1932

Abstract

The recently discovered FeAs-based superconductors are a new, promising set of materials for technological and basic research. They offer transition temperatures as high as 55 K as well as essentially isotropic, and extremely large, upper, superconducting critical fields, in excess of 40 T at 20 K. In addition, they may well provide insight into exotic superconductivity that extends beyond just FeAs-based superconductivity, perhaps even shedding light on the still-perplexing CuO-based high- materials. Whereas superconductivity can be induced in the RFeAsO (R = rare earth) and AEFeAs (AE = Ba, Sr, Ca) families by several means, transition metal (TM) doping of BaFeAs [e.g., Ba(FeTM)As] offers the easiest experimental access to a wide set of materials and states. In this review, we present an overview and summary of the effect of TM-doping (TM = Co, Ni, Cu, Pd, and Rh) on BaFeAs. The resulting phase diagrams reveal the nature of the interaction between the structural, magnetic, and superconducting phase transitions in these compounds and delineate a region of phase space that allows for the stabilization of superconductivity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-070909-104041
2010-08-10
2025-03-21
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/1/1/annurev-conmatphys-070909-104041.html?itemId=/content/journals/10.1146/annurev-conmatphys-070909-104041&mimeType=html&fmt=ahah

Literature Cited

  1. Ginsberg DM. 1989/1990/1992/1994/1996. Physical Properties of High Temperature Superconductors Vols. 1–5 New York: World Scientific550 500 500 584 480 [Google Scholar]
  2. Bennemann KH, Ketterson JB. 2008. Superconductivity Vols. 1, 2 Heidelberg: Springer1568 [Google Scholar]
  3. U.S. Dep. Energy 2006.Basic research needs for superconductivity Rep. Basic Energy Sci. Worksh. Superconductivity Argonne Natl. Lab Argonne, IL: http://www.sc.doe.gov/bes/reports/files/SC_rpt.pdf [Google Scholar]
  4. Nagarajan R, Mazumdar C, Hossain Z, Dhar SK, Gopalakrishnan KV et al. 1994. Phys. Rev. Lett 72:27477 [Google Scholar]
  5. Cava RJ, Takagi H, Batlogg B, Zandbergen HW, Krajewski JJ et al. 1994. Nature 367:14648 [Google Scholar]
  6. Cava RJ, Takagi H, Zandbergen HW, Krajewski JJ, Peck WF Jr et al. 1994. Nature 367:25253 [Google Scholar]
  7. Canfield PC, Gammel PL, Bishop DJ. 1998. Phys. Today 51:(10)4046 [Google Scholar]
  8. Muller K-H, Narozhnyi V. 2001. Rare Earth Transition Metal Borocarbides (Nitrides): Superconducting, Magnetic, and Normal State Properties NATO Sci. Series: II. Math., Phys., Chem Vol. 14 Dordrecht: Kluwer445 [Google Scholar]
  9. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J. 2001. Nature 410:6364 [Google Scholar]
  10. Kwok W, Crabtree G, Bud'ko SL, Canfield PC. 2003. Superconductivity in MgB2: Electrons, Phonons and Vortices Physica C 385:(1/2)1311 (Spec. Issue) [Google Scholar]
  11. Canfield PC, Bud'ko SL. 2005. Sci. Am 292:8087 [Google Scholar]
  12. Kamihara Y, Watanabe T, Hirano M, Hosono H. 2008. J. Am. Chem. Soc 130:329697 [Google Scholar]
  13. Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M, Hosono H. 2008. Nature 453:37678 [Google Scholar]
  14. Ren Z-A, Lu W, Yang J, Yi W, Shen X-L et al. 2008. Chin. Phys. Lett 25:221516 [Google Scholar]
  15. Rotter M, Tegel M, Johrendt D. 2008. Phys. Rev. Lett 101:107006 [Google Scholar]
  16. Ni N, Bud'ko SL, Kreyssig A, Nandi S, Rustan GE et al. 2008. Phys. Rev. B 78:014507 [Google Scholar]
  17. Su Y, Link P, Schneidewind A, Wolf Th, Adelmann P et al. 2009. Phys. Rev. B 79:064504 [Google Scholar]
  18. Yan J-Q, Kreyssig A, Nandi S, Ni N, Bud'ko SL et al. 2008. Phys. Rev. B 78:024516 [Google Scholar]
  19. Chen GF, Li Z, Dong J, Li G, Hu WZ et al. 2008. Phys. Rev. B 78:224512 [Google Scholar]
  20. Ni N, Nandi S, Kreyssig A, Goldman AI, Mun ED et al. 2008. Phys. Rev. B 78:014523 [Google Scholar]
  21. Ronning F, Klimczuk T, Bauer ED, Volz H, Thompson JD. 2008. J. Phys.: Condens. Matter 20:322201 [Google Scholar]
  22. Altarawneh MM, Collar K, Mielke CH, Ni N, Bud'ko SL, Canfield PC. 2008. Phys. Rev. B 78:220505 [Google Scholar]
  23. Ni N, Tillman ME, Yan J-Q, Kracher A, Hannahs ST et al. 2008. Phys. Rev. B 78:214515 [Google Scholar]
  24. Yuan HQ, Singleton J, Balakirev FF, Baily SA, Chen GF et al. 2009. Nature 457:56568 [Google Scholar]
  25. Hashimoto K, Shibauchi T, Kasahara S, Ikada K, Tonegawa S et al. 2009. Phys. Rev. Lett 102:207001 [Google Scholar]
  26. Sefat AS, Huq A, McGuire MA, Jin R, Sales BC et al. 2008. Phys. Rev. B 78:104505 [Google Scholar]
  27. Sefat AS, Jin R, McGuire MA, Sales BC, Singh DJ, Mandrus D. 2008. Phys. Rev. Lett 101:117004 [Google Scholar]
  28. Quazilbash MM, Hamlin JJ, Baumbach RE, Zhang L, Singh DJ et al. 2009. Nat. Phys 5:64750 [Google Scholar]
  29. Si Q. 2009. Nat. Phys 5:62930 [Google Scholar]
  30. Boyd GR, Devereaux TP, Hirschfield PJ, Mishra V, Scalapino DJ. 2009. Phys. Rev. B 79:174521 [Google Scholar]
  31. Granath M, Bielecki J, Holmlund J, Boerjesson L. 2009. Phys. Rev. B 79:235103 [Google Scholar]
  32. Chauvière L, Gallais Y, Cazayous M, Sacuto A, Méasson MA et al. 2009. Phys. Rev. B 80:094504 [Google Scholar]
  33. Gallais Y, Sacuto A, Cazayous M, Cheng P, Fang L, Wen HH. 2008. Phys. Rev. B 78:132509 [Google Scholar]
  34. Ahilan K, Ning FL, Imai T, Sefat AS, Jin R et al. 2008. Phys. Rev. B 78:100501 [Google Scholar]
  35. Ning FL, Ahilan K, Imai T, Sefat AS, Jin R et al. 2008. J. Phys. Soc. Jpn 77:103705 [Google Scholar]
  36. Fukazawa H, Yamazaki T, Kondo K, Kohori Y, Takeshita N et al. 2008. J. Phys. Soc. Jpn 78:033704 [Google Scholar]
  37. Mukuda H, Terasaki N, Yashima M, Nishimura H, Kitaoka Y, Iyo A. 2009. Physica C 469:55965 [Google Scholar]
  38. Kobayasi Y, Kawabata A, Lee SC, Moyoshi T, Sato M. 2009. J. Phys. Soc. Jpn 78:073704 [Google Scholar]
  39. Matano K, Li Z, Sun DL, Lin CT, Ichioka M, Zheng GQ. 2009. Europhys. Lett 87:27012 [Google Scholar]
  40. Hu WZ, Dong J, Li G, Zheng P, Chen GF et al. 2008. Phys. Rev. Lett 101:257005 [Google Scholar]
  41. Pfuner F, Analytis JG, Chu J-H, Fisher IR, Degiorgi L. 2009. Eur. Phys. J. B 67:51317 [Google Scholar]
  42. Akrap A, Tu JJ, Li LJ, Cao GH, Xu ZA, Homes CC. 2009. Phys. Rev. B 80:180502 [Google Scholar]
  43. Hu WZ, Li G, Zheng P, Chen GF, Luo JL, Wang NL. 2009. Phys. Rev. B 80:100507 [Google Scholar]
  44. Rahlenbeck M, Sun GL, Sun DL, Lin CT, Keimer B, Ulrich C. 2009. Phys. Rev. B 80:064509 [Google Scholar]
  45. Hu WZ, Zhang QM, Wang NL. 2009. Physica C 469:54558 [Google Scholar]
  46. Ong A, Uhrig GS, Sushkov OP. 2009. Phys. Rev. B014514 [Google Scholar]
  47. Fukuzawa H, Hirayama K, Kondo K, Yamazaki T, Kohori Y et al. 2008. J. Phys. Soc. Jpn 77:093706 [Google Scholar]
  48. Kitagawa K, Katayama N, Ohgushi K, Yoshida M, Takigawa M. 2008. J. Phys. Soc. Jpn 77:114709 [Google Scholar]
  49. Baek S-H, Klimczuk T, Ronning F, Bauer ED, Thompson JD, Curro NJ. 2008. Phys. Rev. B 78:212509 [Google Scholar]
  50. Fukuzawa H, Takeshita N, Yamazaki T, Kondo K, Hirayama K et al. 2008. J. Phys. Soc. Jpn 77:105004 [Google Scholar]
  51. Ning FL, Ahilan K, Imai T, Sefat AS, Jin R et al. 2009. Phys. Rev. B 79:140506 [Google Scholar]
  52. Baek S-H, Lee H, Brown SE, Curro NJ, Bauer ED et al. 2009. Phys. Rev. Lett 102:227601 [Google Scholar]
  53. Baek S-H, Curro NJ, Klimczuk T, Bauer ED, Ronning F, Thompson JD. 2009. Phys. Rev. B 79:052504 [Google Scholar]
  54. Litvinchuk AP, Hadjiev VG, Iliev MN, Lv B, Guloy AM, Chu CW. 2008. Phys. Rev. B 78:060503 [Google Scholar]
  55. Rotter M, Tegel M, Johrendt D, Schellenberg I, Hermes W, Pöttgen R. 2008. Phys. Rev. B 78:020503 [Google Scholar]
  56. Lynn JW, Dai P. 2009. Physica C 469:46976 [Google Scholar]
  57. Goldman AI, Argyriou DN, Ouladdiaf B, Chatterji T, Kreyssig A et al. 2008. Phys. Rev. B 78:100506 [Google Scholar]
  58. Canfield PC, Bud'ko SL, Ni N, Kreyssig A, Goldman AI et al. 2009. Physica C 469:40412 [Google Scholar]
  59. Ning F, Ahilan K, Imai T, Sefat AS, Jin R et al. 2009. J. Phys. Soc. Jpn 78:013711 [Google Scholar]
  60. Chu J-H, Analytis JG, Kucharczyk C, Fisher IR. 2009. Phys. Rev. B 79:014506 [Google Scholar]
  61. Pratt DK, Tian W, Kreyssig A, Zarestky JL, Nandi S et al. 2009. Phys. Rev. Lett 103:087001 [Google Scholar]
  62. Mun ED, Bud'ko SL, Ni N, Thaler AN, Canfield PC. 2009. Phys. Rev. B 80:054517 [Google Scholar]
  63. Prozorov R, Tanatar MA, Blomberg EC, Prommapan P, Gordon RT et al. 2009. Physica C 469:66773 [Google Scholar]
  64. Christianson AD, Lumsden MD, Nagler SE, MacDougall GJ, McGuire MA et al. 2009. Phys. Rev. Lett 103:087002 [Google Scholar]
  65. Laplace Y, Bobroff J, Rullier-Albenque F, Colson D, Forget A. 2009. Phys. Rev. B 80:140501 [Google Scholar]
  66. Julien M-H, Mayaffre H, Horvatić M, Berthier C, Zhang XD et al. 2009. Europhys. Lett 87:37001 [Google Scholar]
  67. Bernhard C, Drew AJ, Schulz L, Malik VK, Rössle M et al. 2009. New J. Phys 11:055050 [Google Scholar]
  68. Canfield PC, Bud'ko SL, Ni N, Yan JQ, Kracher A. 2009. Phys. Rev. B 80:060501 [Google Scholar]
  69. Ni N, Thaler A, Kracher A, Yan JQ, Bud'ko SL, Canfield PC. 2009. Phys. Rev. B 80:024511 [Google Scholar]
  70. Leite-Jasper A, Schnelle W, Geibel C, Rozner H. 2008. Phys. Rev. Lett 101:207004 [Google Scholar]
  71. Saha SR, Butch NP, Kirshenbaum K, Paglione J. 2009. Phys. Rev. B 79:224519 [Google Scholar]
  72. Han F, Zhu X, Cheng P, Mu G, Jia Y et al. 2009. Phys. Rev. B 80:024506 [Google Scholar]
  73. Rullier-Albenque F, Colson D, Forget A, Alloul H. 2009. Phys. Rev. Lett 103:057001 [Google Scholar]
  74. Fang L, Luo H, Cheng P, Wang Z, Jia Y et al. 2009. Phys. Rev. B 80:140508 [Google Scholar]
  75. Li LJ, Luo YK, Wang QB, Chen H, Ren Z et al. 2009. New J. Phys 11:025008 [Google Scholar]
  76. Liu C, Kondo T, Fernandes RM, Palczewski AD, Mun ED et al. 2010. Nat. Phys doi:10.1038/nphys1656 [Google Scholar]
  77. Lifshitz IM. 1960. Sov. Phys. JETP 11:113035 [Google Scholar]
  78. Gordon RT, Martin C, Kim H, Ni N, Tanatar MA et al. 2009. Phys. Rev. B 79:100506 [Google Scholar]
  79. Bud'ko SL, Ni N, Nandi S, Schmiedeshoff GM, Canfield PC. 2009. Phys. Rev. B 79:054525 [Google Scholar]
  80. Bud'ko SL, Ni N, Canfield PC. 2009. Phys. Rev. B 79:220516 [Google Scholar]
  81. Mu G, Zeng B, Cheng P, Wang Z, Fang L et al. 2010. Chin. Phys. Lett 27:037402 [Google Scholar]
  82. Ni N. 2009. PhD thesis Iowa State Univ Ames:
  83. Zaanen J. 2009. Phys. Rev. B 80:212502 [Google Scholar]
  84. Kogan VG. 2009. Phys. Rev. B 80:214532 [Google Scholar]
  85. Fernandes RM, Pratt DK, Tian W, Zarestky J, Kreyssig A et al. 2010. Phys. Rev. B 81:140501 [Google Scholar]
  86. Novel Materials and Ground States (at Ames Laboratory, U.S. DOE and Department of Physics and Astronomy, Iowa State University) research group Web page http://www.cmpgroup.ameslab.gov/personnel/canfield/index.html [Google Scholar]
  87. Online collection of papers on iron-pnictide and related superconductors from the Journal of the Physical Society of Japan http://www.ipap.jp/articles/showArticle.cgi?sec=Fe [Google Scholar]
  88. Preprint archive (condensed matter) http://arxiv.org/archive/cond-mat [Google Scholar]
  89. Canfield PC. 2008. Nat. Phys 4:16769 [Google Scholar]
  90. Canfield PC. 2009. Nat. Phys 5:52930 [Google Scholar]
  91. Chu PCW, Koshelev A, Kwok W, Mazin I, Welp U, Wen H-H. 2009. Superconductivity in Iron-Pnictides. Physica C 469:(9/12)313674 (Spec. Issue) [Google Scholar]
  92. Hosono H, Ren Z-A. 2009. Focus on Iron Based Superconductors. New J. Phys 11:025003 (Spec. Issue) [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-070909-104041
Loading
/content/journals/10.1146/annurev-conmatphys-070909-104041
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error