1932

Abstract

This review offers a comprehensive overview of current traffic modeling, estimation, and control methods, along with resulting field experiments. It highlights key developments and future directions in leveraging technological advancements to improve traffic management and safety. The focus is on macroscopic, microscopic, and micro-macro models, as well as state-of-the-art control techniques and estimation methods for deploying vehicles in traffic field experiments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-030123-015145
2025-05-05
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/control/8/1/annurev-control-030123-015145.html?itemId=/content/journals/10.1146/annurev-control-030123-015145&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Favro D. 2011.. Construction traffic in imperial Rome: building the arch of Septimius Severus. . In Rome, Ostia, Pompeii: Movement and Space, ed. R Laurence, D Newsome , pp. 33260. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  2. 2.
    Poehler EE. 2006.. The circulation of traffic in Pompeii's Regio VI. . J. Roman Archaeol. 19::5374
    [Crossref] [Google Scholar]
  3. 3.
    Van Tilburg C. 2007.. Traffic and Congestion in the Roman Empire. London:: Routledge
    [Google Scholar]
  4. 4.
    Mueller EA. 1970.. Aspects of the history of traffic signals. . IEEE Trans. Veh. Technol. 19:(1):617
    [Crossref] [Google Scholar]
  5. 5.
    Knight FH. 1924.. Some fallacies in the interpretation of social cost. . Q. J. Econ. 38:(4):582606
    [Crossref] [Google Scholar]
  6. 6.
    Greenshields B. 1935.. A study of traffic capacity. . Highw. Res. Board 14::44877
    [Google Scholar]
  7. 7.
    Gordon RL, Reiss RA, Haenel H, Case E, French RL, et al. 1996.. Traffic control systems handbook. Tech. Rep. FHWA-SA-96-032 , Off. Technol. Appl., US Fed. Highw. Adm., Washington, DC:
    [Google Scholar]
  8. 8.
    Siri S, Pasquale C, Sacone S, Ferrara A. 2021.. Freeway traffic control: a survey. . Automatica 130::109655
    [Crossref] [Google Scholar]
  9. 9.
    Hayat A, Gong X, Lee J, Truong S, McQuade S, et al. 2022.. A holistic approach to the energy-efficient smoothing of traffic via autonomous vehicles. . In Intelligent Control and Smart Energy Management: Renewable Resources and Transportation, ed. MJ Blondin, JP Fernandes Trovão, H Chaoui, PM Pardalos , pp. 285316. Cham, Switz:.: Springer
    [Google Scholar]
  10. 10.
    Vinitsky E, Parvate K, Kreidieh A, Wu C, Bayen A. 2018.. Lagrangian control through deep-RL: applications to bottleneck decongestion. . In 2018 21st International Conference on Intelligent Transportation Systems, pp. 75965. Piscataway, NJ:: IEEE
    [Google Scholar]
  11. 11.
    Helbing D. 2001.. Traffic and related self-driven many-particle systems. . Rev. Mod. Phys. 73:(4):1067
    [Crossref] [Google Scholar]
  12. 12.
    Sugiyama Y, Fukui M, Kikuchi M, Hasebe K, Nakayama A, et al. 2008.. Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam. . New J. Phys. 10:(3):033001
    [Crossref] [Google Scholar]
  13. 13.
    Tadaki S, Kikuchi M, Fukui M, Nakayama A, Nishinari K, et al. 2013.. Phase transition in traffic jam experiment on a circuit. . New J. Phys. 15::103034
    [Crossref] [Google Scholar]
  14. 14.
    Stern RE, Cui S, Delle Monache ML, Bhadani R, Bunting M, et al. 2018.. Dissipation of stop-and-go waves via control of autonomous vehicles: field experiments. . Transp. Res. C 89::20521
    [Crossref] [Google Scholar]
  15. 15.
    Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y. 1995.. Dynamical model of traffic congestion and numerical simulation. . Phys. Rev. E 51:(2):103542
    [Crossref] [Google Scholar]
  16. 16.
    Kiselev A, Nikitin V, Smirnov N, Yumashev M. 2000.. Irregular traffic flow on a ring road. . J. Appl. Math. Mech. 64:(4):62734
    [Crossref] [Google Scholar]
  17. 17.
    Wilson RE. 2008.. Mechanisms for spatio-temporal pattern formation in highway traffic models. . Philos. Trans. R. Soc. A 366:(1872):201732
    [Crossref] [Google Scholar]
  18. 18.
    Flynn MR, Kasimov AR, Nave JC, Rosales RR, Seibold B. 2009.. Self-sustained nonlinear waves in traffic flow. . Phys. Rev. E 79:(5):056113
    [Crossref] [Google Scholar]
  19. 19.
    Ramadan R, Rosales RR, Seibold B. 2021.. Structural properties of the stability of jamitons. . In Mathematical Descriptions of Traffic Flow: Micro, Macro and Kinetic Models, ed. G Puppo, A Tosin , pp. 3562. Cham, Switz.:: Springer
    [Google Scholar]
  20. 20.
    Zhang X, Jarrett DF. 1997.. Stability analysis of the classical car-following model. . Transp. Res. B 31:(6):44162
    [Crossref] [Google Scholar]
  21. 21.
    Cui S, Seibold B, Stern RE, Work DB. 2017.. Stabilizing traffic flow via a single autonomous vehicle: possibilities and limitations. . In 2017 IEEE Intelligent Vehicles Symposium, pp. 133641. Piscataway, NJ:: IEEE
    [Google Scholar]
  22. 22.
    Sun J, Zheng Z, Sun J. 2018.. Stability analysis methods and their applicability to car-following models in conventional and connected environments. . Transp. Res. B 109::21237
    [Crossref] [Google Scholar]
  23. 23.
    Gazis DC, Herman R, Rothery RW. 1961.. Nonlinear follow-the-leader models of traffic flow. . Oper. Res. 9:(4):54567
    [Crossref] [Google Scholar]
  24. 24.
    Treiber M, Hennecke A, Helbing D. 2000.. Congested traffic states in empirical observations and microscopic simulations. . Phys. Rev. E 62:(2):1805
    [Crossref] [Google Scholar]
  25. 25.
    Albeaik S, Bayen A, Chiri MT, Gong X, Hayat A, et al. 2022.. Limitations and improvements of the intelligent driver model (IDM). . SIAM J. Appl. Dyn. Syst. 21:(3):186292
    [Crossref] [Google Scholar]
  26. 26.
    Matin HNZ, Yeo Y, Gong X, Delle Monache ML. 2024.. On the analytical properties of a nonlinear microscopic dynamical model for connected and automated vehicles. . IEEE Control Syst. Lett. 8::160712
    [Crossref] [Google Scholar]
  27. 27.
    Gong X, Keimer A. 2023.. On the well-posedness of the ``Bando-follow the leader'' car following model and a time-delayed version. . Netw. Heterog. Media 18:(2):77598
    [Crossref] [Google Scholar]
  28. 28.
    Lighthill MJ, Whitham GB. 1955.. On kinematic waves. II. A theory of traffic flow on long crowded roads. . Proc. R. Soc. A 229:(1178):31745
    [Google Scholar]
  29. 29.
    Richards PI. 1956.. Shock waves on the highway. . Oper. Res. 4::4251
    [Crossref] [Google Scholar]
  30. 30.
    Payne HJ. 1971.. Models of freeway traffic and control. . Proc. Simul. Counc. 1::5161
    [Google Scholar]
  31. 31.
    Lebacque JP. 1993.. Les modeles macroscopiques du traffic. . Ann. Ponts 67::2445
    [Google Scholar]
  32. 32.
    Kerner BS, Konhäuser P. 1993.. Cluster effect in initially homogeneous traffic flow. . Phys. Rev. E 48::R233538
    [Crossref] [Google Scholar]
  33. 33.
    Aw A, Rascle M. 2000.. Resurrection of second order models of traffic flow. . SIAM J. Appl. Math. 60::91644
    [Crossref] [Google Scholar]
  34. 34.
    Helbing D, Johansson AF. 2009.. On the controversy around Daganzo's requiem for and Aw-Rascle's resurrection of second-order traffic flow models. . Eur. Phys. J. B 69:(4):54962
    [Crossref] [Google Scholar]
  35. 35.
    Newell GF. 1993.. A simplified theory of kinematic waves in highway traffic II: queueing at freeway bottlenecks. . Transp. Res. B 27::289303
    [Crossref] [Google Scholar]
  36. 36.
    Daganzo CF. 1994.. The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. . Transp. Res. B 28::26987
    [Crossref] [Google Scholar]
  37. 37.
    Lebacque JP, Mammar S, Haj-Salem H. 2007.. Generic second order traffic flow modelling. . In Transportation and Traffic Theory 2007: Papers Selected for Presentation at ISTTT17, ed. RE Allsop, MGH Bell, BG Heydecker , pp. 75576. Amsterdam:: Elsevier
    [Google Scholar]
  38. 38.
    Colombo RM. 2003.. Hyperbolic phase transitions in traffic flow. . SIAM J. Appl. Math. 63:(2):70821
    [Crossref] [Google Scholar]
  39. 39.
    Blandin S, Work D, Goatin P, Piccoli B, Bayen A. 2011.. A general phase transition model for vehicular traffic. . SIAM J. Appl. Math. 71:(1):10727
    [Crossref] [Google Scholar]
  40. 40.
    Burger M, Capasso V, Morale D. 2007.. On an aggregation model with long and short range interactions. . Nonlinear Anal. Real World Appl. 8:(3):93958
    [Crossref] [Google Scholar]
  41. 41.
    Illner R, Klar A, Materne T. 2003.. Vlasov-Fokker-Planck models for multilane traffic flow. . Commun. Math. Sci. 1:(1):112
    [Crossref] [Google Scholar]
  42. 42.
    Gong X, Piccoli B, Visconti G. 2021.. Mean-field of optimal control problems for hybrid model of multilane traffic. . IEEE Control Syst. Lett. 5:(6):196469
    [Crossref] [Google Scholar]
  43. 43.
    Villani C. 2003.. Topics in Optimal Transportation. Providence, RI:: Am. Math. Soc.
    [Google Scholar]
  44. 44.
    Prigogine I. 1961.. A Boltzmann-like approach to the statistical theory of traffic flow. . In Theory of Traffic Flow, ed. R Herman , pp.15864. Amsterdam:: Elsevier
    [Google Scholar]
  45. 45.
    Paveri-Fontana S. 1975.. On Boltzmann-like treatments for traffic flow: a critical review of the basic model and an alternative proposal for dilute traffic analysis. . Transp. Res. 9:(4):22535
    [Crossref] [Google Scholar]
  46. 46.
    Piccoli B, Tosin A, Zanella M. 2020.. Model-based assessment of the impact of driver-assist vehicles using kinetic theory. . Z. Angew. Math. Phys. 71::152
    [Crossref] [Google Scholar]
  47. 47.
    Lattanzio C, Maurizi A, Piccoli B. 2011.. Moving bottlenecks in car traffic flow: a PDE-ODE coupled model. . SIAM J. Math. Anal. 43:(1):5067
    [Crossref] [Google Scholar]
  48. 48.
    Delle Monache ML, Goatin P. 2014.. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. . Discrete Contin. Dyn. Syst. S 7:(3):43547
    [Google Scholar]
  49. 49.
    Lebacque JP, Lesort JB, Giorgi F. 1998.. Introducing buses into first-order macroscopic traffic flow models. . Transp. Res. Rec. 1644:(1):7079
    [Crossref] [Google Scholar]
  50. 50.
    Chalons C, Delle Monache ML, Goatin P. 2018.. A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem. . Interfaces Free Bound. 19:(4):55370
    [Crossref] [Google Scholar]
  51. 51.
    Liard T, Piccoli B. 2021.. On entropic solutions to conservation laws coupled with moving bottlenecks. . Commun. Math. Sci. 19:(4):91945
    [Crossref] [Google Scholar]
  52. 52.
    Liard T, Piccoli B. 2019.. Well-posedness for scalar conservation laws with moving flux constraints. . SIAM J. Appl. Math. 79:(2):64167
    [Crossref] [Google Scholar]
  53. 53.
    Delle Monache ML, Goatin P. 2014.. Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result. . J. Differ. Equ. 257:(11):401529
    [Crossref] [Google Scholar]
  54. 54.
    Colombo RM. 2004.. Wave front tracking in systems of conservation laws. . Appl. Math. 49:(6):50137
    [Crossref] [Google Scholar]
  55. 55.
    Garavello M, Goatin P, Liard T, Piccoli B. 2020.. A multiscale model for traffic regulation via autonomous vehicles. . J. Differ. Equ. 269:(7):6088124
    [Crossref] [Google Scholar]
  56. 56.
    Goatin P, Piccoli B. 2024.. A multi-scale multi-lane model for traffic regulation via autonomous vehicles. . arXiv:2404.17192 [math.AP]
  57. 57.
    Matin HNZ, Delle Monache ML. 2023.. On the existence of solution of conservation law with moving bottleneck and discontinuity in flux. . arXiv:2310.00537 [math.AP]
  58. 58.
    Gazis DC, Knapp CH. 1971.. On-line estimation of traffic densities from time-series of flow and speed data. . Transp. Sci. 5:(3):283301
    [Crossref] [Google Scholar]
  59. 59.
    Szeto MW, Gazis DC. 1972.. Application of Kalman filtering to the surveillance and control of traffic systems. . Transp. Sci. 6:(4):41939
    [Crossref] [Google Scholar]
  60. 60.
    Godunov S. 1959.. A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations. . Math. Sb. 47:(3):271306
    [Google Scholar]
  61. 61.
    Wang Y, Papageorgiou M. 2005.. Real-time freeway traffic state estimation based on extended Kalman filter: a general approach. . Transp. Res. B 39:(2):14167
    [Crossref] [Google Scholar]
  62. 62.
    van Lint J, Hoogendoorn SP, Hegyi A. 2008.. Dual EKF state and parameter estimation in multi-class first-order traffic flow models. . IFAC Proc. Vol. 41:(2):1407883
    [Crossref] [Google Scholar]
  63. 63.
    Hegyi A, Girimonte D, Babuska R, Schutter BD. 2006.. A comparison of filter configurations for freeway traffic state estimation. . In 2006 IEEE Intelligent Transportation Systems Conference, pp. 102934. Piscataway, NJ:: IEEE
    [Google Scholar]
  64. 64.
    Ngoduy D, Sumalee A. 2010.. Adaptive estimation of noise covariance matrices in unscented Kalman filter for multiclass traffic flow model. . Transp. Res. Rec. 2188:(1):11930
    [Crossref] [Google Scholar]
  65. 65.
    Work DB, Tossavainen OP, Blandin S, Bayen AM, Iwuchukwu T, Tracton K. 2008.. An ensemble Kalman filtering approach to highway traffic estimation using GPS enabled mobile devices. . In 2008 47th IEEE Conference on Decision and Control, pp. 506268. Piscataway, NJ:: IEEE
    [Google Scholar]
  66. 66.
    Blandin S, Couque A, Bayen A, Work D. 2012.. On sequential data assimilation for scalar macroscopic traffic flow models. . Phys. D 241:(17):142140
    [Crossref] [Google Scholar]
  67. 67.
    Risso MA, Bhouri N, Rubiales AJ, Lotito PA. 2020.. A constrained filtering algorithm for freeway traffic state estimation. . Transportmetr. A 16:(2):31636
    [Google Scholar]
  68. 68.
    Sun Y, Work DB. 2017.. Scaling the Kalman filter for large-scale traffic estimation. . IEEE Trans. Control Netw. Syst. 5:(3):96880
    [Crossref] [Google Scholar]
  69. 69.
    Vivas C, Siri S, Ferrara A, Sacone S, Cavanna G, Rubio FR. 2015.. Distributed consensus-based switched observers for freeway traffic density estimation. . In 2015 54th IEEE Conference on Decision and Control, pp. 344550. Piscataway, NJ:: IEEE
    [Google Scholar]
  70. 70.
    Sun Y, Work DB. 2018.. Error bounds for Kalman filters on traffic networks. . Netw. Heterog. Media 13:(2):26195
    [Crossref] [Google Scholar]
  71. 71.
    Doucet A, Johansen AM. 2011.. A tutorial on particle filtering and smoothing: fifteen years later. . In The Oxford Handbook of Nonlinear Filtering, ed. D Crisan, B Rozovskii , pp. 656704. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  72. 72.
    Chen Z. 2003.. Bayesian filtering: from Kalman filters to particle filters, and beyond. . Statistics 182:(1):169
    [Crossref] [Google Scholar]
  73. 73.
    Mihaylova L, Boel RK, Hegyi A. 2007.. Freeway traffic estimation within particle filtering framework. . Automatica 43::290300
    [Crossref] [Google Scholar]
  74. 74.
    Mihaylova L, Hegyi A, Gning A, Boel RK. 2012.. Parallelized particle and Gaussian sum particle filters for large-scale freeway traffic systems. . IEEE Trans. Intell. Transp. Syst. 13:(1):3648
    [Crossref] [Google Scholar]
  75. 75.
    Wright M, Horowitz R. 2016.. Fusing loop and GPS probe measurements to estimate freeway density. . IEEE Trans. Intell. Transp. Syst. 17:(12):357790
    [Crossref] [Google Scholar]
  76. 76.
    Wang R, Li Y, Work DB. 2017.. Comparing traffic state estimators for mixed human and automated traffic flows. . Transp. Res. C 78::95110
    [Crossref] [Google Scholar]
  77. 77.
    Polson N, Sokolov V. 2018.. Bayesian particle tracking of traffic flows. . IEEE Trans. Intell. Transp. Syst. 19:(2):34556
    [Crossref] [Google Scholar]
  78. 78.
    Seo T, Bayen AM, Kusakabe T, Asakura Y. 2017.. Traffic state estimation on highway: a comprehensive survey. . Annu. Rev. Control 43::12851
    [Crossref] [Google Scholar]
  79. 79.
    Ferrara A, Simona S, Silvia S. 2018.. Freeway Traffic Modelling and Control. Cham, Switz:.: Springer
    [Google Scholar]
  80. 80.
    Jiang R, Hu MB, Zhang HM, Gao ZY, Jia B, et al. 2014.. Traffic experiment reveals the nature of car-following. . PLOS ONE 9:(4):e94351
    [Crossref] [Google Scholar]
  81. 81.
    Jiang R, Hu MB, Zhang H, Gao ZY, Jia B, Wu QS. 2015.. On some experimental features of car-following behavior and how to model them. . Transp. Res. B 80::33854
    [Crossref] [Google Scholar]
  82. 82.
    Coifman B, Wu M, Redmill K, Thornton DA. 2016.. Collecting ambient vehicle trajectories from an instrumented probe vehicle: high quality data for microscopic traffic flow studies. . Transp. Res. C 72::25471
    [Crossref] [Google Scholar]
  83. 83.
    Huang YX, Jiang R, Zhang H, Hu MB, Tian JF, et al. 2018.. Experimental study and modeling of car-following behavior under high speed situation. . Transp. Res. C 97::194215
    [Crossref] [Google Scholar]
  84. 84.
    Guo Q, Li L, Ban XJ. 2019.. Urban traffic signal control with connected and automated vehicles: a survey. . Transp. Res. C 101::31334
    [Crossref] [Google Scholar]
  85. 85.
    Makridis M, Mattas K, Anesiadou A, Ciuffo B. 2021.. OpenACC. An open database of car-following experiments to study the properties of commercial ACC systems. . Transp. Res. C 125::103047
    [Crossref] [Google Scholar]
  86. 86.
    Kang Y, Yin H, Berger C. 2019.. Test your self-driving algorithm: an overview of publicly available driving datasets and virtual testing environments. . IEEE Trans. Intell. Veh. 4:(2):17185
    [Crossref] [Google Scholar]
  87. 87.
    Fed. Highw. Adm. 2024.. Next Generation Simulation (NGSIM). . Federal Highway Administration. http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
    [Google Scholar]
  88. 88.
    Krajewski R, Bock J, Kloeker L, Eckstein L. 2018.. The highD dataset: a drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems. . In 2018 21st International Conference on Intelligent Transportation Systems, pp. 211825. Piscataway, NJ:: IEEE
    [Google Scholar]
  89. 89.
    Barmpounakis E, Geroliminis N. 2020.. On the new era of urban traffic monitoring with massive drone data: the pNEUMA large-scale field experiment. . Transp. Res. C 111::5071
    [Crossref] [Google Scholar]
  90. 90.
    Spannaus P, Zechel P, Lenz K. 2021.. AUTOMATUM DATA: drone-based highway dataset for the development and validation of automated driving software for research and commercial applications. . In 2021 IEEE Intelligent Vehicles Symposium, pp. 137277. Piscataway, NJ:: IEEE
    [Google Scholar]
  91. 91.
    Shi X, Zhao D, Yao H, Li X, Hale DK, Ghiasi A. 2021.. Video-based trajectory extraction with deep learning for high-granularity highway simulation (high-sim). . Commun. Transp. Res. 1::100014
    [Crossref] [Google Scholar]
  92. 92.
    Li L, Jiang R, He Z, Chen XM, Zhou X. 2020.. Trajectory data-based traffic flow studies: a revisit. . Transp. Res. C 114::22540
    [Crossref] [Google Scholar]
  93. 93.
    Alexiadis V, Colyar J, Halkias J, Hranac R, McHale G. 2004.. The Next Generation Simulation program. . ITE J. 74:(8):2226
    [Google Scholar]
  94. 94.
    Gloudemans D, Wang Y, Ji J, Zachar G, Barbour W, et al. 2023. I-24 MOTION: an instrument for freeway traffic science. . Transp. Res. C 155::104311
    [Crossref] [Google Scholar]
  95. 95.
    Wang Y, Gloudemans D, Ji J, Teoh ZN, Liu L, et al. 2024.. Automatic vehicle trajectory data reconstruction at scale. . Transp. Res. C 160::104520
    [Crossref] [Google Scholar]
  96. 96.
    Bunting M, Bhadani R, Sprinkle J. 2021.. Libpanda: a high performance library for vehicle data collection. . In Proceedings of the Workshop on Data-Driven and Intelligent Cyber-Physical Systems, pp. 3240. New York:: ACM
    [Google Scholar]
  97. 97.
    Lee JW, Wang H, Jang K, Hayat A, Bunting M, et al. 2024.. Traffic control via connected and automated vehicles: an open-road field experiment with 100 CAVs. . arXiv:2402.17043 [eess.SY]
  98. 98.
    Zhang Y, Quinones-Grueiro M, Zhang Z, Wang Y, Barbour W, et al. 2023.. Marvel: multi-agent reinforcement-learning for large-scale variable speed limits. . arXiv:2310.12359 [cs.MA]
  99. 99.
    Khalil HK. 2002.. Nonlinear Systems. Upper Saddle River, NJ:: Prentice Hall. , 3rd ed..
    [Google Scholar]
  100. 100.
    Ioannou PA, Chien CC. 1993.. Autonomous intelligent cruise control. . IEEE Trans. Veh. Technol. 42:(4):65772
    [Crossref] [Google Scholar]
  101. 101.
    Zheng Y, Wang J, Li K. 2020.. Smoothing traffic flow via control of autonomous vehicles. . IEEE Internet Things J. 7:(5):388296
    [Crossref] [Google Scholar]
  102. 102.
    Wang J, Zheng Y, Xu Q, Wang J, Li K. 2019.. Controllability analysis and optimal controller synthesis of mixed traffic systems. . In 2019 IEEE Intelligent Vehicles Symposium, pp. 104147. Piscataway, NJ:: IEEE
    [Google Scholar]
  103. 103.
    Delle Monache ML, Liard T, Rat A, Stern R, Bhadani R, et al. 2019.. Feedback control algorithms for the dissipation of traffic waves with autonomous vehicles. . In Optimization and Its Applications, ed. M Blondin, P Pardalos, J Sanchis Sáez , pp. 27599. Cham, Switz:.: Springer
    [Google Scholar]
  104. 104.
    Ge J. 2017.. Connected cruise control design in mixed traffic flow consisting of human-driven and automated vehicles. PhD Thesis , Univ. Mich., Ann Arbor:
    [Google Scholar]
  105. 105.
    Wu C, Bayen AM, Mehta A. 2018.. Stabilizing traffic with autonomous vehicles. . In 2018 IEEE International Conference on Robotics and Automation, pp. 601218. Piscataway, NJ:: IEEE
    [Google Scholar]
  106. 106.
    Orosz G, Stépán G. 2006.. Subcritical Hopf bifurcations in a car-following model with reaction-time delay. . Proc. R. Soc. A 462:(2073):264370
    [Crossref] [Google Scholar]
  107. 107.
    Avedisov SS, Orosz G. 2015.. Nonlinear network modes in cyclic systems with applications to connected vehicles. . J. Nonlinear Sci. 25:(4):101549
    [Crossref] [Google Scholar]
  108. 108.
    Feng S, Zhang Y, Li SE, Cao Z, Liu HX, Li L. 2019.. String stability for vehicular platoon control: definitions and analysis methods. . Annu. Rev. Control 47::8197
    [Crossref] [Google Scholar]
  109. 109.
    Merco R, Ferrante F, Pisu P. 2021.. A hybrid controller for DoS-resilient string-stable vehicle platoons. . IEEE Trans. Intell. Transp. Syst. 22:(3):1697707
    [Crossref] [Google Scholar]
  110. 110.
    Swaroop D, Hedrick J. 1996.. String stability of interconnected systems. . IEEE Trans. Autom. Control 41:(3):34957
    [Crossref] [Google Scholar]
  111. 111.
    Besselink B, Johansson KH. 2017.. String stability and a delay-based spacing policy for vehicle platoons subject to disturbances. . IEEE Trans. Autom. Control 62:(9):437691
    [Crossref] [Google Scholar]
  112. 112.
    Middleton RH, Braslavsky JH. 2010.. String instability in classes of linear time invariant formation control with limited communication range. . IEEE Trans. Autom. Control 55:(7):151930
    [Crossref] [Google Scholar]
  113. 113.
    Monteil J, Bouroche M, Leith DJ. 2018.. and stability analysis of heterogeneous traffic with application to parameter optimization for the control of automated vehicles. . IEEE Trans. Control Syst. Technol. 27:(3):93449
    [Crossref] [Google Scholar]
  114. 114.
    Wilson RE, Ward JA. 2011.. Car-following models: fifty years of linear stability analysis—a mathematical perspective. . Transp. Plann. Technol. 34:(1):318
    [Crossref] [Google Scholar]
  115. 115.
    Alur R. 2015.. Principles of Cyber-Physical Systems. Cambridge, MA:: MIT Press
    [Google Scholar]
  116. 116.
    Claussmann L, Revilloud M, Gruyer D, Glaser S. 2020.. A review of motion planning for highway autonomous driving. . IEEE Trans. Intell. Transp. Syst. 21:(5):182648
    [Crossref] [Google Scholar]
  117. 117.
    Althoff M, Dolan JM. 2014.. Online verification of automated road vehicles using reachability analysis. . IEEE Trans. Robot. 30:(4):90318
    [Crossref] [Google Scholar]
  118. 118.
    Tran HD, Yang X, Manzanas Lopez D, Musau P, Nguyen LV, et al. 2020.. NNV: the neural network verification tool for deep neural networks and learning-enabled cyber-physical systems. . In Computer Aided Verification: 32nd International Conference, CAV 2020, ed. SK Lahiri, C Wang , pp. 317. Cham, Switz:.: Springer
    [Google Scholar]
  119. 119.
    Tran HD, Cai F, Diego ML, Musau P, Johnson TT, Koutsoukos X. 2019.. Safety verification of cyber-physical systems with reinforcement learning control. . ACM Trans. Embed. Comput. Syst. 18:(5s):105
    [Crossref] [Google Scholar]
  120. 120.
    Ames AD, Grizzle JW, Tabuada P. 2014.. Control barrier function based quadratic programs with application to adaptive cruise control. . In 53rd IEEE Conference on Decision and Control, pp. 627178. Piscataway, NJ:: IEEE
    [Google Scholar]
  121. 121.
    Xu X, Tabuada P, Grizzle JW, Ames AD. 2015.. Robustness of control barrier functions for safety critical control. . IFAC-PapersOnLine 48:(27):5461
    [Crossref] [Google Scholar]
  122. 122.
    Taylor AJ, Ames AD. 2020.. Adaptive safety with control barrier functions. . In 2020 American Control Conference, pp. 1399405. Piscataway, NJ:: IEEE
    [Google Scholar]
  123. 123.
    Nguyen Q, Sreenath K. 2016.. Exponential control barrier functions for enforcing high relative-degree safety-critical constraints. . In 2016 American Control Conference, pp. 32228. Piscataway, NJ:: IEEE
    [Google Scholar]
  124. 124.
    Alan A, Taylor AJ, He CR, Ames AD, Orosz G. 2023.. Control barrier functions and input-to-state safety with application to automated vehicles. . IEEE Trans. Control Syst. Technol. 31:(6):274459
    [Crossref] [Google Scholar]
  125. 125.
    Gunter G, Nice M, Bunting M, Sprinkle J, Work DB. 2022.. Experimental testing of a control barrier function on an automated vehicle in live multi-lane traffic. . In 2022 2nd Workshop on Data-Driven and Intelligent Cyber-Physical Systems for Smart Cities Workshop (DI-CPS), pp. 3135. Piscataway, NJ:: IEEE
    [Google Scholar]
  126. 126.
    Herty M, Ringhofer C. 2019.. Consistent mean field optimality conditions for interacting agent systems. . Commun. Math. Sci. 17:(4):1095108
    [Crossref] [Google Scholar]
  127. 127.
    Albi G, Herty M, Pareschi L. 2015.. Kinetic description of optimal control problems and applications to opinion consensus. . Commun. Math. Sci. 13:(6):140729
    [Crossref] [Google Scholar]
  128. 128.
    Chiarello FA, Piccoli B, Tosin A. 2021.. Multiscale control of generic second order traffic models by driver-assist vehicles. . Multiscale Model. Simul. 19:(2):589611
    [Crossref] [Google Scholar]
  129. 129.
    Laval JA, Daganzo CF. 2006.. Lane-changing in traffic streams. . Transp. Res. B 40:(3):25164
    [Crossref] [Google Scholar]
  130. 130.
    Jin WL. 2013.. A multi-commodity Lighthill-Whitham-Richards model of lane-changing traffic flow. . Procedia Soc. Behav. Sci. 80::65877
    [Crossref] [Google Scholar]
  131. 131.
    Zheng Z. 2014.. Recent developments and research needs in modeling lane changing. . Transp. Res. B 60::1632
    [Crossref] [Google Scholar]
  132. 132.
    Herty M, Visconti G. 2018.. Analysis of risk levels for traffic on a multi-lane highway. . IFAC-PapersOnLine 51:(9):4348
    [Crossref] [Google Scholar]
  133. 133.
    Gong X, Piccoli B, Visconti G. 2023.. Mean-field limit of a hybrid system for multi-lane multi-class traffic. . ESAIM Control Optim. Calc. Var. 29::71
    [Crossref] [Google Scholar]
  134. 134.
    Chiri MT, Gong X, Piccoli B. 2023.. Mean-field limit of a hybrid system for multi-lane car-truck traffic. . Netw. Heterog. Media 18:(2):72352
    [Crossref] [Google Scholar]
  135. 135.
    Chiri MT, Gong X, Piccoli B. 2021.. Hybrid multi-population traffic flow model: optimal control for a mean-field limit. . ResearchGate 2.2.22377.21606. https://doi.org/10.13140/RG.2.2.22377.21606
  136. 136.
    Wu F, Stern RE, Cui S, Delle Monache ML, Bhadani R, et al. 2019.. Tracking vehicle trajectories and fuel rates in phantom traffic jams: methodology and data. . Transp. Res. C 99::82109
    [Crossref] [Google Scholar]
  137. 137.
    Gunter G, Gloudemans D, Stern RE, McQuade S, Bhadani R, et al. 2020.. Are commercially implemented adaptive cruise control systems string stable?. IEEE Trans. Intell. Transp. Syst. 22:(11):69927003
    [Crossref] [Google Scholar]
  138. 138.
    Wu C, Kreidieh AR, Parvate K, Vinitsky E, Bayen AM. 2021.. Flow: a modular learning framework for mixed autonomy traffic. . IEEE Trans. Robot. 38:(2):127086
    [Crossref] [Google Scholar]
  139. 139.
    Samaei M, Ameli M, Davis JF, McQuade ST, Lee J, et al. 2024.. Integrating multi-source data for bi-level traffic simulator calibration: a literature review and highway case study. . SSRN 4775835. https://doi.org/10.2139/ssrn.4775835
  140. 140.
    Ameli M, McQuade S, Lee JW, Bunting M, Nice M, et al. 2024.. Designing, simulating, and performing the 100-AV field test for the circles consortium: methodology and implementation of the largest mobile traffic control experiment to date. . arXiv:2404.15533 [eess.SY]
  141. 141.
    Kardous N, Hayat A, McQuade ST, Gong X, Truong S, et al. 2022.. A rigorous multi-population multi-lane hybrid traffic model and its mean-field limit for dissipation of waves via autonomous vehicles. . Eur. Phys. J. Spec. Top. 231::1689700
    [Crossref] [Google Scholar]
  142. 142.
    Talebpour A, Mahmassani HS, Hamdar SH. 2013.. Speed harmonization: evaluation of effectiveness under congested conditions. . Transp. Res. Rec. 2391:(1):6979
    [Crossref] [Google Scholar]
  143. 143.
    Elfar A, Talebpour A, Mahmassani HS. 2024.. Predictive speed harmonization using machine learning in traffic flow with connected and automated vehicles. . Transp. Res. Rec. 2678:(4):398414
    [Crossref] [Google Scholar]
  144. 144.
    McQuade ST, Denaro C, Mahmood M, Lee JW, Gumm G, et al. 2022.. Medium-scale to large-scale implementation of cyber-physical human experiments in live traffic. . IFAC-PapersOnLine 55:(41):8388
    [Crossref] [Google Scholar]
  145. 145.
    Khoudari N, Almatrudi S, Ramadan R, Carpio J, Yao M, et al. 2023.. Reducing detailed vehicle energy dynamics to physics-like models. . arXiv:2310.06297 [eess.SY]
  146. 146.
    Milanés V, Shladover SE, Spring J, Nowakowski C, Kawazoe H, Nakamura M. 2013.. Cooperative adaptive cruise control in real traffic situations. . IEEE Trans. Intell. Transp. Syst. 15:(1):296305
    [Crossref] [Google Scholar]
  147. 147.
    Nowakowski C, O'Connell J, Shladover SE, Cody D. 2010.. Cooperative adaptive cruise control: driver acceptance of following gap settings less than one second. . Proc. Hum. Factors Ergon. Soc. Annu. Meet. 54:(24):203337
    [Crossref] [Google Scholar]
  148. 148.
    Al Alam A, Gattami A, Johansson KH. 2010.. An experimental study on the fuel reduction potential of heavy duty vehicle platooning. . In 13th International IEEE Conference on Intelligent Transportation Systems, pp. 30611. Piscataway, NJ:: IEEE
    [Google Scholar]
  149. 149.
    Smith SW, Kim Y, Guanetti J, Li R, Firoozi R, et al. 2020.. Improving urban traffic throughput with vehicle platooning: theory and experiments. . IEEE Access 8::14120823
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-control-030123-015145
Loading
/content/journals/10.1146/annurev-control-030123-015145
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error