1932

Abstract

This article reviews two techniques that use delay for control: time-delay approaches to control problems (which initially may be free of delays) and the intentional insertion of delays into the feedback. We begin with a now widely used time-delay approach to sampled-data control. In networked control systems with communication constraints, this is the only method that accommodates transmission delays larger than the sampling intervals. We present a predictor-based design that enlarges the maximum allowable delay, which is important for practical implementations. We then discuss methods that use artificial delays via simple Lyapunov functionals that lead to feasible linear matrix inequalities for small delays and simple sampled-data implementations. Finally, we briefly present a new time-delay approach—this time to averaging. Unlike previous results, this approach provides the first quantitative bounds on the small parameter, making averaging-based control (including vibrational and extremum-seeking control) reliable.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-022723-033031
2025-05-05
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/control/8/1/annurev-control-022723-033031.html?itemId=/content/journals/10.1146/annurev-control-022723-033031&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kolmanovskii V, Myshkis A. 1992.. Applied Theory of Functional Differential Equations. Dordrecht, Neth:.: Springer
    [Google Scholar]
  2. 2.
    Agarwal RP, Berezansky L, Braverman E, Domoshnitsky A. 2012.. Nonoscillation Theory of Functional Differential Equations with Applications. New York:: Springer
    [Google Scholar]
  3. 3.
    Datko R. 1988.. Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. . SIAM J. Control Optim. 26:(3):697713
    [Crossref] [Google Scholar]
  4. 4.
    Fridman E. 2014.. Introduction to Time-Delay Systems: Analysis and Control. Cham, Switz:.: Birkhäuser
    [Google Scholar]
  5. 5.
    Abdallah C, Dorato P, Benitez-Read J, Byrne R. 1993.. Delayed positive feedback can stabilize oscillatory systems. . In 1993 American Control Conference, pp. 31067. Piscataway, NJ:: IEEE
    [Google Scholar]
  6. 6.
    Niculescu SI, Michiels W. 2004.. Stabilizing a chain of integrators using multiple delays. . IEEE Trans. Autom. Control 49:(5):8027
    [Crossref] [Google Scholar]
  7. 7.
    Richard JP. 2003.. Time-delay systems: an overview of some recent advances and open problems. . Automatica 39::166794
    [Crossref] [Google Scholar]
  8. 8.
    Ilchmann A, Sangwin CJ. 2004.. Output feedback stabilisation of minimum phase systems by delays. . Syst. Control Lett. 52:(3–4):23345
    [Crossref] [Google Scholar]
  9. 9.
    Karafyllis I. 2008.. Robust global stabilization by means of discrete-delay output feedback. . Syst. Control Lett. 57::98795
    [Crossref] [Google Scholar]
  10. 10.
    Ramírez A, Mondié S, Garrido R, Sipahi R. 2016.. Design of proportional-integral-retarded (PIR) controllers for second-order LTI systems. . IEEE Trans. Autom. Control 61:(6):168893
    [Crossref] [Google Scholar]
  11. 11.
    Fridman E, Shaikhet L. 2016.. Delay-induced stability of vector second-order systems via simple Lyapunov functionals. . Automatica 74::28896
    [Crossref] [Google Scholar]
  12. 12.
    Fridman E, Shaikhet L. 2017.. Stabilization by using artificial delays: an LMI approach. . Automatica 81::42937
    [Crossref] [Google Scholar]
  13. 13.
    Krasovskii NN. 1963.. Stability of Motion,transl. JL Brenner . Stanford, CA:: Stanford Univ. Press
    [Google Scholar]
  14. 14.
    Razumikhin B. 1956.. On the stability of systems with a delay. . Prikl. Math. Mech. 20::50012
    [Google Scholar]
  15. 15.
    Hetel L, Fiter C, Omran H, Seuret A, Fridman E, et al. 2017.. Recent developments on the stability of systems with aperiodic sampling: an overview. . Automatica 76::30935
    [Crossref] [Google Scholar]
  16. 16.
    Liu K, Selivanov A, Fridman E. 2019.. Survey on time-delay approach to networked control. . Annu. Rev. Control 48::5779
    [Crossref] [Google Scholar]
  17. 17.
    Mikheev Y, Sobolev V, Fridman E. 1988.. Asymptotic analysis of digital control systems. . Autom. Remote Control 49::117580
    [Google Scholar]
  18. 18.
    Fridman E. 1992.. Using models with aftereffect in the problem of design of optimal digital control. . Autom. Remote Control 53:(10):152328
    [Google Scholar]
  19. 19.
    Fridman E, Seuret A, Richard JP. 2004.. Robust sampled-data stabilization of linear systems: an input delay approach. . Automatica 40:(8):144146
    [Crossref] [Google Scholar]
  20. 20.
    Fridman E, Shaked U. 2003.. Delay-dependent stability and H ∞ control: constant and time-varying delays. . Int. J. Control 76:(1):4860
    [Crossref] [Google Scholar]
  21. 21.
    Li X, de Souza C. 1997.. Criteria for robust stability and stabilization of uncertain linear systems with state delay. . Automatica 33::165762
    [Crossref] [Google Scholar]
  22. 22.
    Kolmanovskii V, Richard JP. 1999.. Stability of some linear systems with delays. . IEEE Trans. Autom. Control 44::98489
    [Crossref] [Google Scholar]
  23. 23.
    Gu K, Niculescu SI. 2001.. Further remarks on additional dynamics in various model transformations of linear delay systems. . IEEE Trans. Autom. Control 46:(3):497500
    [Crossref] [Google Scholar]
  24. 24.
    Kharitonov V, Melchor-Aguilar D. 2000.. On delay-dependent stability conditions. . Syst. Control Lett. 40::7176
    [Crossref] [Google Scholar]
  25. 25.
    Gu K, Kharitonov VL, Chen J. 2003.. Stability of Time-Delay Systems. Boston:: Birkhäuser
    [Google Scholar]
  26. 26.
    Fridman E. 2001.. New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. . Syst. Control Lett. 43::30919
    [Crossref] [Google Scholar]
  27. 27.
    Suplin V, Fridman E, Shaked U. 2007.. Sampled-data H control and filtering: nonuniform uncertain sampling. . Automatica 43::107283
    [Crossref] [Google Scholar]
  28. 28.
    Fridman E, Orlov Y. 2009.. Exponential stability of linear distributed parameter systems with time-varying delays. . Automatica 45:(1):194201
    [Crossref] [Google Scholar]
  29. 29.
    Fridman E, Blighovsky A. 2012.. Robust sampled-data control of a class of semilinear parabolic systems. . Automatica 48:(5):82636
    [Crossref] [Google Scholar]
  30. 30.
    Kang W, Fridman E. 2018.. Distributed sampled-data control of Kuramoto–Sivashinsky equation. . Automatica 95::51424
    [Crossref] [Google Scholar]
  31. 31.
    Suplin V, Fridman E, Shaked U. 2004.. A projection approach to H control of time-delay systems. . In 43rd IEEE Conference on Decision and Control, Vol. 5, pp. 454853. Piscataway, NJ:: IEEE
    [Google Scholar]
  32. 32.
    Gouaisbaut F, Peaucelle D. 2006.. Delay-dependent stability of time delay systems. . IFAC Proc. Vol. 39:(9):45358
    [Crossref] [Google Scholar]
  33. 33.
    He Y, Wang QG, Lin C, Wu M. 2007.. Delay-range-dependent stability for systems with time-varying delay. . Automatica 43::37176
    [Crossref] [Google Scholar]
  34. 34.
    Park PG, Ko J, Jeong C. 2011.. Reciprocally convex approach to stability of systems with time-varying delays. . Automatica 47::23538
    [Crossref] [Google Scholar]
  35. 35.
    Fridman E. 2006.. A new Lyapunov technique for robust control of systems with uncertain non-small delays. . IMA J. Math. Control Inf. 23::16579
    [Crossref] [Google Scholar]
  36. 36.
    Seuret A, Gouaisbaut F. 2017.. Stability of linear systems with time-varying delays using Bessel–Legendre inequalities. . IEEE Trans. Autom. Control 63:(1):22532
    [Crossref] [Google Scholar]
  37. 37.
    Liu K, Seuret A, Xia Y. 2017.. Stability analysis of systems with time-varying delays via the second-order Bessel–Legendre inequality. . Automatica 76::13842
    [Crossref] [Google Scholar]
  38. 38.
    Zhai Z, Yan H, Chen S, Li Z, Xu C. 2024.. Hierarchical stability conditions and iterative reciprocally high-order polynomial inequalities for two types of time-varying delay systems. . Automatica 163::111526
    [Crossref] [Google Scholar]
  39. 39.
    Fridman E, Shaikhet L. 2019.. Simple LMIs for stability of stochastic systems with delay term given by Stieltjes integral or with stabilizing delay. . Syst. Control Lett. 124::8391
    [Crossref] [Google Scholar]
  40. 40.
    Fridman E. 2010.. A refined input delay approach to sampled-data control. . Automatica 46::42127
    [Crossref] [Google Scholar]
  41. 41.
    Naghshtabrizi P, Hespanha J, Teel A. 2008.. Exponential stability of impulsive systems with application to uncertain sampled-data systems. . Syst. Control Lett. 57:(5):37885
    [Crossref] [Google Scholar]
  42. 42.
    Liu K, Fridman E. 2012.. Wirtinger's inequality and Lyapunov-based sampled-data stabilization. . Automatica 48:(1):1028
    [Crossref] [Google Scholar]
  43. 43.
    Mirkin L. 2007.. Some remarks on the use of time-varying delay to model sample-and-hold circuits. . IEEE Trans. Autom. Control 52:(6):110912
    [Crossref] [Google Scholar]
  44. 44.
    Seuret A. 2012.. A novel stability analysis of linear systems under asynchronous samplings. . Automatica 48:(1):17782
    [Crossref] [Google Scholar]
  45. 45.
    Selivanov A, Fridman E. 2016.. Observer-based input-to-state stabilization of networked control systems with large uncertain delays. . Automatica 74::6370
    [Crossref] [Google Scholar]
  46. 46.
    Liu K, Fridman E. 2012.. Networked-based stabilization via discontinuous Lyapunov functionals. . Int. J. Robust Nonlinear Control 22:(4):42036
    [Crossref] [Google Scholar]
  47. 47.
    Liu K, Fridman E, Hetel L. 2015.. Networked control systems in the presence of scheduling protocols and communication delays. . SIAM J. Control Optim. 53:(4):176888
    [Crossref] [Google Scholar]
  48. 48.
    Liu K, Fridman E, Johansson KH. 2015.. Networked control with stochastic scheduling. . IEEE Trans. Autom. Control 60:(11):307176
    [Crossref] [Google Scholar]
  49. 49.
    Freirich D, Fridman E. 2016.. Decentralized networked control of systems with local networks: a time-delay approach. . Automatica 69::2019
    [Crossref] [Google Scholar]
  50. 50.
    Heemels W, Teel A, van de Wouw N, Nesic D. 2010.. Networked control systems with communication constraints: tradeoffs between transmission intervals, delays and performance. . IEEE Trans. Autom. Control 55:(8):178196
    [Crossref] [Google Scholar]
  51. 51.
    Liberzon D. 2003.. Hybrid feedback stabilization of systems with quantized signals. . Automatica 39:(9):154354
    [Crossref] [Google Scholar]
  52. 52.
    Elia N, Mitter SK. 2001.. Stabilization of linear systems with limited information. . IEEE Trans. Autom. Control 46:(9):1384400
    [Crossref] [Google Scholar]
  53. 53.
    Fridman E, Dambrine M. 2009.. Control under quantization, saturation and delay: an LMI approach. . Automatica 45::225864
    [Crossref] [Google Scholar]
  54. 54.
    Liu K, Fridman E, Johansson KH. 2015.. Dynamic quantization of uncertain linear networked control systems. . Automatica 59::24855
    [Crossref] [Google Scholar]
  55. 55.
    Naghshtabrizi P, Hespanha J, Teel A. 2007.. Stability of delay impulsive systems with application to networked control systems. . In 2007 American Control Conference, pp. 4899904. Piscataway, NJ:: IEEE
    [Google Scholar]
  56. 56.
    Walsh G, Ye H, Bushnell L. 2002.. Stability analysis of networked control systems. . IEEE Trans. Control Syst. Technol. 10:(3):43846
    [Crossref] [Google Scholar]
  57. 57.
    Gao H, Chen T, Lam J. 2008.. A new delay system approach to network-based control. . Automatica 44:(1):3952
    [Crossref] [Google Scholar]
  58. 58.
    Nesic D, Teel AR. 2004.. Input-output stability properties of networked control systems. . IEEE Trans. Autom. Control 49:(10):165067
    [Crossref] [Google Scholar]
  59. 59.
    Liu K, Fridman E, Hetel L. 2012.. Stability and L2-gain analysis of networked control systems under Round-Robin scheduling: a time-delay approach. . Syst. Control Lett. 61:(5):66675
    [Crossref] [Google Scholar]
  60. 60.
    Donkers M, Heemels W, van de Wouw N, Hetel L. 2011.. Stability analysis of networked control systems using a switched linear systems approach. . IEEE Trans. Autom. Control 56:(9):210115
    [Crossref] [Google Scholar]
  61. 61.
    Donkers M, Heemels W, Bernardini D, Bemporad A, Shneer V. 2012.. Stability analysis of stochastic networked control systems. . Automatica 48:(5):91725
    [Crossref] [Google Scholar]
  62. 62.
    Zhang J, Fridman E. 2021.. Dynamic event-triggered control of networked stochastic systems with scheduling protocols. . IEEE Trans. Autom. Control 66:(12):613947
    [Crossref] [Google Scholar]
  63. 63.
    Liu K, Fridman E, Xia Y. 2020.. Networked Control Under Communication Constraints: A Time-Delay Approach. Singapore:: Springer
    [Google Scholar]
  64. 64.
    Manitius AZ, Olbrot AW. 1979.. Finite spectrum assignment problem for systems with delays. . IEEE Trans. Autom. Control 24:(4):54153
    [Crossref] [Google Scholar]
  65. 65.
    Krstic M. 2009.. Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Boston:: Birkhäuser
    [Google Scholar]
  66. 66.
    Najafi M, Hosseinnia S, Sheikholeslam F, Karimadini M. 2013.. Closed-loop control of dead time systems via sequential sub-predictors. . Int. J. Control 86:(4):599609
    [Crossref] [Google Scholar]
  67. 67.
    Artstein Z. 1982.. Linear systems with delayed controls: a reduction. . IEEE Trans. Autom. Control 27:(4):86979
    [Crossref] [Google Scholar]
  68. 68.
    Zhu Y, Fridman E. 2020.. Predictor methods for decentralized control of large-scale systems with input delays. . Automatica 116::108903
    [Crossref] [Google Scholar]
  69. 69.
    Bresch-Pietri D, Chauvin J, Petit N. 2011.. Adaptive backstepping for uncertain systems with time-delay on-line update laws. . In 2011 American Control Conference, Vol. 1, pp. 489097. Piscataway, NJ:: IEEE
    [Google Scholar]
  70. 70.
    Zhu Y, Krstic M. 2020.. Delay-Adaptive Linear Control. Princeton, NJ:: Princeton University Press
    [Google Scholar]
  71. 71.
    Kwon W, Pearson A. 1980.. Feedback stabilization of linear systems with delayed control. . IEEE Trans. Autom. Control 25:(2):26669
    [Crossref] [Google Scholar]
  72. 72.
    Selivanov A, Fridman E. 2016.. Predictor-based networked control under uncertain transmission delays. . Automatica 70::1018
    [Crossref] [Google Scholar]
  73. 73.
    Zhu Y, Fridman E. 2020.. Observer-based decentralized predictor control for large-scale interconnected systems with large delays. . IEEE Trans. Autom. Control 66:(6):2897904
    [Crossref] [Google Scholar]
  74. 74.
    Germani A, Manes C, Pepe P. 2002.. A new approach to state observation of nonlinear systems with delayed output. . IEEE Trans. Autom. Control 47:(1):96101
    [Crossref] [Google Scholar]
  75. 75.
    Zhu Y, Fridman E. 2021.. Sub-predictors for network-based control under uncertain large delays. . Automatica 123::109350
    [Crossref] [Google Scholar]
  76. 76.
    Tabuada P. 2007.. Event-triggered real-time scheduling of stabilizing control tasks. . IEEE Trans. Autom. Control 52:(9):168085
    [Crossref] [Google Scholar]
  77. 77.
    Heemels W, Johansson K, Tabuada P. 2012.. An introduction to event-triggered and self-triggered control. . In 2012 IEEE Conference on Decision and Control, pp. 327085. Piscataway, NJ:: IEEE
    [Google Scholar]
  78. 78.
    Åström KJ, Bernhardsson B. 1999.. Comparison of periodic and event based sampling for first-order stochastic systems. . IFAC Proc. Vol. 32:(2):3016
    [Google Scholar]
  79. 79.
    Peng C, Han QL. 2013.. A novel event-triggered transmission scheme and L2 control co-design for sampled-data control systems. . IEEE Trans. Autom. Control 58:(10):262026
    [Crossref] [Google Scholar]
  80. 80.
    Yue D, Tian E, Han QL. 2011.. A delay system method for designing event-triggered controllers of networked control systems. . IEEE Trans. Autom. Control 58:(2):166873
    [Google Scholar]
  81. 81.
    Selivanov A, Fridman E. 2016.. Event-triggered H control: a switching approach. . IEEE Trans. Autom. Control 61:(10):322126
    [Crossref] [Google Scholar]
  82. 82.
    Katz R, Fridman E, Selivanov A. 2021.. Boundary delayed observer-controller design for reaction-diffusion systems. . IEEE Trans. Autom. Control 66:(1):27582
    [Crossref] [Google Scholar]
  83. 83.
    Koda M, Seinfeld JH. 1978.. Estimation of urban air pollution. . Automatica 14:(6):58395
    [Crossref] [Google Scholar]
  84. 84.
    Christofides P. 2001.. Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport Reaction Processes. Boston:: Birkhäuser
    [Google Scholar]
  85. 85.
    Bar Am N, Fridman E. 2014.. Network-based H filtering of parabolic systems. . Automatica 50:(12):313946
    [Crossref] [Google Scholar]
  86. 86.
    Karafyllis I, Krstic M. 2018.. Sampled-data boundary feedback control of 1-D parabolic PDEs. . Automatica 87::22637
    [Crossref] [Google Scholar]
  87. 87.
    Katz R, Fridman E. 2021.. Delayed finite-dimensional observer-based control of 1-D parabolic PDEs. . Automatica 123::109364
    [Crossref] [Google Scholar]
  88. 88.
    Wang P, Fridman E. 2023.. Predictor methods for finite-dimensional observer-based control of stochastic parabolic PDEs. . Syst. Control Lett. 181::105632
    [Crossref] [Google Scholar]
  89. 89.
    Curtain R. 1982.. Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input. . IEEE Trans. Autom. Control 27:(1):98104
    [Crossref] [Google Scholar]
  90. 90.
    Katz R, Fridman E. 2021.. Global finite-dimensional observer-based stabilization of a semilinear heat equation with large input delay. . Syst. Control Lett. 165::105275
    [Crossref] [Google Scholar]
  91. 91.
    Katz R, Fridman E. 2022.. Sampled-data finite-dimensional boundary control of 1D parabolic PDEs under point measurement via a novel ISS Halanay's inequality. . Automatica 135::109966
    [Crossref] [Google Scholar]
  92. 92.
    Selivanov A, Fridman E. 2016.. Distributed event-triggered control of diffusion semilinear PDEs. . Automatica 68::34451
    [Crossref] [Google Scholar]
  93. 93.
    Selivanov A, Fridman E. 2019.. Delayed H control of 2D diffusion systems under delayed pointlike measurements. . Automatica 109::108541
    [Crossref] [Google Scholar]
  94. 94.
    Kang W, Fridman E. 2021.. Sampled-data control of 2-D Kuramoto–Sivashinsky equation. . IEEE Trans. Autom. Control 67:(3):131426
    [Crossref] [Google Scholar]
  95. 95.
    Terushkin M, Fridman E. 2021.. Network-based deployment of nonlinear multi agents over open curves: a PDE approach. . Automatica 129::109697
    [Crossref] [Google Scholar]
  96. 96.
    Terushkin M, Fridman E. 2020.. Network-based control of a semilinear damped beam equation under point and pointlike measurements. . Syst. Control Lett. 136::104617
    [Crossref] [Google Scholar]
  97. 97.
    Oh KK, Park MC, Ahn HS. 2015.. A survey of multi-agent formation control. . Automatica 53::42440
    [Crossref] [Google Scholar]
  98. 98.
    Freudenthaler G, Meurer T. 2020.. PDE-based multi-agent formation control using flatness and backstepping: analysis, design and robot experiments. . Automatica 115::108897
    [Crossref] [Google Scholar]
  99. 99.
    Frihauf P, Krstic M. 2010.. Leader-enabled deployment onto planar curves: a PDE-based approach. . IEEE Trans. Autom. Control 56:(8):1791806
    [Crossref] [Google Scholar]
  100. 100.
    Wei J, Fridman E, Johansson KH. 2019.. A PDE approach to deployment of mobile agents under leader relative position measurements. . Automatica 106::4753
    [Crossref] [Google Scholar]
  101. 101.
    Selivanov A, Fridman E. 2022.. PDE-based deployment of multiagents measuring relative position to one neighbor. . IEEE Control Syst. Lett. 6::256368
    [Crossref] [Google Scholar]
  102. 102.
    Katz R, Fridman E, Basre I. 2022.. Network-based deployment of multi-agents without communication of leaders with multiple followers: a PDE approach. . In 2022 IEEE 61st Conference on Decision and Control, pp. 608996. Piscataway, NJ:: IEEE
    [Google Scholar]
  103. 103.
    Berezansky L, Domoshnitsky A, Gitman M, Stolbov V. 2015.. Exponential stability of a second order delay differential equation without damping term. . Appl. Math. Comput. 258::48388
    [Crossref] [Google Scholar]
  104. 104.
    French M, Ilchmann A, Mueller M. 2009.. Robust stabilization by linear output delay feedback. . SIAM J. Control Optim. 48:(4):253361
    [Crossref] [Google Scholar]
  105. 105.
    Michiels W, Niculescu SI, eds. 2014.. Stability, Control, and Computation for Time-Delay Systems: An Eigenvalue-Based Approach. Philadelphia:: Soc. Ind. Appl. Math.
    [Google Scholar]
  106. 106.
    Atay FM. 1999.. Balancing the inverted pendulum using position feedback. . Appl. Math. Lett. 12:(5):5156
    [Crossref] [Google Scholar]
  107. 107.
    Seuret A, Gouaisbaut F. 2013.. Wirtinger-based integral inequality: application to time-delay systems. . Automatica 49:(9):286066
    [Crossref] [Google Scholar]
  108. 108.
    Selivanov A, Fridman E. 2018.. Robust sampled-data implementation of PID controller. . In 2018 IEEE Conference on Decision and Control, pp. 93236. Piscataway, NJ:: IEEE
    [Google Scholar]
  109. 109.
    Selivanov A, Fridman E. 2018.. An improved time-delay implementation of derivative-dependent feedback. . Automatica 98::26976
    [Crossref] [Google Scholar]
  110. 110.
    Zhang J, Fridman E. 2020.. Improved derivative-dependent control of stochastic systems via delayed feedback implementation. . Automatica 119::109101
    [Crossref] [Google Scholar]
  111. 111.
    Zhang J, Fridman E. 2022.. Sampled-data implementation of extended PID control using delays. . Int. J. Robust Nonlinear Control 32:(18):961024
    [Crossref] [Google Scholar]
  112. 112.
    Seuret A, Edwards C, Spurgeon S, Fridman E. 2009.. Static output feedback sliding mode control design via an artificial stabilizing delay. . IEEE Trans. Autom. Control 54:(2):25665
    [Crossref] [Google Scholar]
  113. 113.
    Xu J, Fridman E, Fridman L, Niu Y. 2020.. Static sliding mode control of systems with arbitrary relative degree by using artificial delay. . IEEE Trans. Autom. Control 65:(12):546471
    [Crossref] [Google Scholar]
  114. 114.
    Efimov D, Fridman E, Perruquetti W, Richard JP. 2020.. Homogeneity of neutral systems and accelerated stabilization of a double integrator by measurement of its position. . Automatica 118::109023
    [Crossref] [Google Scholar]
  115. 115.
    Nekhoroshikh AN, Efimov D, Fridman E, Perruquetti W, Furtat IB, Polyakov A. 2022.. Practical fixed-time ISS of neutral time-delay systems with application to stabilization by using delays. . Automatica 143::110455
    [Crossref] [Google Scholar]
  116. 116.
    Wang J, Aranovskiy S, Fridman E, Sokolov D, Efimov D, Bobtsov AA. 2020.. Robust adaptive stabilization by delay under state parametric uncertainty and measurement bias. . IEEE Trans. Autom. Control 66:(11):545966
    [Crossref] [Google Scholar]
  117. 117.
    Aleksandrov A, Efimov D, Fridman E. 2024.. On local ISS of nonlinear second-order time-delay systems without damping. . Int. J. Robust Nonlinear Control 34:(10):632945
    [Crossref] [Google Scholar]
  118. 118.
    Kapitza PL. 1951.. A pendulum with oscillating suspension. . Uspekhi Fizicheskikh Nauk. 44::720
    [Crossref] [Google Scholar]
  119. 119.
    Bellman R, Bentsman J, Meerkov S. 1986.. Vibrational control of nonlinear systems: vibrational stabilizability. . IEEE Trans. Autom. Control 31:(8):71016
    [Crossref] [Google Scholar]
  120. 120.
    Michiels W, Niculescu SI, Moreau L. 2004.. Using delays and time-varying gains to improve the static output feedback stabilizability of linear systems: a comparison. . IMA J. Math. Control Inf. 21:(4):393418
    [Crossref] [Google Scholar]
  121. 121.
    Moreau L, Aeyels D. 2004.. Periodic output feedback stabilization of single-input single-output continuous-time systems with odd relative degree. . Syst. Control Lett. 51:(5):395406
    [Crossref] [Google Scholar]
  122. 122.
    Brockett R. 1999.. A stabilization problem. . In Open Problems in Mathematical Systems and Control Theory, ed. V Blondel, ED Sontag, M Vidyasagar, JC Willems , pp. 7578. London:: Springer
    [Google Scholar]
  123. 123.
    Krstić M, Wang HH. 2000.. Stability of extremum seeking feedback for general nonlinear dynamic systems. . Automatica 36:(4):595601
    [Crossref] [Google Scholar]
  124. 124.
    Khalil HK. 2002.. Nonlinear Systems. Upper Saddle River, NJ:: Prentice Hall
    [Google Scholar]
  125. 125.
    Bogolubov N, Mitropolsky Y. 1961.. Asymptotic Methods in the Theory of Non-Linear Oscillations. Boca Raton, FL:: CRC
    [Google Scholar]
  126. 126.
    Fridman E, Zhang J. 2020.. Averaging of linear systems with almost periodic coefficients: a time-delay approach. . Automatica 122::109287
    [Crossref] [Google Scholar]
  127. 127.
    Zhang J, Fridman E. 2022.. L2-gain analysis via time-delay approach to periodic averaging with stochastic extension. . Automatica 137::110126
    [Crossref] [Google Scholar]
  128. 128.
    Caiazzo B, Fridman E, Yang X. 2023.. Averaging of systems with fast-varying coefficients and non-small delays with application to stabilization of affine systems via time-dependent switching. . Nonlinear Anal. Hybrid Syst. 48::101307
    [Crossref] [Google Scholar]
  129. 129.
    Yang X, Zhang J, Fridman E. 2022.. Periodic averaging of discrete-time systems: a time-delay approach. . IEEE Trans. Autom. Control 68:(7):448289
    [Google Scholar]
  130. 130.
    Zhang J, Fridman E. 2022.. Constructive robust stabilization by using square wave dithers: a time-delay approach. . IEEE Trans. Autom. Control 68:(10):630714
    [Crossref] [Google Scholar]
  131. 131.
    Efimov D, Fridman E. 2023.. On ISS with respect to average value of disturbances: a time-delay approach. . IEEE Trans. Autom. Control 69:(5):343440
    [Crossref] [Google Scholar]
  132. 132.
    Griñó R, Ortega R, Fridman E, Zhang J, Mazenc F. 2021.. A behavioural dynamic model for constant power loads in single-phase AC systems. . Automatica 131::109744
    [Crossref] [Google Scholar]
  133. 133.
    Zhu Y, Fridman E. 2022.. Extremum seeking via a time-delay approach to averaging. . Automatica 135::109965
    [Crossref] [Google Scholar]
  134. 134.
    Ariyur KB, Krstic M. 2003.. Real-Time Optimization by Extremum-Seeking Control. Hoboken, NJ:: Wiley & Sons
    [Google Scholar]
  135. 135.
    Yang X, Fridman E. 2023.. A time-delay approach to extremum seeking with large measurement delays. . IFAC-PapersOnLine 56:(2):16873
    [Crossref] [Google Scholar]
  136. 136.
    Scheinker A, Krstić M. 2014.. Extremum seeking with bounded update rates. . Syst. Control Lett. 63::2531
    [Crossref] [Google Scholar]
  137. 137.
    Zhu Y, Fridman E, Oliveira TR. 2022.. Sampled-data extremum seeking with constant delay: a time-delay approach. . IEEE Trans. Autom. Control 68:(1):43239
    [Crossref] [Google Scholar]
  138. 138.
    Pan G, Zhu Y, Fridman E, Wu Z. 2024.. Extremum seeking of general nonlinear static maps: a time-delay approach. . Automatica 166::111710
    [Crossref] [Google Scholar]
  139. 139.
    Zhang J, Fridman E. 2023.. Lie-brackets-based averaging of affine systems via a time-delay approach. . Automatica 152::110971
    [Crossref] [Google Scholar]
  140. 140.
    Scheinker A, Krstić M. 2012.. Minimum-seeking for CLFs: universal semiglobally stabilizing feedback under unknown control directions. . IEEE Trans. Autom. Control 58:(5):110722
    [Crossref] [Google Scholar]
  141. 141.
    Katz R, Fridman E, Mazenc F. 2024.. Constructive method for averaging-based stability via a delay free transformation. . Automatica 163::111568
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-control-022723-033031
Loading
/content/journals/10.1146/annurev-control-022723-033031
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error