1932

Abstract

This article reviews the literature on urban air mobility (UAM), examining both the research challenges it presents and the transformative opportunities that make these challenges worth addressing. While UAM has historical precedents, the current iteration is born of novel aircraft technology, primarily electric vertical takeoff and landing (eVTOL) and electric short takeoff and landing (eSTOL) aircraft. These advances raise new questions in aerodynamics, control, and integration with urban infrastructure. We explore several key research areas, including aircraft design, vertiport development, network planning, and air traffic management. We also address the scalability challenges in air traffic management for high-density UAM operations and the potential of autonomous and remotely piloted systems. If new aircraft are to birth a new urbanism, they will do so by integrating aircraft engineering and computational intelligence in control, systems, robotics, and human factors.

Keyword(s): autonomyeVTOLUAMvertiports

Erratum

An erratum has been published for this article:
Erratum: Urban Air Mobility Research Challenges and Opportunities
Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-022823-031353
2025-05-05
2025-06-20
Loading full text...

Full text loading...

/deliver/fulltext/control/8/1/annurev-control-022823-031353.html?itemId=/content/journals/10.1146/annurev-control-022823-031353&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Gen. Aviat. Manuf. Assoc. 2024.. Member companies. . General Aviation Manufacturers Association. https://gama.aero/about-gama/member-companies
    [Google Scholar]
  2. 2.
    Reuther RT, Larkins WT. 2008.. Oakland Aviation. Charleston, SC:: Arcadia
    [Google Scholar]
  3. 3.
    Sripad S, Viswanathan V. 2021.. The promise of energy-efficient battery-powered urban aircraft. . PNAS 118:(45):e2111164118
    [Crossref] [Google Scholar]
  4. 4.
    Witkin R. 1979.. New York Airways acts to file for bankruptcy. . New York Times, May 16. https://www.nytimes.com/1979/05/16/archives/new-york-airways-acts-to-file-for-bankruptcy-suing-sikorsky.html
    [Google Scholar]
  5. 5.
    Harrison S. 2017.. From the archives: Los Angeles Airways helicopter overturns. . Los Angeles Times, Mar. 15. https://www.latimes.com/visuals/photography/la-me-fw-archives-airways-helicopter-overturn-20170221-story.html
    [Google Scholar]
  6. 6.
    Leland J. 2021.. A nightmare of blood and steel: the '90s subway crash that changed everything. . New York Times, Aug. 27. https://www.nytimes.com/2021/08/27/nyregion/1991-subway-crash-nyc.html
    [Google Scholar]
  7. 7.
    Vision Zero SF. 2023.. Vision Zero traffic fatalities: 2022 end of year report. Rep. , Vision Zero SF, San Francisco:
    [Google Scholar]
  8. 8.
    US Census Bur. 2023.. Sex of workers by means of transportation to work. Table B08406 , US Census Bur., Suitland, MD:
    [Google Scholar]
  9. 9.
    Reg. Airpt. Plan. Comm. 2012.. Regional aviation activity tracking report: 2012 edition. Rep. , Reg. Airpt. Plan. Comm.
    [Google Scholar]
  10. 10.
    Sinsay JD, Alonso JJ. 2016.. A heuristic approach to finding the preferred design variable parameterization for optimization. . In 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pap. 2016-0415. Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  11. 11.
    English J. 2019.. The commuting principle that shaped urban history. . Bloomberg, Aug. 29. https://www.bloomberg.com/news/features/2019-08-29/the-commuting-principle-that-shaped-urban-history
    [Google Scholar]
  12. 12.
    Wikipedia. 2024.. Chicago metropolitan area. . Wikipedia. https://en.wikipedia.org/wiki/Chicago_metropolitan_area
    [Google Scholar]
  13. 13.
    SIA Mag. 2022.. Joby S4 air taxi full-scale all-electric prototype aircraft. . SIA Magazin, Jan. 25. https://siamagazin.com/joby-s4-air-taxi-full-scale-all-electric-prototype-aircraft
    [Google Scholar]
  14. 14.
    All About Aviat. Greece. 2019.. CityAirbus set for first flight in March. . All About Aviation Greece, Feb. 27. https://allaboutaviation.gr/en/2019/02/cityairbus-set-for-first-flight-in-march
    [Google Scholar]
  15. 15.
    Volocopter. 2024.. Volocity: the air taxi that's a cut above. . Volocopter. https://www.volocopter.com/en/solutions/volocity
    [Google Scholar]
  16. 16.
    eFlight. 2021.. The Jaunt Journey is an all-electric aircraft with vertical take-off and landing (eVTOL). . eFlight, May 6. https://eflight.com/the-jaunt-journey-is-an-all-electric-aircraft-with-vertical-take-off-and-landing-evtol
    [Google Scholar]
  17. 17.
    Holden J, Goel N. 2016.. Fast-forwarding to a future of on-demand urban air transportation. White Pap., Uber, San Francisco, CA:
    [Google Scholar]
  18. 18.
    Ma T, Wang X, Qiao N, Zhang Z, Fu J, Bao M. 2022.. A conceptual design and optimization approach for distributed electric propulsion eVTOL aircraft based on ducted-fan wing unit. . Aerospace 9:(11):690
    [Crossref] [Google Scholar]
  19. 19.
    Kim HD, Perry AT, Ansell PJ. 2020.. Progress in distributed electric propulsion vehicles and technologies. Tech. Rep. AFRC-E-DAA-TN76298 , Am. Inst. Aeronaut. Astronaut., Reston, VA:
    [Google Scholar]
  20. 20.
    Murphy PC, Landman D. 2015.. Experiment design for complex VTOL aircraft with distributed propulsion and tilt wing. . In AIAA Atmospheric Flight Mechanics Conference, pap. 2015-0017 . Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  21. 21.
    Radun AV. 1992.. High-power density switched reluctance motor drive for aerospace applications. . IEEE Trans. Ind. Appl. 28:(1):11319
    [Crossref] [Google Scholar]
  22. 22.
    Alvarez P, Satrústegui M, Elósegui I, Martinez-Iturralde M. 2022.. Review of high power and high voltage electric motors for single-aisle regional aircraft. . IEEE Access 10::1129893004
    [Crossref] [Google Scholar]
  23. 23.
    Deisenroth DC, Ohadi M. 2019.. Thermal management of high-power density electric motors for electrification of aviation and beyond. . Energies 12:(19):3594
    [Crossref] [Google Scholar]
  24. 24.
    Cao W, Mecrow BC, Atkinson GJ, Bennett JW, Atkinson DJ. 2011.. Overview of electric motor technologies used for more electric aircraft. . IEEE Trans. Ind. Electron. 59:(9):352331
    [Google Scholar]
  25. 25.
    Johnson D, Brown GV. 2005.. Power requirements determined for high-power-density electric motors for electric aircraft propulsion. Tech. Rep. 20050217395 , Natl. Aeronaut. Space Adm., Washington, DC:
    [Google Scholar]
  26. 26.
    El-Refaie A, Osama M. 2019.. High specific power electrical machines: a system perspective. . CES Trans. Electr. Mach. Syst. 3:(1):8893
    [Crossref] [Google Scholar]
  27. 27.
    Manolopoulos CD, Iacchetti MF, Smith AC, Berger K, Husband M, Miller P. 2018.. Stator design and performance of superconducting motors for aerospace electric propulsion systems. . IEEE Trans. Appl. Supercond. 28:(4):5207005
    [Crossref] [Google Scholar]
  28. 28.
    Masson PJ, Luongo CA. 2005.. High power density superconducting motor for all-electric aircraft propulsion. . IEEE Trans. Appl. Supercond. 15:(2):222629
    [Crossref] [Google Scholar]
  29. 29.
    Qian Y, Zhang Y, Zhuge W. 2023.. Key technology challenges of electric ducted fan propulsion systems for eVTOL. Tech. Pap. EPR2023027 , SAE Int., Warrendale, PA:
    [Google Scholar]
  30. 30.
    Akturk A, Camci C. 2010.. Influence of tip clearance and inlet flow distortion on ducted fan performance in VTOL UAVs. . In 66th American Helicopter Society International Annual Forum 2010, Vol. 2, pp. 144353. Red Hook, NY:: Curran
    [Google Scholar]
  31. 31.
    Doll U, Migliorini M, Baikie J, Zachos PK, Röhle I, et al. 2022.. Non-intrusive flow diagnostics for unsteady inlet flow distortion measurements in novel aircraft architectures. . Prog. Aerosp. Sci. 130::100810
    [Crossref] [Google Scholar]
  32. 32.
    Kim HD, Perry AT, Ansell PJ. 2018.. A review of distributed electric propulsion concepts for air vehicle technology. . In 2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Piscataway, NJ:: IEEE. https://ieeexplore.ieee.org/document/8552794
    [Google Scholar]
  33. 33.
    Stajuda M, Karczewski M, Obidowski D, Jóźwik K. 2016.. Development of a CFD model for propeller simulation. . Mech. Mech. Eng. 20:(4):57993
    [Google Scholar]
  34. 34.
    Choi B, Brown GV, Morrison C, Dever T. 2014.. Propulsion Electric Grid Simulator (PEGS) for future turboelectric distributed propulsion aircraft. . In 12th International Energy Conversion Engineering Conference, pap. 2014-3644. Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  35. 35.
    Johnson W, Silva C, Solis E. 2018.. Concept vehicles for VTOL air taxi operations. Paper presented at the AHS Specialists' Conference on Aeromechanics Design for Transformative Vertical Flight, San Francisco:, Jan. 16–19
    [Google Scholar]
  36. 36.
    Chauhan SS, Martins JRRA. 2020.. Tilt-wing eVTOL takeoff trajectory optimization. . J. Aircr. 57:(1):93112
    [Crossref] [Google Scholar]
  37. 37.
    Rostami M, Bardin J, Neufeld D, Chung J. 2023.. EVTOL tilt-wing aircraft design under uncertainty using a multidisciplinary possibilistic approach. . Aerospace 10:(8):718
    [Crossref] [Google Scholar]
  38. 38.
    Shamiyeh M, Bijewitz J, Hornung M. 2017.. A review of recent personal air vehicle concepts. . In Aerospace Europe 6th CEAS Conference, pap. 913 . Brussels:: Counc. Eur. Aerosp. Soc.
    [Google Scholar]
  39. 39.
    Basset P, Vu BD, Beaumier P, Reboul G, Ortun B. 2018.. Models and methods at ONERA for the presizing of eVTOL hybrid aircraft including analysis of failure scenarios. . In 74th Annual Vertical Flight Society Forum and Technology Display 2018, pp. 1226. Red Hook, NY:: Curran
    [Google Scholar]
  40. 40.
    Huang Q, He G, Jia J, Hong Z, Yu F. 2024.. Numerical simulation on aerodynamic characteristics of transition section of tilt-wing aircraft. . Aerospace 11:(4):283
    [Crossref] [Google Scholar]
  41. 41.
    Zanotti A, Velo A, Pepe C, Savino A, Grassi D, Riccobene L. 2024.. Aerodynamic interaction between tandem propellers in eVTOL transition flight configurations. . Aerosp. Sci. Technol. 147::109017
    [Crossref] [Google Scholar]
  42. 42.
    Droandi G, Gibertini G, Grassi D, Campanardi G, Liprino C. 2016.. Proprotor–wing aerodynamic interaction in the first stages of conversion from helicopter to aeroplane mode. . Aerosp. Sci. Technol. 58::11633
    [Crossref] [Google Scholar]
  43. 43.
    Simmons BM, Hatke DB. 2021.. Investigation of high incidence angle propeller aerodynamics for subscale eVTOL aircraft. Tech. Memo. NASA/TM-20210014010 , Langley Res. Cent., Natl. Aeronaut. Space Adm., Hampton, VA:
    [Google Scholar]
  44. 44.
    Shah A, Mballo C, Prasad JVR, Rimoli JJ. 2024.. Integrity ratio: a damage mitigation control metric for component life extension. . J. Am. Helicopter Soc. 69:(2). https://doi.org/10.4050/JAHS.69.022006
    [Crossref] [Google Scholar]
  45. 45.
    Wasson K, Neogi N, Graydon M, Maddalon J, Miner P, McCormick GF. 2022.. Functional hazard assessment for the eVTOL aircraft supporting UAM applications: exploratory demonstrations. Tech. Memo. NASA/TM-20210024234 , Langley Res. Cent., Hampton, VA:
    [Google Scholar]
  46. 46.
    Miller DG, Black TM, Joglekar M. 1991.. Tiltrotor control law design for rotor loads alleviation using modern control techniques. . In 1991 American Control Conference, pp. 248893. Piscataway, NJ:: IEEE
    [Google Scholar]
  47. 47.
    King DW, Dabundo C, Kisor RL, Agnihotri A. 1993.. V-22 load limiting control law development. . In 49th American Helicopter Society International Annual Forum 1993, pp. 20114. Red Hook, NY:: Curran
    [Google Scholar]
  48. 48.
    Voskuijl M, Pavel MD, Vorst J. 2004.. Active control technology for tiltrotor structural load alleviation. Paper presented at the 30th European Rotorcraft Forum, Marseille, Fr.:, Sept. 14–16
    [Google Scholar]
  49. 49.
    Bertram J, Wei P. 2020.. An efficient algorithm for self-organized terminal arrival in urban air mobility. . In AIAA Scitech 2020 Forum, pap. 2020-0660 . Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  50. 50.
    Song K, Yeo H, Moon J. 2021.. Approach control concepts and optimal vertiport airspace design for urban air mobility (UAM) operation. . Int. J. Aeronaut. Space Sci. 22::98294
    [Crossref] [Google Scholar]
  51. 51.
    Eur. Union Aviat. Saf. Agency. 2022.. Vertiports: prototype technical specifications for the design of VFR vertiports for operation with manned VTOL-capable aircraft certified in the enhanced category. Tech. Rep. PTS-VPT-DSN , Eur. Union Aviat. Saf. Agency, Cologne, Ger:.
    [Google Scholar]
  52. 52.
    Fed. Aviat. Adm. 2022.. Vertiport design. Eng. Brief 105 , Fed. Aviat. Adm., Washington, DC:
    [Google Scholar]
  53. 53.
    [Google Scholar]
  54. 54.
    Sch'ober T, Grega M, Nečas P. 2011.. V-22 Osprey: waging its own war. . In AFASES 2011: 13th International Conference of Scientific Papers, pp. 117379. Brasov, Rom:.: Henri Caonda Air Force Acad.
    [Google Scholar]
  55. 55.
    Johnson W. 2005.. Model for vortex ring state influence on rotorcraft flight dynamics. Tech. Rep. AD-A526709 , Ames Res. Cent., Natl. Aeronaut. Space Adm., Moffett Field, CA:
    [Google Scholar]
  56. 56.
    Brown RE. 2022.. Are eVTOL aircraft inherently more susceptible to the vortex ring state than conventional helicopters?. In 48th European Rotorcraft Forum, pp. 120319. Red Hook, NY:: Curran
    [Google Scholar]
  57. 57.
    Preston JR. 1994.. VTOL downwash/outwash operational effects model. . In 50th American Helicopter Society Annual Forum 1994, pp. 106679. Red Hook, NY:: Curran
    [Google Scholar]
  58. 58.
    Liu J, McVeigh MA, Rajagopalan G. 2001.. Single and dual-rotor flowfield and outwash predictions. Paper presented at the American Helicopter Society, Southwest Region, Tiltrotor/Runway Independent Aircraft Technology and Applications Specialists' Meeting, Arlington, TX:, Mar. 20–21
    [Google Scholar]
  59. 59.
    Caprace DG, Diaz PV, Yoon S. 2023.. Simulation of the rotorwash induced by a quadrotor urban air taxi in ground effect. . In 79th Annual Vertical Flight Society Forum and Technology Display, pp. 36683. Red Hook, NY:: Curran
    [Google Scholar]
  60. 60.
    Bain J, Tanaka H, Denham J, Platt Y, Naru R, et al. 2024.. Outwash measurement of Joby pre-production prototype. . In 80th Annual Vertical Flight Society Forum and Technology Display, pp. 362130. Red Hook, NY:: Curran
    [Google Scholar]
  61. 61.
    Saleh JH, Ray AR, Zhang KS, Churchwell JS. 2019.. Maintenance and inspection as risk factors in helicopter accidents: analysis and recommendations. . PLOS ONE 14:(2):e0211424
    [Crossref] [Google Scholar]
  62. 62.
    Onat EB, Bulusu V, Chakrabarty A, Hansen M, Sengupta R, Sridhar B. 2024.. Evaluating eVTOL network performance and fleet dynamics through simulation-based analysis. . In AIAA Scitech 2024 Forum, pap. 2024-0336. Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  63. 63.
    Pang B, Low KH, Duong VN. 2024.. Chance-constrained UAM traffic flow optimization with fast disruption recovery under uncertain waypoint occupancy time. . Transp. Res. C 161::104547
    [Crossref] [Google Scholar]
  64. 64.
    Vascik PD, Hansman RJ. 2019.. Development of vertiport capacity envelopes and analysis of their sensitivity to topological and operational factors. . In AIAA Scitech 2019 Forum, pap. 2019-0526 . Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  65. 65.
    Ahn B, Hwang H. 2022.. Design criteria and accommodating capacity analysis of vertiports for urban air mobility and its application at Gimpo Airport in Korea. . Appl. Sci. 12:(12):6077
    [Crossref] [Google Scholar]
  66. 66.
    Guerreiro NM, Hagen GE, Maddalon JM, Butler RW. 2020.. Capacity and throughput of urban air mobility vertiports with a first-come, first-served vertiport scheduling algorithm. . In AIAA Aviation 2020 Forum, pap. 2020-2903 . Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  67. 67.
    Zelinski S. 2020.. Operational analysis of vertiport surface topology. . In 2020 AIAA/IEEE 39th Digital Avionics Systems Conference. Piscataway, NJ:: IEEE. https://doi.org/10.1109/DASC50938.2020.9256794
    [Google Scholar]
  68. 68.
    Onat EB, Cao S, Rizwan R, Jiang X, Hansen M, et al. 2024.. A simulation-optimization framework for developing wind-resilient AAM networks. . arXiv:2405.11118 [eess.SY]
  69. 69.
    Zhang H, Fei Y, Li J, Li B, Liu H. 2022.. Method of vertiport capacity assessment based on queuing theory of unmanned aerial vehicles. . Sustainability 15:(1):709
    [Crossref] [Google Scholar]
  70. 70.
    Schweiger K, Schmitz R, Knabe F. 2023.. Impact of wind on eVTOL operations and implications for vertiport airside traffic flows: a case study of Hamburg and Munich. . Drones 7:(7):464
    [Crossref] [Google Scholar]
  71. 71.
    Petty B, Glaab LJ, Unverricht J, Homola J, Dao D, et al. 2024.. High density vertiplex: scalable autonomous operations prototype assessment simulation. . In AIAA Scitech 2024 Forum, pap. 2024-0872. Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  72. 72.
    Glaab LJ, Johnson MA, McSwain RG, Geuther SC, Dao QV, Homola JR. 2022.. The high density vertiplex advanced onboard automation overview. . In 2022 IEEE/AIAA 41st Digital Avionics Systems Conference. Piscataway, NJ:: IEEE. https://doi.org/10.1109/DASC55683.2022.9925834
    [Google Scholar]
  73. 73.
    Song K. 2022.. Optimal vertiport airspace and approach control strategy for UAM. . Sustainability 15:(1):437
    [Crossref] [Google Scholar]
  74. 74.
    Chen S, Wei P, Krois P, Block J, Cobb P, et al. 2023.. Arrival management for high-density vertiport and terminal airspace operations. Paper presented at the Air Traffic Control Association Technical Symposium, Atlantic City, NJ:, Apr. 23–24
    [Google Scholar]
  75. 75.
    Shao Q, Shao M, Lu Y. 2021.. Terminal area control rules and eVTOL adaptive scheduling model for multi-vertiport system in urban air Mobility. . Transp. Res. C 132::103385
    [Crossref] [Google Scholar]
  76. 76.
    California-Map.org. 2024.. San Francisco airports. . California-Map.org. https://www.california-map.org/airports-sf.htm
    [Google Scholar]
  77. 77.
    Goodrich KH, Theodore CR. 2021.. Description of the NASA UAM maturity level (UML) scale. . In AIAA Scitech 2021 Forum, pap. 2021-1627. Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  78. 78.
    Wu Z, Zhang Y. 2021.. Integrated network design and demand forecast for on-demand urban air mobility. . Engineering 7:(4):47387
    [Crossref] [Google Scholar]
  79. 79.
    Coppola P, De Fabiis F, Silvestri F. 2024.. UAM: airport shuttles or city-taxis?. Transp. Policy 150::2434
    [Crossref] [Google Scholar]
  80. 80.
    Rimjha M, Hotle S, Trani A, Hinze N, Smith JC. 2021.. Urban air mobility demand estimation for airport access: a Los Angeles international airport case study. . In 2021 Integrated Communications Navigation and Surveillance Conference. Piscataway, NJ:: IEEE. https://doi.org/10.1109/ICNS52807.2021.9441659
    [Google Scholar]
  81. 81.
    Verma S, Dulchinos V, Mogford R, Wood RD, Farrahi A, et al. 2022.. Near term urban air mobility use cases in the Dallas Fort-Worth area. Tech. Memo. NASA-TM-20220009944 , Ames Res. Cent., Natl. Aeronaut. Space Adm., Moffett Field, CA:
    [Google Scholar]
  82. 82.
    Cao S, Jiang X, Onat EB, Zou B, Hansen M, et al. 2024.. Fleet size and spill for UAM operation under uncertain demand. . arXiv:2407.00947 [eess.SY]
  83. 83.
    Hae Choi J, Park Y. 2022.. Exploring economic feasibility for airport shuttle service of UAM. . Transp. Res. A 162::26781
    [Google Scholar]
  84. 84.
    Straubinger A, Michelmann J, Biehle T. 2021.. Business model options for passenger urban air mobility. . CEAS Aeronaut. J. 12::36180
    [Crossref] [Google Scholar]
  85. 85.
    Lim E, Hwang H. 2019.. The selection of vertiport location for on-demand mobility and its application to Seoul metro area. . Int. J. Aeronaut. Space Sci. 20::26072
    [Crossref] [Google Scholar]
  86. 86.
    Yedavalli PS, Onat E, Peng X, Sengupta R, Waddell P, et al. 2021.. Assessing the value of urban air mobility through metropolitan-scale microsimulation: a case study of the San Francisco Bay Area. . In AIAA Aviation 2021 Forum, pap. 2021-2238 . Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  87. 87.
    Peng X, Bulusu V, Sengupta R. 2022.. Hierarchical vertiport network design for on demand multi-modal UAM. . In 2022 IEEE/AIAA 41st Digital Avionics Systems Conference. Piscataway, NJ:: IEEE. https://doi.org/10.1109/DASC55683.2022.9925782
    [Google Scholar]
  88. 88.
    Jeong J, So M, Hwang H. 2021.. Selection of vertiports using K-means algorithm and noise analyses for UAM in the Seoul metropolitan area. . Appl. Sci. 11::5729
    [Crossref] [Google Scholar]
  89. 89.
    Wiley LC, Salmon JL. 2021.. A method for urban air mobility network design using hub location and subgraph isomorphism. . Transp. Res. C 125::102997
    [Crossref] [Google Scholar]
  90. 90.
    Shin H, Lee T, Lee H. 2022.. Skyport location problem for urban air mobility system. . Comput. Oper. Res. 138::105611
    [Crossref] [Google Scholar]
  91. 91.
    Rath S, Chow JYJ. 2022.. Air taxi skyport location problem with single-allocation choice-constrained elastic demand for airport access. . J. Air Transp. Manag. 105::102294
    [Crossref] [Google Scholar]
  92. 92.
    Kitthamkesorn S, Chen A. 2024.. Maximum capture problem for urban air mobility network design. . Transp. Res. E 187::103569
    [Crossref] [Google Scholar]
  93. 93.
    Zhao Y, Feng T. 2024.. Strategic integration of vertiport planning in multimodal transportation for urban air mobility. . J. Clean. Prod. 467::142988
    [Crossref] [Google Scholar]
  94. 94.
    Rahman B, Bridgelall R, Habib MF, Motuba D. 2023.. Integrating urban air mobility into a public transit system: a GIS-based approach to identify candidate locations for vertiports. . Vehicles 5::180317
    [Crossref] [Google Scholar]
  95. 95.
    Kang J, Kim SH. 2023.. Sensitivity analysis of fleet size for urban air mobility. . In 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference. Piscataway, NJ:: IEEE. https://doi.org/10.1109/DASC58513.2023.10311144
    [Google Scholar]
  96. 96.
    Zak J, Redmer A, Sawicki P. 2011.. Multiple objective optimization of the fleet sizing problem for road freight transportation. . J. Adv. Transp. 45::32147
    [Crossref] [Google Scholar]
  97. 97.
    Kotwicz Herniczek MT, German BJ, Preis L. 2024.. Fleet and vertiport sizing for an urban air mobility commuting service. . Transp. Res. Rec. 2678:(8):44369
    [Crossref] [Google Scholar]
  98. 98.
    Zhou L, Liang Z, Chou C, Chaovalitwongse WA. 2020.. Airline planning and scheduling: models and solution methodologies. . Front. Eng. Manag. 7::126
    [Crossref] [Google Scholar]
  99. 99.
    Jin Z, Ng KKH, Zhang C, Wu L, Li A. 2024.. Integrated optimisation of strategic planning and service operations for urban air mobility systems. . Transp. Res. A 183::104059
    [Google Scholar]
  100. 100.
    Wang R, Keyantuo P, Zeng T, Sandoval J, Vishwanath A, et al. 2024.. Robust routing for a mixed fleet of heavy-duty trucks with pickup and delivery under energy consumption uncertainty. . Appl. Energy 368::123407
    [Crossref] [Google Scholar]
  101. 101.
    Xu M, Wu T, Tan Z. 2021.. Electric vehicle fleet size for carsharing services considering on-demand charging strategy and battery degradation. . Transp. Res. C 127::103146
    [Crossref] [Google Scholar]
  102. 102.
    Roy S, Kotwicz Herniczek MT, Leonard C, German BJ, Garrow LA. 2022.. Flight scheduling and fleet sizing for an airport shuttle air taxi service. . J. Air Transp. 30:(2):4958
    [Crossref] [Google Scholar]
  103. 103.
    Zhao M, Li X, Yin J, Cui J, Yang L, An S. 2018.. An integrated framework for electric vehicle rebalancing and staff relocation in one-way carsharing systems: model formulation and Lagrangian relaxation-based solution approach. . Transp. Res. B 117::54272
    [Crossref] [Google Scholar]
  104. 104.
    Lindner M, Brühl R, Berger M, Fricke H. 2024.. The optimal size of a heterogeneous air taxi fleet in advanced air mobility: a traffic demand and flight scheduling approach. . J. Future Transp. 4:(1):174214
    [Crossref] [Google Scholar]
  105. 105.
    Fed. Aviat. Adm. 2023.. Urban air mobility (UAM): concept of operations v2.0. Doc., Fed. Aviat. Adm., Washington, DC:. https://www.faa.gov/sites/faa.gov/files/Urban%20Air%20Mobility%20%28UAM%29%20Concept%20of%20Operations%202.0_0.pdf
    [Google Scholar]
  106. 106.
    SESAR JU (Single Eur. Sky Air Traffic Manag. Res. Joint Undert.). 2023.. U-space concept of operations (ConOps), fourth edition. Rep. , SESAR JU, Brussels:. https://www.sesarju.eu/node/4544
    [Google Scholar]
  107. 107.
    Verma S, Dulchinos V, Wood RD, Farrahi A, Mogford R, et al. 2022.. Design and analysis of corridors for UAM operations. . In 2022 IEEE/AIAA 41st Digital Avionics Systems Conference. Piscataway, NJ:: IEEE. https://doi.org/10.1109/DASC55683.2022.9925820
    [Google Scholar]
  108. 108.
    Fed. Aviat. Adm. 2014.. Air traffic control. Order JO 7110.65V , Fed. Aviat. Adm., Washington, DC:
    [Google Scholar]
  109. 109.
    Cotton WB. 2019.. Adaptive autonomous separation for UAM in mixed operations. . In 2019 Integrated Communications, Navigation and Surveillance Conference. Piscataway, NJ:: IEEE. https://doi.org/10.1109/ICNSURV.2019.8735196
    [Google Scholar]
  110. 110.
    Kim J, Nam G, Min D, Kim NM, Lee J. 2023.. Safety risk assessment based minimum separation boundary for UAM operations. . In 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference. Piscataway, NJ:: IEEE. https://doi.org/10.1109/DASC58513.2023.10311141
    [Google Scholar]
  111. 111.
    Vascik PD, Cho J, Bulusu V, Polishchuk V. 2020.. Geometric approach towards airspace assessment for emerging operations. . J. Air Transp. 28:(3):12433
    [Crossref] [Google Scholar]
  112. 112.
    Veytia AM, Badea C, Ellerbroek J, Hoekstra JM, Patrinopoulou N, et al. 2022.. Metropolis II: benefits of centralised separation management in high-density urban airspace. Paper presented at 12th SESAR Innovation Days, Budapest, Hung:., Dec. 5–8
    [Google Scholar]
  113. 113.
    Kotwicz Herniczek MT, Ylmaz E, Sanni O, German BJ. 2022.. Drawing the highways in the sky for urban air mobility operations. . J. Air Transp. 30:(4):17081
    [Crossref] [Google Scholar]
  114. 114.
    Lowry M. 2018.. Towards high-density urban air mobility. . In 2018 Aviation Technology, Integration, and Operations Conference, pap. 2018-3667. Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  115. 115.
    Thipphavong DP, Apaza RD, Barmore BE, Battiste V, Burian BK, et al. 2018.. Urban air mobility airspace integration concepts and considerations. . In 2018 Aviation Technology, Integration, and Operations Conference, pap. 2018-3676 . Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  116. 116.
    Brueckner JK. 2002.. Airport congestion when carriers have market power. . Am. Econ. Rev. 92:(5):135775
    [Crossref] [Google Scholar]
  117. 117.
    Basso LJ, Zhang A. 2010.. Pricing versus slot policies when airport profits matter. . Transp. Res. B 44:(3):38191
    [Crossref] [Google Scholar]
  118. 118.
    Yimga J. 2023.. Fare impacts of a regulatory change in takeoff and landing restrictions: the case of Newark Liberty Airport. . Transport Econ. Manag. 1::5066
    [Crossref] [Google Scholar]
  119. 119.
    Bilotkach V, Clougherty JA, Mueller J, Zhang A. 2012.. Regulation, privatization, and airport charges: panel data evidence from European airports. . J. Regul. Econ. 42::7394
    [Crossref] [Google Scholar]
  120. 120.
    Miranda VAP, Oliviera AVM. 2018.. Airport slots and the internalization of congestion by airlines: an empirical model of integrated flight disruption management in Brazil. . Transp. Res. A 116::20119
    [Google Scholar]
  121. 121.
    Raffarin M. 2004.. Congestion in European airspace. . J. Transp. Econ. Policy 38:(1):10925
    [Google Scholar]
  122. 122.
    Zou B, Hansen M. 2012.. Flight delays, capacity investment and social welfare under air transport supply-demand equilibrium. . Transp. Res. A 46:(6):96580
    [Google Scholar]
  123. 123.
    Adler N, Hanany E, Proost S. 2022.. Competition in congested service networks with application to air traffic control provision in Europe. . Manag. Sci. 68:(4):275184
    [Crossref] [Google Scholar]
  124. 124.
    Qin VL, Ding G, Balakrishnan H. 2024.. Market structures for service providers in advanced air mobility. . J. Air Transp. 32:(4):16983
    [Crossref] [Google Scholar]
  125. 125.
    Lee H. 2021.. NASA's simulation activities for evaluating UAM concept of operations. Presentation at HorizonUAM Symposium, virtual:, Sept. 22–23
    [Google Scholar]
  126. 126.
    Cheng AW, Witzberger KE, Isaacson DR, Verma SA, Arneson HM, et al. 2022.. National campaign (NC)-1 strategic conflict management simulation (X4) final report. Tech. Memo. NASA/TM-2022-0018159 , Ames Res. Cent., Natl. Aeronaut. Space Adm., Moffett Field, CA:
    [Google Scholar]
  127. 127.
    Kish BA, Sullivan S, Silver I, Wilde M, Wheeler B. 2021.. Using an autopilot system for simplified vehicle operations in general aviation. . In 2021 IEEE Aerospace Conference. Piscataway, NJ:: IEEE. https://doi.org/10.1109/AERO50100.2021.9438443
    [Google Scholar]
  128. 128.
    Wing DJ, Chancey ET, Politowicz MS, Ballin MG. 2020.. Achieving resilient in-flight performance for advanced air mobility through simplified vehicle operations. . In AIAA Aviation 2020 Forum, pap. 2020-2915 . Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  129. 129.
    Goodrich K, Moore M. 2015.. On-demand mobility (ODM) technical pathway: enabling ease of use and safety. Presentation at AIAA Aviation Forum, Dallas:, June 22–26
    [Google Scholar]
  130. 130.
    US Dep. Transp. 2017.. Simplified vehicle operations. White Pap., US Dep. Transp., Washington, DC:. https://www.transportation.gov/sites/dot.gov/files/2024-03/HASS%20COE_SVO%20Whitepaper_March%202024.pdf
    [Google Scholar]
  131. 131.
    Bulusu V, Chatterji GB, Lauderdale TA, Sakakeeny J, Idris HR. 2022.. Impact of latency and reliability on separation assurance with remotely piloted aircraft in terminal operations. . In AIAA Aviation 2022 Forum, pap. 2022-3704. Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  132. 132.
    Bulusu V, Idris HR, Chatterji G. 2023.. Analysis of VFR traffic uncertainty and its impact on uncrewed aircraft operational capacity at regional airports. . In AIAA Aviation 2023 Forum, pap. 2023-3553 . Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  133. 133.
    Bulusu V, Idris HR, Acharya A. 2024.. Analysis and prediction of VFR vs IFR traffic behavior to support uncrewed aircraft flight operations at regional airports. . In AIAA Aviation Forum and ASCEND 2024, pap. 2024-4551. Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  134. 134.
    Acharya A, Bulusu V, Idris HR. 2024.. VFR trajectory forecasting using deep generative model for autonomous airspace operations. Paper presented at the 43rd AIAA/IEEE Digital Avionics Systems Conference, San Diego, CA:, Sept. 29–Oct. 3
    [Google Scholar]
  135. 135.
    Cotton WB. 2020.. Adaptive airborne separation to enable UAM autonomy in mixed airspace. Tech. Memo. NASA/CR-2020-220438 , Langley Res. Cent., Hampton, VA:
    [Google Scholar]
  136. 136.
    Stouffer VL, Goodrich KH. 2015.. State of the art of autonomous platforms and human-machine systems: Only a fool would stand in the way of progress. . In 15th AIAA Aviation Technology, Integration, and Operations Conference, pap. 2015-3036. Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  137. 137.
    Garrow LA, German BJ, Leonard CE. 2021.. Urban air mobility: a comprehensive review and comparative analysis with autonomous and electric ground transportation for informing future research. . Transp. Res. C 132::103377
    [Crossref] [Google Scholar]
  138. 138.
    Jaussi JA, Hoffmann HO. 2018.. Manned versus unmanned aircraft accidents, including causation and rates. . Int. J. Aviat. Aeronaut. Aerosp. 5:(4):3
    [Google Scholar]
  139. 139.
    Marien TV, Antcliff KR, Guynn MD, Wells DP, Schneider SJ, et al. 2018.. Short-haul revitalization study final report. Tech. Memo. NASA/TM–2018-219833 , Langley Res. Cent., Natl. Aeronaut. Space Adm., Hampton, VA:
    [Google Scholar]
  140. 140.
    Boeing. 2024.. Pilot and technician outlook 2024–2043. . Boeing. https://www.boeing.com/commercial/market/pilot-technician-outlook
    [Google Scholar]
  141. 141.
    Manfredi G, Jestin Y. 2016.. An introduction to ACAS Xu and the challenges ahead. . In 2016 IEEE/AIAA 35th Digital Avionics Systems Conference. Piscataway, NJ:: IEEE. https://doi.org/10.1109/DASC.2016.7778055
    [Google Scholar]
  142. 142.
    Deaton J, Owen MP. 2020.. Evaluating collision avoidance for small UAS using ACAS X. . In AIAA Scitech 2020 Forum, pap. 2020-0488 . Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  143. 143.
    Yang X, Deng L, Liu J, Wei P, Li H. 2020.. Multi-agent autonomous operations in urban air mobility with communication constraints. . In AIAA Scitech 2020 Forum, pap. 2020-1839. Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  144. 144.
    Yang X, Wei P. 2021.. Autonomous free flight operations in urban air mobility with computational guidance and collision avoidance. . IEEE Trans. Intell. Transp. Syst. 22:(9):596275
    [Crossref] [Google Scholar]
  145. 145.
    Chen S, Evans AD, Brittain M, Wei P. 2024.. Integrated conflict management for UAM with strategic demand capacity balancing and learning-based tactical deconfliction. . IEEE Trans. Intell. Transp. Syst. 25:(8):1004961
    [Crossref] [Google Scholar]
  146. 146.
    Campbell NH, Gregory IM, Acheson MJ, Ilangovan HS, Ranganathan S. 2024.. Benchmark problem for autonomous urban air mobility. . In AIAA Scitech 2024 Forum, pap. 2024-0718 . Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  147. 147.
    Gregory IM, Neogi NA, Grauer JA, Campbell NH, Holbrook J, et al. 2020.. Intelligent contingency management for urban air mobility. . In AIAA Scitech 2021 Forum, pap. 2021-1000 . Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  148. 148.
    Mathur A, Panesar K, Kim J, Atkins EM, Sarter N. 2019.. Paths to autonomous vehicle operations for urban air mobility. . In AIAA Aviation 2019 Forum, pap. 2019-3255. Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  149. 149.
    Panesar K, Mathur A, Atkins EM, Sarter N. 2021.. Moving from piloted to autonomous operations: investigating human factors challenges in urban air mobility. . Proc. Hum. Fact. Ergon. Soc. Annu. Meet. 65:(1):24145
    [Crossref] [Google Scholar]
  150. 150.
    Battiste V, Strybel TZ. 2023.. Development of urban air mobility (UAM) vehicles for ease of operation. . In HCI International 2023 – Late Breaking Papers, ed. VG Duffy, H Kroömker, NA Streitz, S Konomi , pp. 22436, Cham, Switz:.: Springer
    [Google Scholar]
  151. 151.
    Vempati L, Geffard M, Anderegg A. 2021.. Assessing human-automation role challenges for urban air mobility (UAM) operations. . In 2021 IEEE/AIAA 40th Digital Avionics Systems Conference. Piscataway, NJ:: IEEE. https://doi.org/10.1109/DASC52595.2021.9594358
    [Google Scholar]
  152. 152.
    Holbrook J, Prinzel LJ, Chancey ET, Shively RJ, Feary M, et al. 2020.. Enabling urban air mobility: human-autonomy teaming research challenges and recommendations. . In AIAA Aviation 2020 Forum, pap. 2020-3250 . Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  153. 153.
    Prinzel LJ III, Politowicz MS, Buck BK, Ballard K, Unverricht J, et al. 2021.. Designing for advanced aerial mobility: human-autonomy teaming and in-time system-wide safety assurance. . In AIAA Scitech 2023 Forum, pap. 2023-1066 . Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  154. 154.
    Goyal R, Reiche C, Fernando C, Serrao J, Kimmel S, et al. 2018.. Urban air mobility (UAM) market study. Rep. , Booz Allen Hamilton, McLean, VA:
    [Google Scholar]
  155. 155.
    US Bur. Transp. Stat. 2023.. Full year 2022 U.S. airline traffic data. News Release BTS 14-23 , US Bur. Transp. Stat., Washington, DC:. https://www.bts.gov/newsroom/full-year-2022-us-airline-traffic-data
    [Google Scholar]
  156. 156.
    Stat. Res. Dep. 2024.. U.S. air traffic passenger-miles from 2007 to 2021 (in billions). . Statista, Apr. 16. https://www.statista.com/statistics/185744/us-passenger-miles-in-air-traffic-since-1990
    [Google Scholar]
  157. 157.
    Stock. Anal. 2024.. The Boeing Company revenue. . Stock Analysis. https://stockanalysis.com/stocks/ba/revenue
    [Google Scholar]
  158. 158.
    Airbus. 2025.. Airbus reports Full-Year (FY) 2024 results. . Press Release, Feb. 20, Airbus, Blagnac, Fr. https://www.airbus.com/en/newsroom/press-releases/2025-02-airbus-reports-full-year-fy-2024-results
    [Google Scholar]
/content/journals/10.1146/annurev-control-022823-031353
Loading
/content/journals/10.1146/annurev-control-022823-031353
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error