1932

Abstract

The limited bioavailability, susceptibility to degradation, and adverse side effects of novel drugs often hinder their effective administration. Nanoparticles, with customizable properties and small size, have emerged as potential carriers, though their delivery efficiency remains low. With their ability to navigate fluid environments, micro- and nanorobots offer promising solutions to improve the delivery and retention of drugs at targeted tissues. The design and composition of these motile devices, often inspired by natural locomotion mechanisms, are currently being refined for improved biocompatibility, adaptability, and collective task performance. Recent research has focused on loading these devices with therapeutic agents and evaluating their efficacy in living organisms. While chemotherapy has been predominant, micro- and nanorobots also show significant potential for biological and physical therapies, and hybrid methods combining multiple therapies have demonstrated synergistic benefits. This review identifies major challenges, including the need for application-specific solutions, standardized performance evaluation methods, and the integration of engineering with pharmacology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-022823-034402
2025-05-05
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/control/8/1/annurev-control-022823-034402.html?itemId=/content/journals/10.1146/annurev-control-022823-034402&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Mitragotri S, Burke PA, Langer R. 2014.. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. . Nat. Rev. Drug Discov. 13::65572
    [Crossref] [Google Scholar]
  2. 2.
    Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. 2021.. Targeted drug delivery strategies for precision medicines. . Nat. Rev. Mater. 6::35170
    [Crossref] [Google Scholar]
  3. 3.
    Anselmo AC, Gokarn Y, Mitragotri S. 2019.. Non-invasive delivery strategies for biologics. . Nat. Rev. Drug Discov. 18::1940
    [Crossref] [Google Scholar]
  4. 4.
    Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. 2021.. Engineering precision nanoparticles for drug delivery. . Nat. Rev. Drug Discov. 20::10124
    [Crossref] [Google Scholar]
  5. 5.
    Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, et al. 2016.. Analysis of nanoparticle delivery to tumours. . Nat. Rev. Mater. 1::16014
    [Crossref] [Google Scholar]
  6. 6.
    Nguyen LNM, Ngo W, Lin ZP, Sindhwani S, MacMillan P, et al. 2024.. The mechanisms of nanoparticle delivery to solid tumours. . Nat. Rev. Bioeng. 2::20113
    [Crossref] [Google Scholar]
  7. 7.
    Nelson BJ, Pané S. 2023.. Delivering drugs with microrobots. . Science 382::112022
    [Crossref] [Google Scholar]
  8. 8.
    Nelson BJ, Kaliakatsos IK, Abbott JJ. 2010.. Microrobots for minimally invasive medicine. . Annu. Rev. Biomed. Eng. 12::5585
    [Crossref] [Google Scholar]
  9. 9.
    Palagi S, Fischer P. 2018.. Bioinspired microrobots. . Nat. Rev. Mater. 3::11324
    [Crossref] [Google Scholar]
  10. 10.
    Hoop M, Ribeiro AS, Rösch D, Weinand P, Mendes N, et al. 2018.. Mobile magnetic nanocatalysts for bioorthogonal targeted cancer therapy. . Adv. Funct. Mater. 28::1705920
    [Crossref] [Google Scholar]
  11. 11.
    Su L, Jin D, Wang Y, Wang Q, Pan C, et al. 2023.. Modularized microrobot with lock-and-detachable modules for targeted cell delivery in bile duct. . Sci. Adv. 9::eadj0883
    [Crossref] [Google Scholar]
  12. 12.
    Song H, Kim D, Abbasi SA, Latifi Gharamaleki N, Kim E, et al. 2022.. Multi-target cell therapy using a magnetoelectric microscale biorobot for targeted delivery and selective differentiation of SH-SY5Y cells via magnetically driven cell stamping. . Mater. Horiz. 9::303138
    [Crossref] [Google Scholar]
  13. 13.
    Dillinger C, Nama N, Ahmed D. 2021.. Ultrasound-activated ciliary bands for microrobotic systems inspired by starfish. . Nat. Commun. 12::6455
    [Crossref] [Google Scholar]
  14. 14.
    Kim M, Yu A, Kim D, Nelson BJ, Ahn S-H. 2023.. Multi-agent control of laser-guided shape-memory alloy microrobots. . Adv. Funct. Mater. 33::2304937
    [Crossref] [Google Scholar]
  15. 15.
    Hu C, Pané S, Nelson BJ. 2018.. Soft micro- and nanorobotics. . Annu. Rev. Control Robot. Auton. Syst. 1::5375
    [Crossref] [Google Scholar]
  16. 16.
    Zhou H, Mayorga-Martinez CC, Pané S, Zhang L, Pumera M. 2021.. Magnetically driven micro and nanorobots. . Chem. Rev. 121::49995041
    [Crossref] [Google Scholar]
  17. 17.
    Chen X-Z, Jang B, Ahmed D, Hu C, De Marco C, et al. 2018.. Small-scale machines driven by external power sources. . Adv. Mater. 30::1705061
    [Crossref] [Google Scholar]
  18. 18.
    Chen X-Z, Hoop M, Mushtaq F, Siringil E, Hu C, et al. 2017.. Recent developments in magnetically driven micro- and nanorobots. . Appl. Mater. Today 9::3748
    [Crossref] [Google Scholar]
  19. 19.
    Chatzipirpiridis G, Ergeneman O, Pokki J, Ullrich F, Fusco S, et al. 2015.. Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic applications. . Adv. Healthc. Mater. 4::20914
    [Crossref] [Google Scholar]
  20. 20.
    Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregón A, Nelson BJ. 2012.. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. . Adv. Mater. 24::81116
    [Crossref] [Google Scholar]
  21. 21.
    Lee H, Choi H, Lee M, Park S. 2018.. Preliminary study on alginate/NIPAM hydrogel-based soft microrobot for controlled drug delivery using electromagnetic actuation and near-infrared stimulus. . Biomed. Microdevices 20::103
    [Crossref] [Google Scholar]
  22. 22.
    Huang H-W, Sakar MS, Petruska AJ, Pané S, Nelson BJ. 2016.. Soft micromachines with programmable motility and morphology. . Nat. Commun. 7::12263
    [Crossref] [Google Scholar]
  23. 23.
    Aybar Tural G, Bozuyuk U, Dogan NO, Alapan Y, Akolpoglu MB, et al. 2024.. Magnetic mesoporous Janus microrollers for combined chemo- and photothermal ablation therapy. . Adv. Ther. 7::2300319
    [Crossref] [Google Scholar]
  24. 24.
    Palagi S, Singh DP, Fischer P. 2019.. Light-controlled micromotors and soft microrobots. . Adv. Opt. Mater. 7::1900370
    [Crossref] [Google Scholar]
  25. 25.
    Dai B, Wang J, Xiong Z, Zhan X, Dai W, et al. 2016.. Programmable artificial phototactic microswimmer. . Nat. Nanotechnol. 11::108792
    [Crossref] [Google Scholar]
  26. 26.
    Sridhar V, Podjaski F, Alapan Y, Kröger J, Grunenberg L, et al. 2022.. Light-driven carbon nitride microswimmers with propulsion in biological and ionic media and responsive on-demand drug delivery. . Sci. Robot. 7::eabm1421
    [Crossref] [Google Scholar]
  27. 27.
    Dekanovsky L, Ying Y, Zelenka J, Plutnar J, Beladi-Mousavi SM, et al. 2022.. Fully programmable collective behavior of light-powered chemical microrobotics: pH-dependent motion behavior switch and controlled cancer cell destruction. . Adv. Funct. Mater. 32::2205062
    [Crossref] [Google Scholar]
  28. 28.
    Ahmed D, Baasch T, Jang B, Pane S, Dual J, Nelson BJ. 2016.. Artificial swimmers propelled by acoustically activated flagella. . Nano Lett. 16::496874
    [Crossref] [Google Scholar]
  29. 29.
    Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, et al. 2013.. Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. . ACS Nano 7::923240
    [Crossref] [Google Scholar]
  30. 30.
    Garcia-Gradilla V, Sattayasamitsathit S, Soto F, Kuralay F, Yardımcı C, et al. 2014.. Ultrasound-propelled nanoporous gold wire for efficient drug loading and release. . Small 10::415459
    [Crossref] [Google Scholar]
  31. 31.
    Del Campo Fonseca A, Glück C, Droux J, Ferry Y, Frei C, et al. 2023.. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. . Nat. Commun. 14::5889
    [Crossref] [Google Scholar]
  32. 32.
    Song H-W, Lee H-S, Kim S-J, Kim HY, Choi YH, et al. 2021.. Sonazoid-conjugated natural killer cells for tumor therapy and real-time visualization by ultrasound imaging. . Pharmaceutics 13::1689
    [Crossref] [Google Scholar]
  33. 33.
    Song HW, Kim HY, Lee HS, Jung D, Choi YH, et al. 2022.. Ultrasound-mediated delivery of natural killer cells with microbubble for cancer treatment. . In 2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics. Piscataway, NJ:: IEEE. https://doi.org/10.1109/BioRob52689.2022.9925298
    [Google Scholar]
  34. 34.
    Baraban L, Makarov D, Streubel R, Mönch I, Grimm D, et al. 2012.. Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. . ACS Nano 6::338389
    [Crossref] [Google Scholar]
  35. 35.
    Kim D, Liu A, Diller E, Sitti M. 2012.. Chemotactic steering of bacteria propelled microbeads. . Biomed. Microdevices 14::100917
    [Crossref] [Google Scholar]
  36. 36.
    Zhou M, Hou T, Li J, Yu S, Xu Z, et al. 2019.. Self-propelled and targeted drug delivery of poly(aspartic acid)/iron–zinc microrocket in the stomach. . ACS Nano 13::132432
    [Google Scholar]
  37. 37.
    Chen Q, Tang S, Li Y, Cong Z, Lu D, et al. 2021.. Multifunctional metal–organic framework exoskeletons protect biohybrid sperm microrobots for active drug delivery from the surrounding threats. . ACS Appl. Mater. Interfaces 13::5838292
    [Crossref] [Google Scholar]
  38. 38.
    Xu H, Medina-Sánchez M, Magdanz V, Schwarz L, Hebenstreit F, Schmidt OG. 2018.. Sperm-hybrid micromotor for targeted drug delivery. . ACS Nano 12::32737
    [Crossref] [Google Scholar]
  39. 39.
    Nguyen VD, Le VH, Zheng S, Han J, Park J-O. 2018.. Preparation of tumor targeting cell-based microrobots carrying NIR light sensitive therapeutics manipulated by electromagnetic actuating system and Chemotaxis. . J. Micro-Bio Robot. 14::6977
    [Crossref] [Google Scholar]
  40. 40.
    Nguyen VD, Min H-K, Kim HY, Han J, Choi YH, et al. 2021.. Primary macrophage-based microrobots: an effective tumor therapy in vivo by dual-targeting function and near-infrared-triggered drug release. . ACS Nano 15::8492506
    [Crossref] [Google Scholar]
  41. 41.
    Ergeneman O, Abbott JJ, Dogangil G, Nelson BJ. 2008.. Functionalizing intraocular microrobots with surface coatings. . In 2008 2nd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 23237. Piscataway, NJ:: IEEE
    [Google Scholar]
  42. 42.
    Song X, Chen Z, Zhang X, Xiong J, Jiang T, et al. 2021.. Magnetic tri-bead microrobot assisted near-infrared triggered combined photothermal and chemotherapy of cancer cells. . Sci. Rep. 11::7907
    [Crossref] [Google Scholar]
  43. 43.
    Zheng S, Hoang MC, Nguyen VD, Go G, Nan M, et al. 2022.. Microrobot with gyroid surface and gold nanostar for high drug loading and near-infrared-triggered chemo-photothermal therapy. . Pharmaceutics 14::2393
    [Crossref] [Google Scholar]
  44. 44.
    Kim D, Lee H, Kwon S, Choi H, Park S. 2019.. Magnetic nano-particles retrievable biodegradable hydrogel microrobot. . Sens. Actuators B 289::6577
    [Crossref] [Google Scholar]
  45. 45.
    Zheng S, Han J, Jin Z, Kim C-S, Park S, et al. 2018.. Dual tumor-targeted multifunctional magnetic hyaluronic acid micelles for enhanced MR imaging and combined photothermal-chemotherapy. . Colloids Surf. B 164::42435
    [Crossref] [Google Scholar]
  46. 46.
    Uthaman S, Pillarisetti S, Mathew AP, Kim Y, Bae WK, et al. 2020.. Long circulating photoactivable nanomicelles with tumor localized activation and ROS triggered self-accelerating drug release for enhanced locoregional chemo-photodynamic therapy. . Biomaterials 232::119702
    [Crossref] [Google Scholar]
  47. 47.
    Pacheco M, Mayorga-Martinez CC, Viktorova J, Ruml T, Escarpa A, Pumera M. 2022.. Microrobotic carrier with enzymatically encoded drug release in the presence of pancreatic cancer cells via programmed self-destruction. . Appl. Mater. Today 27::101494
    [Crossref] [Google Scholar]
  48. 48.
    Li Y, Cong Z, Xie L, Tang S, Ren C, et al. 2023.. Magnetically powered immunogenic macrophage microrobots for targeted multimodal cancer therapy. . Small 19::2301489
    [Crossref] [Google Scholar]
  49. 49.
    Yang F, Skripka A, Tabatabaei MS, Hong SH, Ren F, et al. 2019.. Magnetic photoluminescent nanoplatform built from large-pore mesoporous silica. . Chem. Mater. 31::320110
    [Crossref] [Google Scholar]
  50. 50.
    Sivaraman KM, Kellenberger C, Pané S, Ergeneman O, Lühmann T, et al. 2012.. Porous polysulfone coatings for enhanced drug delivery. . Biomed. Microdevices 14::60312
    [Crossref] [Google Scholar]
  51. 51.
    Park J, Kim J, Pané S, Nelson BJ, Choi H. 2021.. Acoustically mediated controlled drug release and targeted therapy with degradable 3D porous magnetic microrobots. . Adv. Healthc. Mater. 10::2001096
    [Crossref] [Google Scholar]
  52. 52.
    Sridhar V, Yildiz E, Rodríguez-Camargo A, Lyu X, Yao L, et al. 2023.. Designing covalent organic framework-based light-driven microswimmers toward therapeutic applications. . Adv. Mater. 35::2301126
    [Crossref] [Google Scholar]
  53. 53.
    Fusco S, Chatzipirpiridis G, Sivaraman KM, Ergeneman O, Nelson BJ, Pané S. 2013.. Chitosan electrodeposition for microrobotic drug delivery. . Adv. Healthc. Mater. 2::103744
    [Crossref] [Google Scholar]
  54. 54.
    Wu Y, Lin X, Wu Z, Möhwald H, He Q. 2014.. Self-propelled polymer multilayer Janus capsules for effective drug delivery and light-triggered release. . ACS Appl. Mater. Interfaces 6::1047681
    [Crossref] [Google Scholar]
  55. 55.
    Wu Z, Lin X, Zou X, Sun J, He Q. 2015.. Biodegradable protein-based rockets for drug transportation and light-triggered release. . ACS Appl. Mater. Interfaces 7::25055
    [Crossref] [Google Scholar]
  56. 56.
    Jeong J, Jang D, Kim D, Lee D, Chung SK. 2020.. Acoustic bubble-based drug manipulation: carrying, releasing and penetrating for targeted drug delivery using an electromagnetically actuated microrobot. . Sens. Actuators A 306::111973
    [Crossref] [Google Scholar]
  57. 57.
    Uthaman S, Kim Y, Lee JY, Pillarisetti S, Huh KM, Park I-K. 2020.. Self-quenched polysaccharide nanoparticles with a reactive oxygen species-sensitive cascade for enhanced photodynamic therapy. . ACS Appl. Mater. Interfaces 12::2800413
    [Crossref] [Google Scholar]
  58. 58.
    Zhang L, Zhang X, Ran H, Chen Z, Ye Y, et al. 2024.. A NIR-driven green affording-oxygen microrobot for targeted photodynamic therapy of tumors. . Nanoscale 16::63544
    [Crossref] [Google Scholar]
  59. 59.
    Kim Y, Uthaman S, Pillarisetti S, Noh K, Huh KM, Park I-K. 2020.. Bioactivatable reactive oxygen species-sensitive nanoparticulate system for chemo-photodynamic therapy. . Acta Biomater. 108::27384
    [Crossref] [Google Scholar]
  60. 60.
    Zheng S, Nguyen VD, Song SY, Han J, Park J-O. 2017.. Combined photothermal-chemotherapy of breast cancer by near infrared light responsive hyaluronic acid-decorated nanostructured lipid carriers. . Nanotechnology 28::435102
    [Crossref] [Google Scholar]
  61. 61.
    Ramos-Docampo MA, Fernández-Medina M, Taipaleenmäki E, Hovorka O, Salgueiriño V, Städler B. 2019.. Microswimmers with heat delivery capacity for 3D cell spheroid penetration. . ACS Nano 13::12192205
    [Crossref] [Google Scholar]
  62. 62.
    Wang X, Gong Z, Wang T, Law J, Chen X, et al. 2023.. Mechanical nanosurgery of chemoresistant glioblastoma using magnetically controlled carbon nanotubes. . Sci. Adv. 9::eade5321
    [Crossref] [Google Scholar]
  63. 63.
    Zhou X, Ma Z, Wang K, Zhang G, Ren D, et al. 2024.. Motion control of magnetic-controlled spiral microrobots for in-vitro plaque removal. . IEEE Robot. Autom. Lett. 9::567178
    [Crossref] [Google Scholar]
  64. 64.
    Jeon SM, Jang GH, Lee WS. 2014.. Drug-enhanced unclogging motions of a double helical magnetic micromachine for occlusive vascular diseases. . IEEE Trans. Magn. 50::9100304
    [Google Scholar]
  65. 65.
    Fraire JC, Guix M, Hortelao AC, Ruiz-González N, Bakenecker AC, et al. 2023.. Light-triggered mechanical disruption of extracellular barriers by swarms of enzyme-powered nanomotors for enhanced delivery. . ACS Nano 17::718093
    [Crossref] [Google Scholar]
  66. 66.
    Dong M, Wang X, Chen X-Z, Mushtaq F, Deng S, et al. 2020.. 3D-printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cells. . Adv. Funct. Mater. 30::1910323
    [Crossref] [Google Scholar]
  67. 67.
    Go G, Han J, Zhen J, Zheng S, Yoo A, et al. 2017.. A magnetically actuated microscaffold containing mesenchymal stem cells for articular cartilage repair. . Adv. Healthc. Mater. 6::1601378
    [Crossref] [Google Scholar]
  68. 68.
    Go G, Jeong S-G, Yoo A, Han J, Kang B, et al. 2020.. Human adipose–derived mesenchymal stem cell–based medical microrobot system for knee cartilage regeneration in vivo. . Sci. Robot. 5::eaay6626
    [Crossref] [Google Scholar]
  69. 69.
    Tian Y, Han W, Yeung KL. 2023.. Magnetic microsphere scaffold-based soft microbots for targeted mesenchymal stem cell delivery. . Small 19::2300430
    [Crossref] [Google Scholar]
  70. 70.
    Gundersen RA, Chu T, Abolfathi K, Gokcen Dogan S, Blair PE, et al. 2023.. Generation of magnetic biohybrid microrobots based on MSC.sTRAIL for targeted stem cell delivery and treatment of cancer. . Cancer Nanotechnol. 14::54
    [Crossref] [Google Scholar]
  71. 71.
    Wei T, Liu J, Li D, Chen S, Zhang Y, et al. 2020.. Development of magnet-driven and image-guided degradable microrobots for the precise delivery of engineered stem cells for cancer therapy. . Small 16::1906908
    [Crossref] [Google Scholar]
  72. 72.
    Soto F, Karshalev E, Zhang F, Esteban-Fernández de Ávila B, Nourhani A, Wang J. 2022.. Smart materials for microrobots. . Chem. Rev. 122::5365403
    [Crossref] [Google Scholar]
  73. 73.
    Peter F, Kadiri VM, Goyal R, Hurst J, Schnichels S, et al. 2024.. Degradable and biocompatible magnesium zinc structures for nanomedicine: magnetically actuated liposome microcarriers with tunable release. . Adv. Funct. Mater. 34::2314265
    [Crossref] [Google Scholar]
  74. 74.
    Kim J, Jeon S, Lee J, Lee S, Lee J, et al. 2018.. A simple and rapid fabrication method for biodegradable drug-encapsulating microrobots using laser micromachining, and characterization thereof. . Sens. Actuators B 266::27687
    [Crossref] [Google Scholar]
  75. 75.
    Hertle L, Sevim S, Zhu J, Pustovalov V, Veciana A, et al. 2024.. A naturally inspired extrusion-based microfluidic approach for manufacturing tailorable magnetic soft continuum microrobotic devices. . Adv. Mater. 36::2402309
    [Crossref] [Google Scholar]
  76. 76.
    Peters C, Hoop M, Pané S, Nelson BJ, Hierold C. 2016.. Degradable magnetic composites for minimally invasive interventions: device fabrication, targeted drug delivery, and cytotoxicity tests. . Adv. Mater. 28::53338
    [Crossref] [Google Scholar]
  77. 77.
    Li T, Yu S, Sun B, Li Y, Wang X, et al. 2023.. Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels. . Sci. Adv. 9::eadg4501
    [Crossref] [Google Scholar]
  78. 78.
    Li J, Angsantikul P, Liu W, Esteban-Fernández de Ávila B, Chang X, et al. 2018.. Biomimetic platelet-camouflaged nanorobots for binding and isolation of biological threats. . Adv. Mater. 30::1704800
    [Crossref] [Google Scholar]
  79. 79.
    Esteban-Fernández de Ávila B, Angsantikul P, Ramírez-Herrera DE, Soto F, Teymourian H, et al. 2018.. Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. . Sci. Robot. 3::eaat0485
    [Crossref] [Google Scholar]
  80. 80.
    Cabanach P, Pena-Francesch A, Sheehan D, Bozuyuk U, Yasa O, et al. 2020.. Zwitterionic 3D-printed non-immunogenic stealth microrobots. . Adv. Mater. 32::2003013
    [Crossref] [Google Scholar]
  81. 81.
    Wang B, Chan KF, Yuan K, Wang Q, Xia X, et al. 2021.. Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. . Sci. Robot. 6::eabd2813
    [Crossref] [Google Scholar]
  82. 82.
    Go G, Yoo A, Nguyen KT, Nan M, Darmawan BA, et al. 2022.. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer. . Sci. Adv. 8::eabq8545
    [Crossref] [Google Scholar]
  83. 83.
    Nguyen VD, Min H-K, Kim D-H, Kim C-S, Han J, et al. 2020.. Macrophage-mediated delivery of multifunctional nanotherapeutics for synergistic chemo–photothermal therapy of solid tumors. . ACS Appl. Mater. Interfaces 12::1013041
    [Crossref] [Google Scholar]
  84. 84.
    Zhang H, Li Z, Gao C, Fan X, Pang Y, et al. 2021.. Dual-responsive biohybrid neutrobots for active target delivery. . Sci. Robot. 6::eaaz9519
    [Crossref] [Google Scholar]
  85. 85.
    Walker D, Käsdorf BT, Jeong H-H, Lieleg O, Fischer P. 2015.. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. . Sci. Adv. 1::e1500501
    [Crossref] [Google Scholar]
  86. 86.
    Wang B, Wang Q, Chan KF, Ning Z, Wang Q, et al. 2024.. tPA-anchored nanorobots for in vivo arterial recanalization at submillimeter-scale segments. . Sci. Adv. 10::eadk8970
    [Crossref] [Google Scholar]
  87. 87.
    Wang L, Zou W, Shen J, Yang S, Wu J, et al. 2024.. Dual-functional laser-guided magnetic nanorobot collectives against gravity for on-demand thermo-chemotherapy of peritoneal metastasis. . Adv. Healthc. Mater. 13::2303361
    [Crossref] [Google Scholar]
  88. 88.
    Baylis JR, Yeon JH, Thomson MH, Kazerooni A, Wang X, et al. 2015.. Self-propelled particles that transport cargo through flowing blood and halt hemorrhage. . Sci. Adv. 1::e1500379
    [Crossref] [Google Scholar]
  89. 89.
    Liu X, Wu H, Wu S, Qin H, Zhang T, et al. 2023.. Optically programmable living microrouter in vivo. . Adv. Sci. 10::2304103
    [Crossref] [Google Scholar]
  90. 90.
    Chen Y, Pan R, Wang Y, Guo P, Liu X, et al. 2022.. Carbon helical nanorobots capable of cell membrane penetration for single cell targeted SERS bio-sensing and photothermal cancer therapy. . Adv. Funct. Mater. 32::2200600
    [Crossref] [Google Scholar]
  91. 91.
    Ning S, Sanchis-Gual R, Franco C, Wendel-Garcia PD, Ye H, et al. 2023.. Magnetic PiezoBOTs: a microrobotic approach for targeted amyloid protein dissociation. . Nanoscale 15::148008
    [Crossref] [Google Scholar]
  92. 92.
    Shin W, Lee Y, Lim J, Lee Y, Lah JD, et al. 2024.. Nanoscale magneto-mechanical-genetics of deep brain neurons reversing motor deficits in Parkinsonian mice. . Nano Lett. 24::27078
    [Crossref] [Google Scholar]
  93. 93.
    Tang X, Yang Y, Zheng M, Yin T, Huang G, et al. 2023.. Magnetic–acoustic sequentially actuated CAR T cell microrobots for precision navigation and in situ antitumor immunoactivation. . Adv. Mater. 35::2211509
    [Crossref] [Google Scholar]
  94. 94.
    Qiu F, Fujita S, Mhanna R, Zhang L, Simona BR, Nelson BJ. 2015.. Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. . Adv. Funct. Mater. 25::166671
    [Crossref] [Google Scholar]
  95. 95.
    Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, et al. 1996.. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. . Cancer Res. 56::468693
    [Google Scholar]
  96. 96.
    Wilson MW, Kerlan RK, Fidelman NA, Venook AP, LaBerge JM, et al. 2004.. Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite—initial experience with four patients. . Radiology 230::28793
    [Crossref] [Google Scholar]
  97. 97.
    Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ. 2010.. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. . IEEE Trans. Robot. 26::100617
    [Crossref] [Google Scholar]
  98. 98.
    Gervasoni S, Pedrini N, Rifai T, Fischer C, Landers FC, et al. 2024.. A human-scale clinically ready electromagnetic navigation system for magnetically responsive biomaterials and medical devices. . Adv. Mater. 36::2310701
    [Crossref] [Google Scholar]
  99. 99.
    Iacovacci V, Lucarini G, Ricotti L, Dario P, Dupont PE, Menciassi A. 2015.. Untethered magnetic millirobot for targeted drug delivery. . Biomed. Microdevices 17::63
    [Crossref] [Google Scholar]
  100. 100.
    Li H, Go G, Ko SY, Park J-O, Park S. 2016.. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. . Smart Mater. Struct. 25::027001
    [Crossref] [Google Scholar]
  101. 101.
    Hu N, Wang L, Zhai W, Sun M, Xie H, et al. 2018.. Magnetically actuated rolling of star-shaped hydrogel microswimmer. . Macromol. Chem. Phys. 219::1700540
    [Crossref] [Google Scholar]
  102. 102.
    Mushtaq F, Torlakcik H, Hoop M, Jang B, Carlson F, et al. 2019.. Motile piezoelectric nanoeels for targeted drug delivery. . Adv. Funct. Mater. 29::1808135
    [Crossref] [Google Scholar]
  103. 103.
    Park J, Jin C, Lee S, Kim J, Choi H. 2019.. Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. . Adv. Healthc. Mater. 8::1900213
    [Crossref] [Google Scholar]
  104. 104.
    Mallick S, Abouomar R, Rivas D, Sokolich M, Kirmizitas FC, et al. 2023.. Doxorubicin-loaded microrobots for targeted drug delivery and anticancer therapy. . Adv. Healthc. Mater. 12::2300939
    [Crossref] [Google Scholar]
  105. 105.
    Sun M, Liu Q, Fan X, Wang Y, Chen W, et al. 2020.. Autonomous biohybrid urchin-like microperforator for intracellular payload delivery. . Small 16::1906701
    [Crossref] [Google Scholar]
  106. 106.
    Lee S, Kim J, Kim J, Hoshiar AK, Park J, et al. 2020.. A needle-type microrobot for targeted drug delivery by affixing to a microtissue. . Adv. Healthc. Mater. 9::1901697
    [Crossref] [Google Scholar]
  107. 107.
    Chen W, Sun M, Fan X, Xie H. 2020.. Magnetic/pH-sensitive double-layer microrobots for drug delivery and sustained release. . Appl. Mater. Today 19::100583
    [Crossref] [Google Scholar]
  108. 108.
    Chen W, Wen Y, Fan X, Sun M, Tian C, et al. 2021.. Magnetically actuated intelligent hydrogel-based child-parent microrobots for targeted drug delivery. . J. Mater. Chem. B 9::103039
    [Crossref] [Google Scholar]
  109. 109.
    Wang B, Liu D, Liao Y, Huang Y, Ni M, et al. 2022.. Spatiotemporally actuated hydrogel by magnetic swarm nanorobotics. . ACS Nano 16::209851001
    [Crossref] [Google Scholar]
  110. 110.
    Xin C, Jin D, Hu Y, Yang L, Li R, et al. 2021.. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. . ACS Nano 15::1804859
    [Crossref] [Google Scholar]
  111. 111.
    Yu Z, Li L, Mou F, Yu S, Zhang D, et al. 2023.. Swarming magnetic photonic-crystal microrobots with on-the-fly visual pH detection and self-regulated drug delivery. . InfoMat. 5::e12464
    [Crossref] [Google Scholar]
  112. 112.
    Chen W, Chen X, Yang M, Li S, Fan X, et al. 2021.. Triple-configurational magnetic robot for targeted drug delivery and sustained release. . ACS Appl. Mater. Interfaces 13::4531524
    [Crossref] [Google Scholar]
  113. 113.
    Chen X-Z, Hoop M, Shamsudhin N, Huang T, Özkale B, et al. 2017.. Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. . Adv. Mater. 29::1605458
    [Crossref] [Google Scholar]
  114. 114.
    Gong D, Celi N, Zhang D, Cai J. 2022.. Magnetic biohybrid microrobot multimers based on chlorella cells for enhanced targeted drug delivery. . ACS Appl. Mater. Interfaces 14::632030
    [Crossref] [Google Scholar]
  115. 115.
    Kim D, Lee H, Kwon S, Sung YJ, Song WK, Park S. 2020.. Bilayer hydrogel sheet-type intraocular microrobot for drug delivery and magnetic nanoparticles retrieval. . Adv. Healthc. Mater. 9::2000118
    [Crossref] [Google Scholar]
  116. 116.
    Li Y, Dong D, Qu Y, Li J, Chen S, et al. 2023.. A multidrug delivery microrobot for the synergistic treatment of cancer. . Small 19::2301889
    [Crossref] [Google Scholar]
  117. 117.
    Zhu Y, Song Y, Cao Z, Dong L, Shen S, et al. 2023.. A magnetically driven amoeba-like nanorobot for whole-process active drug transport. . Adv. Sci. 10::2204793
    [Crossref] [Google Scholar]
  118. 118.
    Cao Q, Zhang Y, Tang Y, Wu C, Wang J, Li D. 2024.. MOF-based magnetic microrobot swarms for pH-responsive targeted drug delivery. . Sci. China Chem. 67::121623
    [Crossref] [Google Scholar]
  119. 119.
    Nguyen VD, Han J, Choi YJ, Cho S, Zheng S, et al. 2016.. Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella Typhimurium). . Sens. Actuators B 224::21724
    [Crossref] [Google Scholar]
  120. 120.
    Li Y, Tang S, Cong Z, Lu D, Yang Q, et al. 2022.. Biohybrid bacterial microswimmers with metal-organic framework exoskeletons enable cytoprotection and active drug delivery in a harsh environment. . Mater. Today Chem. 23::100609
    [Crossref] [Google Scholar]
  121. 121.
    Xie S, Xia T, Li S, Mo C, Chen M, Li X. 2020.. Bacteria-propelled microrockets to promote the tumor accumulation and intracellular drug uptake. . Chem. Eng. J. 392::123786
    [Crossref] [Google Scholar]
  122. 122.
    Nguyen VD, Kim HY, Choi YH, Park J-O, Choi E. 2022.. Tumor-derived extracellular vesicles for the active targeting and effective treatment of colorectal tumors in vivo. . Drug Delivery 29::262131
    [Crossref] [Google Scholar]
  123. 123.
    Yang Q, Zhou X, Lou B, Zheng N, Chen J, Yang G. 2024.. An FOF1-ATPase motor-embedded chromatophore as a nanorobot for overcoming biological barriers and targeting acidic tumor sites. . Acta Biomater. 179::20719
    [Crossref] [Google Scholar]
  124. 124.
    Zheng S, Jin Z, Han C, Li J, Xu H, et al. 2020.. Graphene quantum dots-decorated hollow copper sulfide nanoparticles for controlled intracellular drug release and enhanced photothermal-chemotherapy. . J. Mater. Sci. 55::118497
    [Crossref] [Google Scholar]
  125. 125.
    Jeong Y-J, Jeong S, Kim S, Kim HJ, Jo J, et al. 2023.. 3D-printed cardiovascular polymer scaffold reinforced by functional nanofiber additives for tunable mechanical strength and controlled drug release. . Chem. Eng. J. 454::140118
    [Crossref] [Google Scholar]
  126. 126.
    Park B-W, Zhuang J, Yasa O, Sitti M. 2017.. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. . ACS Nano 11::891023
    [Crossref] [Google Scholar]
  127. 127.
    Alapan Y, Yasa O, Schauer O, Giltinan J, Tabak AF, et al. 2018.. Soft erythrocyte-based bacterial microswimmers for cargo delivery. . Sci. Robot. 3::eaar4423
    [Crossref] [Google Scholar]
  128. 128.
    Li M, Wu J, Lin D, Yang J, Jiao N, et al. 2022.. A diatom-based biohybrid microrobot with a high drug-loading capacity and pH-sensitive drug release for target therapy. . Acta Biomater. 154::44353
    [Crossref] [Google Scholar]
  129. 129.
    Nguyen VD, Han J, Go G, Zhen J, Zheng S, et al. 2017.. Feasibility study of dual-targeting paclitaxel-loaded magnetic liposomes using electromagnetic actuation and macrophages. . Sens. Actuators B 240::122636
    [Crossref] [Google Scholar]
  130. 130.
    Nguyen VD, Zheng S, Han J, Le VH, Park J-O, Park S. 2017.. Nanohybrid magnetic liposome functionalized with hyaluronic acid for enhanced cellular uptake and near-infrared-triggered drug release. . Colloids Surf. B 154::10414
    [Crossref] [Google Scholar]
  131. 131.
    Yang M, Xie H, Jiang T, Zhan Z, Ye M, et al. 2024.. MXBOTs: biodegradable Ti3C2 MXene-based microrobots for targeted delivery and synergistic chemo-photothermal therapy. . ACS Mater. Lett. 6::180110
    [Crossref] [Google Scholar]
  132. 132.
    Celi N, Cai J, Sun H, Feng L, Zhang D, Gong D. 2024.. Biohybrid flexible sperm-like microrobot for targeted chemo-photothermal therapy. . ACS Appl. Mater. Interfaces 16::2434150
    [Crossref] [Google Scholar]
  133. 133.
    Nguyen KT, Go G, Jin Z, Darmawan BA, Yoo A, et al. 2021.. A magnetically guided self-rolled microrobot for targeted drug delivery, real-time X-ray imaging, and microrobot retrieval. . Adv. Healthc. Mater. 10::2001681
    [Crossref] [Google Scholar]
  134. 134.
    Bozuyuk U, Yasa O, Yasa IC, Ceylan H, Kizilel S, Sitti M. 2018.. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. . ACS Nano 12::961725
    [Crossref] [Google Scholar]
  135. 135.
    Lee H, Kim D, Kwon S, Park S. 2021.. Magnetically actuated drug delivery helical microrobot with magnetic nanoparticle retrieval ability. . ACS Appl. Mater. Interfaces 13::1963347
    [Crossref] [Google Scholar]
  136. 136.
    Feng K, Shen W, Chen L, Gong J, Palberg T, et al. 2024.. Weak ion-exchange based magnetic swarm for targeted drug delivery and chemotherapy. . Small 20::2306798
    [Crossref] [Google Scholar]
  137. 137.
    Akolpoglu MB, Alapan Y, Dogan NO, Baltaci SF, Yasa O, et al. 2022.. Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery. . Sci. Adv. 8::eabo6163
    [Crossref] [Google Scholar]
  138. 138.
    Zhu Y-X, Jia H-R, Jiang Y-W, Guo Y, Duan Q-Y, et al. 2024.. A red blood cell-derived bionic microrobot capable of hierarchically adapting to five critical stages in systemic drug delivery. . Exploration 4::20230105
    [Crossref] [Google Scholar]
  139. 139.
    Xing G, Yu X, Zhang Y, Sheng S, Jin L, et al. 2024.. Macrophages-based biohybrid microrobots for breast cancer photothermal immunotherapy by inducing pyroptosis. . Small 20::2305526
    [Crossref] [Google Scholar]
  140. 140.
    Wu D, Zhao Z, Liu H, Fu K, Ji Y, et al. 2023.. Escherichia coli Nissle 1917-driven microrobots for effective tumor targeted drug delivery and tumor regression. . Acta Biomater. 169::47788
    [Crossref] [Google Scholar]
  141. 141.
    Darmawan BA, Lee SB, Nguyen VD, Go G, Nguyen KT, et al. 2020.. Self-folded microrobot for active drug delivery and rapid ultrasound-triggered drug release. . Sens. Actuators B 324::128752
    [Crossref] [Google Scholar]
  142. 142.
    Lee H, Park S. 2023.. Magnetically actuated helical microrobot with magnetic nanoparticle retrieval and sequential dual-drug release abilities. . ACS Appl. Mater. Interfaces 15::2747185
    [Crossref] [Google Scholar]
  143. 143.
    Li M, Wu J, Li N, Zhou J, Cheng W, et al. 2024.. Cross-scale drug delivery of diatom microrobots based on a magnetic continuum robot for combined chemical and photodynamic therapy of glioblastoma. . Adv. Funct. Mater. 34::2402333
    [Crossref] [Google Scholar]
  144. 144.
    Wu J, Jiao N, Lin D, Li N, Ma T, et al. 2024.. Dual-responsive nanorobot-based marsupial robotic system for intracranial cross-scale targeting drug delivery. . Adv. Mater. 36::2306876
    [Crossref] [Google Scholar]
  145. 145.
    Li H, Jin Z, Cho S, Jeon MJ, Nguyen VD, et al. 2017.. Folate-receptor-targeted NIR-sensitive polydopamine nanoparticles for chemo-photothermal cancer therapy. . Nanotechnology 28::425101
    [Crossref] [Google Scholar]
  146. 146.
    Jin Z, Nguyen KT, Go G, Kang B, Min H-K, et al. 2019.. Multifunctional nanorobot system for active therapeutic delivery and synergistic chemo-photothermal therapy. . Nano Lett. 19::855064
    [Crossref] [Google Scholar]
  147. 147.
    Go G, Choi H, Jeong S, Lee C, Ko SY, et al. 2015.. Electromagnetic navigation system using simple coil structure (4 coils) for 3-D locomotive microrobot. . IEEE Trans. Magn. 51::8002107
    [Google Scholar]
  148. 148.
    Zhang W, Deng Y, Zhao J, Zhang T, Zhang X, et al. 2023.. Amoeba-inspired magnetic venom microrobots. . Small 19::2207360
    [Crossref] [Google Scholar]
  149. 149.
    Manamanchaiyaporn L, Tang X, Zheng Y, Yan X. 2021.. Molecular transport of a magnetic nanoparticle swarm towards thrombolytic therapy. . IEEE Robot. Autom. Lett. 6::560512
    [Crossref] [Google Scholar]
  150. 150.
    Xie M, Zhang W, Fan C, Wu C, Feng Q, et al. 2020.. Bioinspired soft microrobots with precise magneto-collective control for microvascular thrombolysis. . Adv. Mater. 32::2000366
    [Crossref] [Google Scholar]
  151. 151.
    Wan M, Wang Q, Wang R, Wu R, Li T, et al. 2020.. Platelet-derived porous nanomotor for thrombus therapy. . Sci. Adv. 6::eaaz9014
    [Crossref] [Google Scholar]
  152. 152.
    Pontius MHH, Ku C-J, Osmond MJ, Disharoon D, Liu Y, et al. 2024.. Magnetically powered microwheel thrombolysis of occlusive thrombi in zebrafish. . PNAS 121::e2315083121
    [Crossref] [Google Scholar]
  153. 153.
    Yang M, Zhang Y, Mou F, Cao C, Yu L, et al. 2023.. Swarming magnetic nanorobots bio-interfaced by heparinoid-polymer brushes for in vivo safe synergistic thrombolysis. . Sci. Adv. 9::eadk7251
    [Crossref] [Google Scholar]
  154. 154.
    Chen H, Zhang H, Dai Y, Zhu H, Hong G, et al. 2023.. Magnetic hydrogel microrobots delivery system for deafness prevention. . Adv. Funct. Mater. 33::2303011
    [Crossref] [Google Scholar]
  155. 155.
    Zhu Z, Huang C, Liu L, Wang J, Gou X. 2024.. Magnetically actuated pandanus fruit-like nanorobots for enhanced pH-stimulated drug release and targeted biofilm elimination in wound healing. . J. Colloid Interface Sci. 661::37488
    [Crossref] [Google Scholar]
  156. 156.
    Milosavljevic V, Kosaristanova L, Dolezelikova K, Adam V, Pumera M. 2022.. Microrobots with antimicrobial peptide nanoarchitectonics for the eradication of antibiotic-resistant biofilms. . Adv. Funct. Mater. 32::2112935
    [Crossref] [Google Scholar]
  157. 157.
    Zhang B, Pan H, Chen Z, Yin T, Zheng M, Cai L. 2023.. Twin-bioengine self-adaptive micro/nanorobots using enzyme actuation and macrophage relay for gastrointestinal inflammation therapy. . Sci. Adv. 9::eadc8978
    [Crossref] [Google Scholar]
  158. 158.
    Lee JG, Raj RR, Thome CP, Day NB, Martinez P, et al. 2023.. Bubble-based microrobots with rapid circular motions for epithelial pinning and drug delivery. . Small 19::2300409
    [Crossref] [Google Scholar]
  159. 159.
    Ussia M, Urso M, Kratochvilova M, Navratil J, Balvan J, et al. 2023.. Magnetically driven self-degrading zinc-containing cystine microrobots for treatment of prostate cancer. . Small 19::2208259
    [Crossref] [Google Scholar]
  160. 160.
    Song Q, Ding X, Liu Y, Liu W, Li J, et al. 2023.. Gastric acid powered micromotors for combined-drug delivery to eradiate helicobacter pylori. . Appl. Mater. Today 31::101779
    [Crossref] [Google Scholar]
  161. 161.
    Song M, Kim Y-J, Kim Y-H, Roh J, Kim SU, Yoon B-W. 2010.. Using a neodymium magnet to target delivery of ferumoxide-labeled human neural stem cells in a rat model of focal cerebral ischemia. . Hum. Gene Therapy 21::60310
    [Crossref] [Google Scholar]
  162. 162.
    Ishii M, Shibata R, Numaguchi Y, Kito T, Suzuki H, et al. 2011.. Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method. . Arterioscler. Thromb. Vasc. Biol. 31::221015
    [Crossref] [Google Scholar]
  163. 163.
    Steager EB, Selman Sakar M, Magee C, Kennedy M, Cowley A, Kumar V. 2013.. Automated biomanipulation of single cells using magnetic microrobots. . Int. J. Robot. Res. 32::34659
    [Crossref] [Google Scholar]
  164. 164.
    Medina-Sánchez M, Schwarz L, Meyer AK, Hebenstreit F, Schmidt OG. 2016.. Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. . Nano Lett. 16::55561
    [Crossref] [Google Scholar]
  165. 165.
    Lee S, Kim S, Kim S, Kim J, Moon C, et al. 2018.. A capsule-type microrobot with pick-and-drop motion for targeted drug and cell delivery. . Adv. Healthc. Mater. 7::1700985
    [Crossref] [Google Scholar]
  166. 166.
    Kim E, Jeon S, An H-K, Kianpour M, Yu S-W, et al. 2020.. A magnetically actuated microrobot for targeted neural cell delivery and selective connection of neural networks. . Sci. Adv. 6::eabb5696
    [Crossref] [Google Scholar]
  167. 167.
    Jeon S, Kim S, Ha S, Lee S, Kim E, et al. 2019.. Magnetically actuated microrobots as a platform for stem cell transplantation. . Sci. Robot. 4::eaav4317
    [Crossref] [Google Scholar]
  168. 168.
    Kim E, Jeon S, Yang Y, Jin C, Kim J, et al. 2023.. A neurospheroid-based microrobot for targeted neural connections in a hippocampal slice. . Adv. Mater. 35::2208747
    [Crossref] [Google Scholar]
  169. 169.
    Jeon S, Park SH, Kim E, Kim J, Kim SW, Choi H. 2021.. A magnetically powered stem cell-based microrobot for minimally invasive stem cell delivery via the intranasal pathway in a mouse brain. . Adv. Healthc. Mater. 10::2100801
    [Crossref] [Google Scholar]
  170. 170.
    Fan D, Yin Z, Cheong R, Zhu FQ, Cammarata RC, et al. 2010.. Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. . Nat. Nanotechnol. 5::54551
    [Crossref] [Google Scholar]
  171. 171.
    Ye Y, Tian H, Jiang J, Huang W, Zhang R, et al. 2023.. Magnetically actuated biodegradable nanorobots for active immunotherapy. . Adv. Sci. 10::2300540
    [Crossref] [Google Scholar]
  172. 172.
    Dames P, Gleich B, Flemmer A, Hajek K, Seidl N, et al. 2007.. Targeted delivery of magnetic aerosol droplets to the lung. . Nat. Nanotechnol. 2::49599
    [Crossref] [Google Scholar]
  173. 173.
    Yan X, Xu J, Zhou Q, Jin D, Vong CI, et al. 2019.. Molecular cargo delivery using multicellular magnetic microswimmers. . Appl. Mater. Today 15::24251
    [Crossref] [Google Scholar]
  174. 174.
    Liu L, Wu J, Wang S, Kun L, Gao J, et al. 2021.. Control the neural stem cell fate with biohybrid piezoelectrical magnetite micromotors. . Nano Lett. 21::351826
    [Crossref] [Google Scholar]
  175. 175.
    Chen X-Z, Liu J-H, Dong M, Müller L, Chatzipirpiridis G, et al. 2019.. Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation. . Mater. Horiz. 6::151216
    [Crossref] [Google Scholar]
  176. 176.
    Mushtaq F, Torlakcik H, Vallmajo-Martin Q, Siringil EC, Zhang J, et al. 2019.. Magnetoelectric 3D scaffolds for enhanced bone cell proliferation. . Appl. Mater. Today 16::290300
    [Crossref] [Google Scholar]
  177. 177.
    Fan Y, Ye J, Kang Y, Niu G, Shi J, et al. 2024.. Biomimetic piezoelectric nanomaterial-modified oral microrobots for targeted catalytic and immunotherapy of colorectal cancer. . Sci. Adv. 10::eadm9561
    [Crossref] [Google Scholar]
  178. 178.
    Liu J, Li L, Cao C, Feng Z, Liu Y, et al. 2023.. Swarming multifunctional heater–thermometer nanorobots for precise feedback hyperthermia delivery. . ACS Nano 17::1673142
    [Crossref] [Google Scholar]
  179. 179.
    Yang F, Skripka A, Tabatabaei MS, Hong SH, Ren F, et al. 2019.. Multifunctional self-assembled supernanoparticles for deep-tissue bimodal imaging and amplified dual-mode heating treatment. . ACS Nano 13::40820
    [Crossref] [Google Scholar]
  180. 180.
    Tabatabaei SN, Girouard H, Carret A-S, Martel S. 2015.. Remote control of the permeability of the blood–brain barrier by magnetic heating of nanoparticles: a proof of concept for brain drug delivery. . J. Control. Release 206::4957
    [Crossref] [Google Scholar]
  181. 181.
    Tabatabaei SN, Tabatabaei MS, Girouard H, Martel S. 2016.. Hyperthermia of magnetic nanoparticles allows passage of sodium fluorescein and Evans blue dye across the blood–retinal barrier. . Int. J. Hyperth. 32::65765
    [Crossref] [Google Scholar]
  182. 182.
    Xie L, Pang X, Yan X, Dai Q, Lin H, et al. 2020.. Photoacoustic imaging-trackable magnetic microswimmers for pathogenic bacterial infection treatment. . ACS Nano 14::288093
    [Crossref] [Google Scholar]
  183. 183.
    Pozhitkova AV, Kladko DV, Vinnik DA, Taskaev SV, Vinogradov VV. 2022.. Reprogrammable soft swimmers for minimally invasive thrombus extraction. . ACS Appl. Mater. Interfaces 14::23896908
    [Crossref] [Google Scholar]
  184. 184.
    von Arx D, Torlakcik H, Kim M, Pané S, Nelson BJ, Boehler Q. 2024.. Fast rotating magnetic fields in open workspace using resonant magnetic actuation systems with magnetic decoupling. . IEEE Robot. Autom. Lett. 9::527683
    [Crossref] [Google Scholar]
  185. 185.
    Lee J, Shin W, Lim Y, Kim J, Kim WR, et al. 2021.. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. . Nat. Mater. 20::102936
    [Crossref] [Google Scholar]
  186. 186.
    Liu X, Wang L, Xiang Y, Liao F, Li N, et al. 2024.. Magnetic soft microfiberbots for robotic embolization. . Sci. Robot. 9::eadh2479
    [Crossref] [Google Scholar]
  187. 187.
    Law J, Wang X, Luo M, Xin L, Du X, et al. 2022.. Microrobotic swarms for selective embolization. . Sci. Adv. 8::eabm5752
    [Crossref] [Google Scholar]
  188. 188.
    Chen F, Zang Z, Chen Z, Cui L, Chang Z, . 2019.. Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. . Biomaterials 214::119226
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-control-022823-034402
Loading
/content/journals/10.1146/annurev-control-022823-034402
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error