1932

Abstract

The realm of textiles spans clothing, households, healthcare, sports, and industrial applications. The deformable nature of these objects poses unique challenges that prior work on rigid objects cannot fully address. The increasing interest within the community in textile perception and manipulation has led to new methods that aim to address challenges in modeling, perception, and control, resulting in significant progress. However, this progress is often tailored to one specific textile or a subcategory of these textiles. To understand what restricts these methods and hinders current approaches from generalizing to a broader range of real-world textiles, this review provides an overview of the field, focusing specifically on how and to what extent textile variations are addressed in modeling, perception, benchmarking, and manipulation of textiles. We conclude by identifying key open problems and outlining grand challenges that will drive future advancements in the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-022723-033252
2025-05-05
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/control/8/1/annurev-control-022723-033252.html?itemId=/content/journals/10.1146/annurev-control-022723-033252&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kapusta A, Yu W, Bhattacharjee T, Liu CK, Turk G, Kemp CC. 2016.. Data-driven haptic perception for robot-assisted dressing. . In 25th IEEE International Symposium on Robot and Human Interactive Communication, pp. 45158. Piscataway, NJ:: IEEE
    [Google Scholar]
  2. 2.
    Chance G, Jevtić A, Caleb-Solly P, Dogramadzi S. 2017.. A quantitative analysis of dressing dynamics for robotic dressing assistance. . Front. Robot. AI 4::13
    [Crossref] [Google Scholar]
  3. 3.
    Seita D, Florence P, Tompson J, Coumans E, Sindhwani V, et al. 2021.. Learning to rearrange deformable cables, fabrics, and bags with goal-conditioned transporter networks. . In 2021 IEEE International Conference on Robotics and Automation, pp. 456875. Piscataway, NJ:: IEEE
    [Google Scholar]
  4. 4.
    Lippi M, Poklukar P, Welle MC, Varava A, Yin H, et al. 2020.. Latent space roadmap for visual action planning of deformable and rigid object manipulation. . In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 561926. Piscataway, NJ:: IEEE
    [Google Scholar]
  5. 5.
    Zhu J, Cherubini A, Dune C, Navarro-Alarcon D, Alambeigi F, et al. 2022.. Challenges and outlook in robotic manipulation of deformable objects. . IEEE Robot. Autom. Mag. 29:(3):6777
    [Crossref] [Google Scholar]
  6. 6.
    Huang Z, Lin X, Held D. 2023.. Self-supervised cloth reconstruction via action-conditioned cloth tracking. . In 2023 IEEE International Conference on Robotics and Automation, pp. 711118. Piscataway, NJ:: IEEE
    [Google Scholar]
  7. 7.
    Matas J, James S, Davison AJ. 2018.. Sim-to-real reinforcement learning for deformable object manipulation. . In Proceedings of the 2nd Conference on Robot Learning, ed. A Billard, A Dragan, J Peters, J Morimoto , pp. 73443. Proc. Mach. Learn. Res. 87 . N.p.:: PMLR
    [Google Scholar]
  8. 8.
    Salhotra G, Liu ICA, Dominguez-Kuhne M, Sukhatme GS. 2022.. Learning deformable object manipulation from expert demonstrations. . IEEE Robot. Autom. Lett. 7:(4):877582
    [Crossref] [Google Scholar]
  9. 9.
    Ma X, Hsu D, Lee WS. 2022.. Learning latent graph dynamics for visual manipulation of deformable objects. . In 2022 International Conference on Robotics and Automation, pp. 826673. Piscataway, NJ:: IEEE
    [Google Scholar]
  10. 10.
    Borràs J, Alenyà G, Torras C. 2020.. A grasping-centered analysis for cloth manipulation. . IEEE Trans. Robot. 36:(3):92436
    [Crossref] [Google Scholar]
  11. 11.
    Jiménez P, Torras C. 2020.. Perception of cloth in assistive robotic manipulation tasks. . Nat. Comput. 19:(2):40931
    [Crossref] [Google Scholar]
  12. 12.
    Wang L, Zhu J. 2023.. Deformable object manipulation in caregiving scenarios: a review. . Machines 11:(11):1013
    [Crossref] [Google Scholar]
  13. 13.
    Arriola-Rios VE, Guler P, Ficuciello F, Kragic D, Siciliano B, Wyatt JL. 2020.. Modeling of deformable objects for robotic manipulation: a tutorial and review. . Front. Robot. AI 7::82
    [Crossref] [Google Scholar]
  14. 14.
    Yin H, Varava A, Kragic D. 2021.. Modeling, learning, perception, and control methods for deformable object manipulation. . Sci. Robot. 6:(54):eabd8803
    [Crossref] [Google Scholar]
  15. 15.
    Kadolph SJ. 2007.. Textiles. Upper Saddle River, NJ:: Pearson Prentice Hall. , 10th ed..
    [Google Scholar]
  16. 16.
    Grishanov S. 2011.. Structure and properties of textile materials. . In Handbook of Textile and Industrial Dyeing, ed. M Clark , pp. 2863. Amsterdam:: Elsevier
    [Google Scholar]
  17. 17.
    Cui J, Trinkle J. 2021.. Toward next-generation learned robot manipulation. . Sci. Robot. 6:(54):eabd9461
    [Crossref] [Google Scholar]
  18. 18.
    Garcia-Camacho I, Longhini A, Welle MC, Alenyà G, Kragic D, Borràs J. 2024.. Standardization of cloth objects and its relevance in robotic manipulation. . In 2024 IEEE International Conference on Robotics and Automation, pp. 8298304. Piscataway, NJ:: IEEE
    [Google Scholar]
  19. 19.
    Longhini A, Welle MC, Mitsioni I, Kragic D. 2021.. Textile taxonomy and classification using pulling and twisting. . In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 756471. Piscataway, NJ:: IEEE
    [Google Scholar]
  20. 20.
    Longhini A, Moletta M, Reichlin A, Welle MC, Kravberg A, et al. 2023.. Elastic context: encoding elasticity for data-driven models of textiles. . In 2023 IEEE International Conference on Robotics and Automation, pp. 176470. Piscataway, NJ:: IEEE
    [Google Scholar]
  21. 21.
    Sun Z, Wang Y, Held D, Erickson Z. 2024.. Force-constrained visual policy: safe robot-assisted dressing via multi-modal sensing. . IEEE Robot. Autom. Lett. 9:(5):417885
    [Crossref] [Google Scholar]
  22. 22.
    Li Y, Yue Y, Xu D, Grinspun E, Allen PK. 2015.. Folding deformable objects using predictive simulation and trajectory optimization. . In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 60006. Piscataway, NJ:: IEEE
    [Google Scholar]
  23. 23.
    Cusick G. 1968.. The measurement of fabric drape. . J. Textile Inst. 59:(6):25360
    [Crossref] [Google Scholar]
  24. 24.
    Mason MT. 2001.. Mechanics of Robotic Manipulation. Cambridge, MA:: MIT Press
    [Google Scholar]
  25. 25.
    Blanco-Mulero D. 2024.. Towards efficient robotic manipulation of deformable objects by learning dynamics models and adaptive policies. PhD Thesis , Aalto Univ., Espoo, Finl:.
    [Google Scholar]
  26. 26.
    Sun L, Aragon-Camarasa G, Rogers S, Stolkin R, Siebert JP. 2017.. Single-shot clothing category recognition in free-configurations with application to autonomous clothes sorting. . In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6699706. Piscataway, NJ:: IEEE
    [Google Scholar]
  27. 27.
    Sun L, Aragon-Camarasa G, Cockshott P, Rogers S, Siebert JP. 2014.. A heuristic-based approach for flattening wrinkled clothes. . In Towards Autonomous Robotic Systems, ed. A Natraj, S Cameron, C Melhuish, M Witkowski , pp. 14860. Berlin:: Springer
    [Google Scholar]
  28. 28.
    Lee R, Ward D, Dasagi V, Cosgun A, Leitner J, Corke P. 2021.. Learning arbitrary-goal fabric folding with one hour of real robot experience. . In Proceedings of the 4th Conference on Robot Learning, ed. J Kober, F Ramos, C Tomlin , pp. 231727. Proc. Mach. Learn. Res. 155 . N.p.:: PMLR
    [Google Scholar]
  29. 29.
    Doumanoglou A, Stria J, Peleka G, Mariolis I, Petrik V, et al. 2016.. Folding clothes autonomously: a complete pipeline. . IEEE Trans. Robot. 32:(6):146178
    [Crossref] [Google Scholar]
  30. 30.
    Hoque R, Seita D, Balakrishna A, Ganapathi A, Tanwani AK, et al. 2022.. Visuospatial foresight for physical sequential fabric manipulation. . Auton. Robots 46:(1):17599
    [Crossref] [Google Scholar]
  31. 31.
    Wang Y, Sun Z, Erickson Z, Held D. 2023.. One policy to dress them all: learning to dress people with diverse poses and garments. . In Robotics: Science and Systems XIX, ed. K Bekris, K Hauser, S Herbert, J Yu, pap . 8. San Francisco:: Robot. Sci. Syst. Found.
    [Google Scholar]
  32. 32.
    Antonova R, Shi P, Yin H, Weng Z, Jensfelt DK. 2021.. Dynamic environments with deformable objects. . In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, Vol. 1, ed. J Vanschoren, S Yeung. https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract-round2.html
    [Google Scholar]
  33. 33.
    Antonova R, Varava A, Shi P, Carvalho JF, Kragic D. 2021.. Sequential topological representations for predictive models of deformable objects. . In Proceedings of the 3rd Conference on Learning for Dynamics and Control, ed. A Jadbabaie, J Lygeros, GJ Pappas, PA Parrilo, B Recht, et al. , pp. 34860. Proc. Mach. Learn. Res. 144 . N.p.:: PMLR
    [Google Scholar]
  34. 34.
    Hou YC, Sahari KSM, How DNT. 2019.. A review on modeling of flexible deformable object for dexterous robotic manipulation. . Int. J. Adv. Robot. Syst. 16:(3). https://doi.org/10.1177/1729881419848894
    [Crossref] [Google Scholar]
  35. 35.
    Todorov E, Erez T, Tassa Y. 2012.. MuJoCo: a physics engine for model-based control. . In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 502633. Piscataway, NJ:: IEEE
    [Google Scholar]
  36. 36.
    Faure F, Duriez C, Delingette H, Allard J, Gilles B, et al. 2012.. SOFA: a multi-model framework for interactive physical simulation. . In Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, ed. Y Payan , pp. 283321. Berlin:: Springer
    [Google Scholar]
  37. 37.
    Macklin M, Müller M, Chentanez N, Kim TY. 2014.. Unified particle physics for real-time applications. . ACM Trans. Graph. 33:(4):153
    [Crossref] [Google Scholar]
  38. 38.
    Lin X, Wang Y, Olkin J, Held D. 2020.. SoftGym: benchmarking deep reinforcement learning for deformable object manipulation. . In Proceedings of the 4th Conference on Robot Learning, ed. J Kober, F Ramos, CJ Tomlin , pp. 43248. Proc. Mach. Learn. Res. 155 . N.p.:: PMLR
    [Google Scholar]
  39. 39.
    Macklin M, Erleben K, Müller M, Chentanez N, Jeschke S, Makoviychuk V. 2019.. Non-smooth Newton methods for deformable multi-body dynamics. . ACM Trans. Graph. 38:(5):140
    [Crossref] [Google Scholar]
  40. 40.
    Coumans E, Bai Y. 2016–2021.. PyBullet, a Python module for physics simulation for games, robotics and machine learning. . http://pybullet.org
  41. 41.
    Jiang C, Schroeder C, Teran J, Stomakhin A, Selle A. 2016.. The material point method for simulating continuum materials. . In SIGGRAPH '16: ACM SIGGRAPH 2016 Courses, art. 24 . New York:: ACM
    [Google Scholar]
  42. 42.
    Larionov E, Eckert ML, Wolff K, Stuyck T. 2022.. Estimating cloth elasticity parameters using position-based simulation of compliant constrained dynamics. . arXiv:2212.08790 [cs.GR]
  43. 43.
    Qiao YL, Liang J, Koltun V, Lin MC. 2020.. Scalable differentiable physics for learning and control. . In ICML '20: Proceedings of the 37th International Conference on Machine Learning, ed. H Daumé, A Singh , pp. 784756. N.p.:: JMLR.org
    [Google Scholar]
  44. 44.
    Chen S, Xu Y, Yu C, Li L, Ma X, et al. 2023.. DaXBench: benchmarking deformable object manipulation with differentiable physics. . In The Eleventh International Conference on Learning Representations. https://openreview.net/forum?id=1NAzMofMnWl
    [Google Scholar]
  45. 45.
    Qi CR, Yi L, Su H, Guibas LJ. 2017.. PointNet++: deep hierarchical feature learning on point sets in a metric space. . In Advances in Neural Information Processing Systems 30, ed. I Guyon, U Von Luxburg, S Bengio, H Wallach, R Fergus, et al. , pp. 510514. Red Hook, NY:: Curran
    [Google Scholar]
  46. 46.
    Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. 2008.. The graph neural network model. . IEEE Trans. Neural Netw. 20:(1):6180
    [Crossref] [Google Scholar]
  47. 47.
    Wu Y, Yan W, Kurutach T, Pinto L, Abbeel P. 2020.. Learning to manipulate deformable objects without demonstrations. . In Robotics: Science and Systems XVI, ed. M Toussaint, A Bicchi, T Hermans, pap . 65. San Francisco:: Robot. Sci. Syst. Found.
    [Google Scholar]
  48. 48.
    Longhini A, Welle MC, Erickson Z, Kragic D. 2024.. AdaFold: adapting folding trajectories of cloths via feedback-loop manipulation. Paper presented at the 4th . Workshop on Representing and Manipulating Deformable Objects, IEEE International Conference on Robotics and Automation, Yokohama, Jpn:., May 13–17
    [Google Scholar]
  49. 49.
    Cirio G, Lopez-Moreno J, Miraut D, Otaduy MA. 2014.. Yarn-level simulation of woven cloth. . ACM Trans. Graph. 33:(6):207
    [Crossref] [Google Scholar]
  50. 50.
    Sperl G, Narain R, Wojtan C. 2021.. Mechanics-aware deformation of yarn pattern geometry. . ACM Trans. Graph. 40:(4):168
    [Crossref] [Google Scholar]
  51. 51.
    Metaaphanon N, Bando Y, Chen BY, Nishita T. 2009.. Simulation of tearing cloth with frayed edges. . Comput. Graph. Forum 28:(7):183744
    [Crossref] [Google Scholar]
  52. 52.
    Coltraro F, Amorós J, Alberich-Carramiñana M, Torras C. 2024.. A novel collision model for inextensible textiles and its experimental validation. . Appl. Math. Model. 128::287308
    [Crossref] [Google Scholar]
  53. 53.
    Blanco-Mulero D, Barbany O, Alcan G, Colomé A, Torras C, Kyrki V. 2024.. Benchmarking the sim-to-real gap in cloth manipulation. . IEEE Robot. Autom. Lett. 9:(3):298188
    [Crossref] [Google Scholar]
  54. 54.
    Antonova R, Yang J, Jatavallabhula KM, Bohg J. 2023.. Rethinking optimization with differentiable simulation from a global perspective. . In Proceedings of the 6th Conference on Robot Learning, ed. K Liu, D Kulic, J Ichnowski , pp. 27686. Proc. Mach. Learn. Res. 205 . N.p.:: PMLR
    [Google Scholar]
  55. 55.
    Ramos F, Possas R, Fox D. 2019.. BayesSim: adaptive domain randomization via probabilistic inference for robotics simulators. . In Robotics: Science and Systems, ed. A Bicchi, H Kress-Gazit, S Hutchinson, pap. 29 . San Francisco:: Robot. Sci. Syst. Found.
    [Google Scholar]
  56. 56.
    Blanco-Mulero D, Alcan G, Abu-Dakka FJ, Kyrki V. 2023.. QDP: learning to sequentially optimise quasi-static and dynamic manipulation primitives for robotic cloth manipulation. . In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 98491. Piscataway, NJ:: IEEE
    [Google Scholar]
  57. 57.
    Kemp CC, Edsinger A, Torres-Jara E. 2007.. Challenges for robot manipulation in human environments. . IEEE Robot. Autom. Mag. 14:(1):2029
    [Crossref] [Google Scholar]
  58. 58.
    Isola P, Lim JJ, Adelson EH. 2015.. Discovering states and transformations in image collections. . In 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 138391. Piscataway, NJ:: IEEE
    [Google Scholar]
  59. 59.
    Bohg J, Hausman K, Sankaran B, Brock O, Kragic D, et al. 2017.. Interactive perception: leveraging action in perception and perception in action. . IEEE Trans. Robot. 33:(6):127391
    [Crossref] [Google Scholar]
  60. 60.
    Wang PC, Miller S, Fritz M, Darrell T, Abbeel P. 2011.. Perception for the manipulation of socks. . In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 487784. Piscataway, NJ:: IEEE
    [Google Scholar]
  61. 61.
    Shajini M, Ramanan A. 2021.. An improved landmark-driven and spatial–channel attentive convolutional neural network for fashion clothes classification. . Vis. Comput. 37:(6):151726
    [Crossref] [Google Scholar]
  62. 62.
    Liu Z, Luo P, Qiu S, Wang X, Tang X. 2016.. DeepFashion: powering robust clothes recognition and retrieval with rich annotations. . In 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1096104. Piscataway, NJ:: IEEE
    [Google Scholar]
  63. 63.
    Duan L, Aragon-Camarasa G. 2022.. A continuous robot vision approach for predicting shapes and visually perceived weights of garments. . IEEE Robot. Autom. Lett. 7:(3):795057
    [Crossref] [Google Scholar]
  64. 64.
    Willimon B, Birchfield S, Walker I. 2011.. Classification of clothing using interactive perception. . In 2011 IEEE International Conference on Robotics and Automation, pp. 186268. Piscataway, NJ:: IEEE
    [Google Scholar]
  65. 65.
    Corona E, Alenyà G, Gabas A, Torras C. 2018.. Active garment recognition and target grasping point detection using deep learning. . Pattern Recognit. 74::62941
    [Crossref] [Google Scholar]
  66. 66.
    Bouman KL, Xiao B, Battaglia P, Freeman WT. 2013.. Estimating the material properties of fabric from video. . In 2013 IEEE International Conference on Computer Vision, pp. 198491. Piscataway, NJ:: IEEE
    [Google Scholar]
  67. 67.
    Runia TF, Gavrilyuk K, Snoek CG, Smeulders AW. 2020.. Cloth in the wind: a case study of physical measurement through simulation. . In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10498507. Piscataway, NJ:: IEEE
    [Google Scholar]
  68. 68.
    Ha H, Song S. 2021.. FlingBot: the unreasonable effectiveness of dynamic manipulation for cloth unfolding. . In Proceedings of the 5th Conference on Robot Learning, ed. A Faust, D Hsu, G Neumann , pp. 2433. Proc. Mach. Learn. Res. 164 . N.p.:: PMLR
    [Google Scholar]
  69. 69.
    Colomé A, Pardo D, Alenyà G, Torras C. 2013.. External force estimation during compliant robot manipulation. . In 2013 IEEE International Conference on Robotics and Automation, pp. 353540. Piscataway, NJ:: IEEE
    [Google Scholar]
  70. 70.
    Strese M, Brudermueller L, Kirsch J, Steinbach E. 2020.. Haptic material analysis and classification inspired by human exploratory procedures. . IEEE Trans. Hapt. 13:(2):40424
    [Crossref] [Google Scholar]
  71. 71.
    Kampouris C, Mariolis I, Peleka G, Skartados E, Kargakos A, et al. 2016.. Multi-sensorial and explorative recognition of garments and their material properties in unconstrained environment. . In 2016 IEEE International Conference on Robotics and Automation, pp. 165663. Piscataway, NJ:: IEEE
    [Google Scholar]
  72. 72.
    Yuan W, Dong S, Adelson EH. 2017.. GelSight: high-resolution robot tactile sensors for estimating geometry and force. . Sensors 17:(12):2762
    [Crossref] [Google Scholar]
  73. 73.
    Yuan W, Mo Y, Wang S, Adelson EH. 2018.. Active clothing material perception using tactile sensing and deep learning. . In 2018 IEEE International Conference on Robotics and Automation, pp. 484249. Piscataway, NJ:: IEEE
    [Google Scholar]
  74. 74.
    Erickson Z, Xing E, Srirangam B, Chernova S, Kemp CC. 2020.. Multimodal material classification for robots using spectroscopy and high resolution texture imaging. . In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1045259. Piscataway, NJ:: IEEE
    [Google Scholar]
  75. 75.
    Kawabata S, Niwa M. 1989.. Fabric performance in clothing and clothing manufacture. . J. Textile Inst. 80:(1):1950
    [Crossref] [Google Scholar]
  76. 76.
    Wang H, O'Brien JF, Ramamoorthi R. 2011.. Data-driven elastic models for cloth: modeling and measurement. . ACM Trans. Graph. 30:(4):71
    [Google Scholar]
  77. 77.
    Miguel E, Bradley D, Thomaszewski B, Bickel B, Matusik W, et al. 2012.. Data-driven estimation of cloth simulation models. . Comput. Graph. Forum 31:(2):51928
    [Crossref] [Google Scholar]
  78. 78.
    Zheng D, Yao S, Xu W, Lu C. 2024.. Differentiable cloth parameter identification and state estimation in manipulation. . IEEE Robot. Autom. Lett. 9:(3):251926
    [Crossref] [Google Scholar]
  79. 79.
    Sundaresan P, Antonova R, Bohg J. 2022.. DiffCloud: real-to-sim from point clouds with differentiable simulation and rendering of deformable objects. . In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1082835. Piscataway, NJ:: IEEE
    [Google Scholar]
  80. 80.
    Duan L, Boyd L, Aragon-Camarasa G. 2022.. Learning physics property parameters of fabrics and garments with a physics similarity neural network. . IEEE Access 10::11472534
    [Crossref] [Google Scholar]
  81. 81.
    Yang S, Liang J, Lin MC. 2017.. Learning-based cloth material recovery from video. . In 2017 IEEE International Conference on Computer Vision, pp . 4393403. Piscataway, NJ:: IEEE
    [Google Scholar]
  82. 82.
    Chu V, McMahon I, Riano L, McDonald CG, He Q, et al. 2013.. Using robotic exploratory procedures to learn the meaning of haptic adjectives. . In 2013 IEEE International Conference on Robotics and Automation, pp. 304855. Piscataway, NJ:: IEEE
    [Google Scholar]
  83. 83.
    Longhini A, Moletta M, Reichlin A, Welle MC, Held D, et al. 2023.. EDO-Net: learning elastic properties of deformable objects from graph dynamics. . In 2023 IEEE International Conference on Robotics and Automation, pp. 387581. Piscataway, NJ:: IEEE
    [Google Scholar]
  84. 84.
    Yan W, Vangipuram A, Abbeel P, Pinto L. 2021.. Learning predictive representations for deformable objects using contrastive estimation. . In Proceedings of the 4th Conference on Robot Learning, ed. J Kober, F Ramos, C Tomlin , pp. 56474. Proc. Mach. Learn. Res. 155 . N.p.:: PMLR
    [Google Scholar]
  85. 85.
    Lin X, Wang Y, Huang Z, Held D. 2022.. Learning visible connectivity dynamics for cloth smoothing. . In Proceedings of the 5th Conference on Robot Learning, ed. A Faust, D Hsu, G Neumann , pp. 25666. Proc. Mach. Learn. Res. 164 . N.p.:: PMLR
    [Google Scholar]
  86. 86.
    Huang Z, Lin X, Held D. 2022.. Mesh-based dynamics with occlusion reasoning for cloth manipulation. . In Robotics: Science and Systems XVIII, ed. K Hauser, D Shell, S Huang, pap . 11. San Francisco:: Robot. Sci. Syst. Found.
    [Google Scholar]
  87. 87.
    Erickson Z, Clever HM, Turk G, Liu CK, Kemp CC. 2018.. Deep haptic model predictive control for robot-assisted dressing. . In 2018 IEEE International Conference on Robotics and Automation, pp. 443744. Piscataway, NJ:: IEEE
    [Google Scholar]
  88. 88.
    Tsurumine Y, Cui Y, Uchibe E, Matsubara T. 2019.. Deep reinforcement learning with smooth policy update: application to robotic cloth manipulation. . Robot. Auton. Syst. 112::7283
    [Crossref] [Google Scholar]
  89. 89.
    Weng T, Bajracharya SM, Wang Y, Agrawal K, Held D. 2022.. FabricFlowNet: bimanual cloth manipulation with a flow-based policy. . In Proceedings of the 5th Conference on Robot Learning, ed. A Faust, D Hsu, G Neumann , pp. 192202. Proc. Mach. Learn. Res. 164 . N.p.:: PMLR
    [Google Scholar]
  90. 90.
    Hietala J, Blanco-Mulero D, Alcan G, Kyrki V. 2022.. Learning visual feedback control for dynamic cloth folding. . In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 145562. Piscataway, NJ:: IEEE
    [Google Scholar]
  91. 91.
    Avigal Y, Berscheid L, Asfour T, Kröger T, Goldberg K. 2022.. SpeedFolding: learning efficient bimanual folding of garments. . In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 18. Piscataway, NJ:: IEEE
    [Google Scholar]
  92. 92.
    Lee R, Abou-Chakra J, Zhang F, Corke P. 2022.. Learning fabric manipulation in the real world with human videos. Paper presented at the 3rd Workshop on Representing and Manipulating Deformable Objects, IEEE International Conference on Robotics and Automation, Philadelphia:, May 23–27
    [Google Scholar]
  93. 93.
    Petrík V, Kyrki V. 2019.. Feedback-based fabric strip folding. . In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 77378. Piscataway, NJ:: IEEE
    [Google Scholar]
  94. 94.
    Ganapathi A, Sundaresan P, Thananjeyan B, Balakrishna A, Seita D, et al. 2021.. Learning dense visual correspondences in simulation to smooth and fold real fabrics. . In 2021 IEEE International Conference on Robotics and Automation, pp. 1151522. Piscataway, NJ:: IEEE
    [Google Scholar]
  95. 95.
    Xue H, Li Y, Xu W, Li H, Zheng D, Lu C. 2023.. UniFolding: towards sample-efficient, scalable, and generalizable robotic garment folding. . In Proceedings of the 7th Conference on Robot Learning, ed. J Tan, M Toussaint, K Darvish , pp. 332141. Proc. Mach. Learn. Res. 229 . N.p.:: PMLR
    [Google Scholar]
  96. 96.
    Seita D, Ganapathi A, Hoque R, Hwang M, Cen E, et al. 2020.. Deep imitation learning of sequential fabric smoothing from an algorithmic supervisor. . In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 965158. Piscataway, NJ:: IEEE
    [Google Scholar]
  97. 97.
    Tamei T, Matsubara T, Rai A, Shibata T. 2011.. Reinforcement learning of clothing assistance with a dual-arm robot. . In 2011 11th IEEE-RAS International Conference on Humanoid Robots, pp. 73338. Piscataway, NJ:: IEEE
    [Google Scholar]
  98. 98.
    Zhang F, Demiris Y. 2022.. Learning garment manipulation policies toward robot-assisted dressing. . Sci. Robot. 7:(65):eabm6010
    [Crossref] [Google Scholar]
  99. 99.
    Joshi RP, Koganti N, Shibata T. 2019.. A framework for robotic clothing assistance by imitation learning. . Adv. Robot. 33:(22):115674
    [Crossref] [Google Scholar]
  100. 100.
    Seita D, Jamali N, Laskey M, Tanwani AK, Berenstein R, et al. 2022.. Deep transfer learning of pick points on fabric for robot bed-making. . In Robotics Research: The 19th International Symposium ISRR, ed. T Asfour, E Yoshida, J Park, H Christensen, O Khatib , pp. 27590. Cham, Switz:.: Springer
    [Google Scholar]
  101. 101.
    Miller S, Van Den Berg J, Fritz M, Darrell T, Goldberg K, Abbeel P. 2012.. A geometric approach to robotic laundry folding. . Int. J. Robot. Res. 31:(2):24967
    [Crossref] [Google Scholar]
  102. 102.
    Maitin-Shepard J, Cusumano-Towner M, Lei J, Abbeel P. 2010.. Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding. . In 2010 IEEE International Conference on Robotics and Automation, pp. 230815. Piscataway, NJ:: IEEE
    [Google Scholar]
  103. 103.
    Luque A, Parent D, Colomé A, Ocampo-Martinez C, Torras C. 2024.. Model predictive control for dynamic cloth manipulation: parameter learning and experimental validation. . IEEE Trans. Control. Syst. Technol. 32:(4):125470
    [Crossref] [Google Scholar]
  104. 104.
    Puthuveetil K, Wald S, Pusalkar A, Karnati P, Erickson Z. 2023.. Robust Body Exposure (RoBE): a graph-based dynamics modeling approach to manipulating blankets over people. . IEEE Robot. Autom. Lett. 8:(10):6299306
    [Crossref] [Google Scholar]
  105. 105.
    Puthuveetil K, Kemp CC, Erickson Z. 2022.. Bodies uncovered: learning to manipulate real blankets around people via physics simulations. . IEEE Robot. Autom. Lett. 7:(2):198491
    [Crossref] [Google Scholar]
  106. 106.
    Jia B, Pan Z, Hu Z, Pan J, Manocha D. 2019.. Cloth manipulation using random-forest-based imitation learning. . IEEE Robot. Autom. Lett. 4:(2):208693
    [Crossref] [Google Scholar]
  107. 107.
    Proesmans R, Verleysen A, Wyffels F. 2023.. UnfoldIR: tactile robotic unfolding of cloth. . IEEE Robot. Autom. Lett. 8:(8):442632
    [Crossref] [Google Scholar]
  108. 108.
    Erickson Z, Gangaram V, Kapusta A, Liu CK, Kemp CC. 2020.. Assistive Gym: a physics simulation framework for assistive robotics. . In 2020 IEEE International Conference on Robotics and Automation, pp. 1016976. Piscataway, NJ:: IEEE
    [Google Scholar]
  109. 109.
    Garcia-Camacho I, Lippi M, Welle MC, Yin H, Antonova R, et al. 2020.. Benchmarking bimanual cloth manipulation. . IEEE Robot. Autom. Lett. 5:(2):111118
    [Crossref] [Google Scholar]
  110. 110.
    Clark AB, Cramphorn-Neal L, Rachowiecki M, Gregg-Smith A. 2023.. Household clothing set and benchmarks for characterising end-effector cloth manipulation. . In 2023 IEEE International Conference on Robotics and Automation, pp. 921117. Piscataway, NJ:: IEEE
    [Google Scholar]
  111. 111.
    Calli B, Singh A, Walsman A, Srinivasa S, Abbeel P, Dollar AM. 2015.. The YCB Object and Model set: towards common benchmarks for manipulation research. . In 2015 International Conference on Advanced Robotics, pp. 51017. Piscataway, NJ:: IEEE
    [Google Scholar]
  112. 112.
    Garcia-Camacho I, Borràs J, Calli B, Norton A, Alenyà G. 2022.. Household cloth object set: fostering benchmarking in deformable object manipulation. . IEEE Robot. Autom. Lett. 7:(3):586673
    [Crossref] [Google Scholar]
  113. 113.
    Garcia-Camacho I, Borràs J, Calli B, Norton A, Alenyà G. 2022.. Cloth manipulation and perception competition. Paper presented at the 2nd Workshop on Representing and Manipulating Deformable Objects, IEEE International Conference on Robotics and Automation, Philadelphia:, May 23–27
    [Google Scholar]
  114. 114.
    Pumacay W, Singh I, Duan J, Krishna R, Thomason J, Fox D. 2024.. The COLOSSEUM: a benchmark for evaluating generalization for robotic manipulation. . arXiv:2402.08191 [cs.RO]
  115. 115.
    Zhou B, Zhou H, Liang T, Yu Q, Zhao S, et al. 2023.. ClothesNet: an information-rich 3D garment model repository with simulated clothes environment. . In 2023 IEEE/CVF International Conference on Computer Vision, pp. 2042838. Piscataway, NJ:: IEEE
    [Google Scholar]
  116. 116.
    Bertiche H, Madadi M, Escalera S. 2020.. CLOTH3D: clothed 3D humans. . In Computer Vision—ECCV 2020, ed. A Vedaldi, H Bischof, T Brox, JM Frahm , pp. 34459. Cham, Switz:.: Springer
    [Google Scholar]
  117. 117.
    Bednarik J, Fua P, Salzmann M. 2018.. Learning to reconstruct texture-less deformable surfaces from a single view. . In 2018 International Conference on 3D Vision, pp. 60615. Piscataway, NJ:: IEEE
    [Google Scholar]
  118. 118.
    Gustavsson O, Ziegler T, Welle MC, Bütepage J, Varava A, Kragic D. 2022.. Cloth manipulation based on category classification and landmark detection. . Int. J. Adv. Robot. Syst. 19:(4). https://doi.org/10.1177/17298806221110445
    [Crossref] [Google Scholar]
  119. 119.
    Verleysen A, Biondina M, Wyffels F. 2020.. Video dataset of human demonstrations of folding clothing for robotic folding. . Int. J. Robot. Res. 39:(9):103136
    [Crossref] [Google Scholar]
  120. 120.
    Zhao J, Li J, Cheng Y, Sim T, Yan S, Feng J. 2018.. Understanding humans in crowded scenes: deep nested adversarial learning and a new benchmark for multi-human parsing. . In MM '18: Proceedings of the 26th ACM International Conference on Multimedia, pp. 792800. New York:: ACM
    [Google Scholar]
  121. 121.
    Mariolis I, Peleka G, Kargakos A, Malassiotis S. 2015.. Pose and category recognition of highly deformable objects using deep learning. . In 2015 International Conference on Advanced Robotics, pp. 65562. Piscataway, NJ:: IEEE
    [Google Scholar]
  122. 122.
    Thananjeyan B, Kerr J, Huang H, Gonzalez JE, Goldberg K. 2022.. All you need is LUV: unsupervised collection of labeled images using UV-fluorescent markings. . In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 324148. Piscataway, NJ:: IEEE
    [Google Scholar]
  123. 123.
    Wagner L, Krejcová D, Smutn V. 2013.. CTU color and depth image dataset of spread garments. Tech. Rep. CTU-CMP-2013-25 , Cent. Mach. Percept., Czech Tech. Univ., Prague:
    [Google Scholar]
  124. 124.
    Schulman J, Lee A, Ho J, Abbeel P. 2013.. Tracking deformable objects with point clouds. . In 2013 IEEE International Conference on Robotics and Automation, pp. 113037. Piscataway, NJ:: IEEE
    [Google Scholar]
  125. 125.
    Chi C, Xu Z, Pan C, Cousineau E, Burchfiel B, et al. 2024.. Universal manipulation interface: in-the-wild robot teaching without in-the-wild robots. . In Robotics: Science and Systems XX, pap. 45 . San Francisco:: Robot. Sci. Syst. Found.
    [Google Scholar]
  126. 126.
    Yang PC, Sasaki K, Suzuki K, Kase K, Sugano S, Ogata T. 2016.. Repeatable folding task by humanoid robot worker using deep learning. . IEEE Robot. Autom. Lett. 2:(2):397403
    [Crossref] [Google Scholar]
  127. 127.
    Koganti N, Tamei T, Matsubara T, Shibata T. 2014.. Real-time estimation of human-cloth topological relationship using depth sensor for robotic clothing assistance. . In 23rd IEEE International Symposium on Robot and Human Interactive Communication, pp. 12429. Piscataway, NJ:: IEEE
    [Google Scholar]
  128. 128.
    Li Y, Hu X, Xu D, Yue Y, Grinspun E, Allen PK. 2016.. Multi-sensor surface analysis for robotic ironing. . In 2016 IEEE International Conference on Robotics and Automation, pp. 567076. Piscataway, NJ:: IEEE
    [Google Scholar]
  129. 129.
    Dai J, Taylor P, Sanguanpiyapan P, Lin H. 2004.. Trajectory and orientation analysis of the ironing process for robotic automation. . Int. J. Cloth. Sci. Technol. 16:(1/2):21526
    [Crossref] [Google Scholar]
  130. 130.
    Estevez D, Victores JG, Fernandez-Fernandez R, Balaguer C. 2020.. Enabling garment-agnostic laundry tasks for a robot household companion. . Robot. Auton. Syst. 123::103330
    [Crossref] [Google Scholar]
  131. 131.
    Estevez D, Fernandez-Fernandez R, Victores JG, Balaguer C. 2017.. Robotic ironing with a humanoid robot using human tools. . In 2017 IEEE International Conference on Autonomous Robot Systems and Competitions, pp. 13439. Piscataway, NJ:: IEEE
    [Google Scholar]
  132. 132.
    Estevez D, Victores JG, Fernandez-Fernandez R, Balaguer C. 2017.. Robotic ironing with 3D perception and force/torque feedback in household environments. . In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 648489. Piscataway, NJ:: IEEE
    [Google Scholar]
  133. 133.
    Li S, Figueroa N, Shah A, Shah JA. 2021.. Provably safe and efficient motion planning with uncertain human dynamics. . In Robotics: Science and Systems XVII, ed. DA Shell, M Toussaint, MA Hsieh, pap. 50 . San Francisco:: Robot. Sci. Syst. Found.
    [Google Scholar]
  134. 134.
    Zhang F, Cully A, Demiris Y. 2019.. Probabilistic real-time user posture tracking for personalized robot-assisted dressing. . IEEE Trans. Robot. 35:(4):87388
    [Crossref] [Google Scholar]
  135. 135.
    Yamazaki K, Oya R, Nagahama K, Okada K, Inaba M. 2014.. Bottom dressing by a life-sized humanoid robot provided failure detection and recovery functions. . In 2014 IEEE/SICE International Symposium on System Integration, pp. 56470. Piscataway, NJ:: IEEE
    [Google Scholar]
  136. 136.
    Canal G, Alenyà G, Torras C. 2019.. Adapting robot task planning to user preferences: an assistive shoe dressing example. . Auton. Robots 43:(6):134356
    [Crossref] [Google Scholar]
  137. 137.
    Kapusta A, Erickson Z, Clever HM, Yu W, Liu CK, et al. 2019.. Personalized collaborative plans for robot-assisted dressing via optimization and simulation. . Auton. Robots 43::2183207
    [Crossref] [Google Scholar]
  138. 138.
    Erickson Z, Clever HM, Gangaram V, Turk G, Liu CK, Kemp CC. 2019.. Multidimensional capacitive sensing for robot-assisted dressing and bathing. . In 2019 IEEE 16th International Conference on Rehabilitation Robotics, pp. 22431. Piscataway, NJ:: IEEE
    [Google Scholar]
  139. 139.
    Leidner D, Bartels G, Bejjani W, Albu-Schäffer A, Beetz M. 2019.. Cognition-enabled robotic wiping: representation, planning, execution, and interpretation. . Robot. Auton. Syst. 114::199216
    [Crossref] [Google Scholar]
  140. 140.
    Dometios AC, Zhou Y, Papageorgiou XS, Tzafestas CS, Asfour T. 2018.. Vision-based online adaptation of motion primitives to dynamic surfaces: application to an interactive robotic wiping task. . IEEE Robot. Autom. Lett. 3:(3):141017
    [Crossref] [Google Scholar]
  141. 141.
    Li J, Sun W, Gu X, Guo J, Ota J, et al. 2022.. A method for a compliant robot arm to perform a bandaging task on a swaying arm: a proposed approach. . IEEE Robot. Autom. Mag. 30:(1):5061
    [Crossref] [Google Scholar]
  142. 142.
    Damayanti D, Wulandari LA, Bagaskoro A, Rianjanu A, Wu HS. 2021.. Possibility routes for textile recycling technology. . Polymers 13:(21):3834
    [Crossref] [Google Scholar]
  143. 143.
    Fujii W, Suzuki K, Ando T, Tateishi A, Mori H, Ogata T. 2022.. Buttoning task with a dual-arm robot: an exploratory study on a marker-based algorithmic method and marker-less machine learning methods. . In 2022 IEEE/SICE International Symposium on System Integration, pp. 68289. Piscataway, NJ:: IEEE
    [Google Scholar]
  144. 144.
    Gries T, Lutz V. 2018.. Application of robotics in garment manufacturing. . In Automation in Garment Manufacturing, ed. R Nayak, R Padhye , pp. 17997. Duxford, UK:: Woodhead
    [Google Scholar]
  145. 145.
    Papoutsidakis M, Piromalis D, Priniotakis G. 2019.. Advanced automation in textile industry production lines. . Int. J. Eng. Appl. Sci. Technol. 4:(5):5047
    [Google Scholar]
  146. 146.
    World Health Organ. 2015.. World report on ageing and health. Rep. , World Health Organ., Geneva:
    [Google Scholar]
  147. 147.
    Baek J. 2023.. Smart predictive analytics care monitoring model based on multi sensor IoT system: management of diaper and attitude for the bedridden elderly. . Sens. Int. 4::100213
    [Crossref] [Google Scholar]
  148. 148.
    Yu S, Lin K, Xiao A, Duan J, Soh H. 2024.. Octopi: object property reasoning with large tactile-language models. . In Robotics: Science and Systems XX, ed. D Kulic, G Venture, K Bekris, E Coronado, pap . 66. San Francisco:: Robot. Sci. Syst. Found.
    [Google Scholar]
/content/journals/10.1146/annurev-control-022723-033252
Loading
/content/journals/10.1146/annurev-control-022723-033252
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error