Google Scholar]
  107. 107. 
    Gögelein C, Nägele G, Tuinier R, Gibaud T, Stradner A, Schurtenberger P 2008. J. Chem. Phys. 129:08B615
    [Google Scholar]
  108. 108. 
    Kurut A, Persson BA, Åkesson T, Forsman J, Lund M 2012. J. Phys. Chem. Lett. 3:731–34
    [Google Scholar]
  109. 109. 
    Li W, Persson BA, Morin M, Behrens MA, Lund M, Zackrisson Oskolkova M 2015. J. Phys. Chem. B 119:503–8
    [Google Scholar]
  110. 110. 
    James S, Quinn MK, McManus JJ 2015. Phys. Chem. Chem. Phys. 17:5413–20
    [Google Scholar]
  111. 111. 
    McManus JJ, Charbonneau P, Zaccarelli E, Asherie N 2016. Curr. Opin. Colloid Interface Sci. 22:73–79
    [Google Scholar]
  112. 112. 
    Fernandez-Castanon J, Bomboi F, Rovigatti L, Zanatta M, Paciaroni A et al. 2016. J. Chem. Phys. 145:084910
    [Google Scholar]
  113. 113. 
    Skar-Gislinge N, Ronti M, Garting T, Rischel C, Schurtenberger P et al. 2019. Mol. Pharm. 16:2394–404
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-061020-053046
Loading
/content/journals/10.1146/annurev-conmatphys-061020-053046
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error