1932

Abstract

Linear integrators are well known for their ability to counter static forces and improve low-frequency disturbance rejection properties in control systems. However, linear integrators introduce phase lag, which is a frequency-dependent time shift or delay. Since the early introduction of the Clegg integrator, nonlinear integrators have held the promise of providing phase advantages over linear integrators when evaluated from the perspective of a describing function. This could potentially reduce delay and therefore provide the means to surpass linear design limitations; for example, overshoot and settling times can be reduced or even avoided. In addition, loop gains can be increased, which improves the low-frequency disturbance rejection properties. For five nonlinear integrators—the Clegg integrator, a generalized first-order reset integrator called the constant-in-gain–lead-in-phase (CgLp) element, a hybrid integrator–gain system, a variable gain integrator, and a split-path integrator—this article provides a comparison and overview of recent developments in stage motion control. Benchmark examples are taken from the industrial practice of wafer scanners, which form the pivotal machines used in the manufacturing of computer chips.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-030323-024047
2025-05-05
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/control/8/1/annurev-control-030323-024047.html?itemId=/content/journals/10.1146/annurev-control-030323-024047&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Butler H. 2011.. Position control in lithographic equipment. . IEEE Control Syst. Mag. 31:(5):2847
    [Crossref] [Google Scholar]
  2. 2.
    Oomen TAE, van Herpen RMA, Quist SJ, van de Wal MMJ, Bosgra OH, Steinbuch M. 2014.. Connecting system identification and robust control for next-generation motion control of a wafer stage. . IEEE Trans. Control Syst. Technol. 22:(1):10218
    [Crossref] [Google Scholar]
  3. 3.
    Freudenberg J, Middleton R, Stefanopoulou A. 2000.. A survey of inherent design limitations. . In Proceedings of the 2000 American Control Conference, pp. 29873001. Piscataway, NJ:: IEEE
    [Google Scholar]
  4. 4.
    Seron MM, Braslavsky JH, Goodwin GC. 1997.. Fundamental Limitations in Filtering and Control. London:: Springer
    [Google Scholar]
  5. 5.
    Feuer A, Goodwin GC, Salgado M. 1997.. Potential benefits of hybrid control for linear time invariant plants. . In Proceedings of the 1997 American Control Conference, pp. 279094. Piscataway, NJ:: IEEE
    [Google Scholar]
  6. 6.
    Prieur C, Queinnec I, Tarbouriech S, Zaccarian L. 2018.. Analysis and synthesis of reset control systems. . Found. Trends Syst. Control 6:(2–3):117338
    [Crossref] [Google Scholar]
  7. 7.
    Khargonekar PP, Poolla KR. 1986.. Uniformly optimal control of linear time-invariant plants: nonlinear time-varying controllers. . Syst. Control Lett. 6:(5):3038
    [Crossref] [Google Scholar]
  8. 8.
    McClamroch NH, Kolmanovsky I. 2000.. Performance benefits of hybrid control design for linear and nonlinear systems. . Proc. IEEE 88:(7):108396
    [Crossref] [Google Scholar]
  9. 9.
    Lau K. 2002.. Time domain feedback performance limitations: extensions to nonlinear, switched, and sampled systems. PhD Thesis , Univ. Newcastle, Callaghan, Aust:.
    [Google Scholar]
  10. 10.
    Aangenent WHTM. 2008.. Nonlinear control for linear motion systems: an exploratory study. PhD Thesis , Eindhoven Univ. Technol., Eindhoven, Neth:.
    [Google Scholar]
  11. 11.
    Lewis JB. 1953.. The use of nonlinear feedback to improve the transient response of a servomechanism. . Trans. AIEE 71:(6):44953
    [Google Scholar]
  12. 12.
    Kalman RE. 1955.. Phase-plane analysis of automatic control systems with nonlinear gain elements. . Trans. AIEE 73:(6):38390
    [Google Scholar]
  13. 13.
    Clegg JC. 1958.. A nonlinear integrator for servomechanisms. . Trans. AIEE 77:(1):4142
    [Google Scholar]
  14. 14.
    Gelb A, VanderVelde WE. 1968.. Multiple-Input Describing Functions and Nonlinear System Design. New York:: McGraw-Hill
    [Google Scholar]
  15. 15.
    Bode HW. 1945.. Network Analysis and Feedback Amplifier Design. Princeton, NJ:: Van Nostrand
    [Google Scholar]
  16. 16.
    Foster WC, Gieseking DL, Waymeyer WK. 1966.. A nonlinear filter for independent gain and phase (with application). . Trans. ASME D 78::45762
    [Crossref] [Google Scholar]
  17. 17.
    Bailey AR. 1966.. Stabilization of control systems by the use of driven limiters. . Proc. IEEE 113:(1):16974
    [Google Scholar]
  18. 18.
    Horowitz I, Rosenbaum P. 1975.. Non-linear design for cost of feedback reduction in systems with large parameter uncertainty. . Int. J. Control 21:(6):9771001
    [Crossref] [Google Scholar]
  19. 19.
    Karybakas CA. 1977.. Nonlinear integrator with zero phase shift. . IEEE Trans. Ind. Electron. Control Instrum. IECI-24:(2):15052
    [Crossref] [Google Scholar]
  20. 20.
    Heertjes MF. 2016.. Variable gain motion control of wafer scanners. . IEEJ J. Ind. Appl. 5:(2):90100
    [Google Scholar]
  21. 21.
    Armstrong BSR, Neevel D, Kusik T. 2001.. New results in NPID control: tracking, integral control, friction compensation and experimental results. . IEEE Trans. Control Syst. Technol. 9:(2):399406
    [Crossref] [Google Scholar]
  22. 22.
    Armstrong BSR, Gutierrez JA, Wade BA, Joseph R. 2006.. Stability of phase-based gain modulation with designer-chosen switch functions. . Int. J. Robot. Res. 25:(8):78196
    [Crossref] [Google Scholar]
  23. 23.
    Hunnekens BGB, van de Wouw N, Nešić D. 2016.. Overcoming a fundamental time-domain performance limitation by nonlinear control. . Automatica 67::27781
    [Crossref] [Google Scholar]
  24. 24.
    Deenen DA, Heertjes MF, Heemels WPMH, Nijmeijer H. 2017.. Hybrid integrator design for enhanced tracking in motion control. . In Proceedings of the 2017 American Control Conference, pp. 286368. Piscataway, NJ:: IEEE
    [Google Scholar]
  25. 25.
    Heertjes MF, Butler H, Dirkx NJ, van der Meulen SH, Ahlawat R, et al. 2020.. Control of wafer scanners: methods and developments. . In Proceedings of the 2020 American Control Conference, pp. 3686703. Piscataway, NJ:: IEEE
    [Google Scholar]
  26. 26.
    van den Eijnden SJAM, Heertjes MF, Nijmeijer H. 2020.. Experimental demonstration of a nonlinear PID-based control design using multiple hybrid integrator-gain elements. . In Proceedings of the 2020 American Control Conference, pp. 430712. Piscataway, NJ:: IEEE
    [Google Scholar]
  27. 27.
    van den Eijnden SJAM, Knops Y, Heertjes MF. 2018.. A hybrid integrator-gain based low-pass filter for nonlinear motion control. . In 2018 IEEE Conference on Control Technology and Applications, pp. 110813. Piscataway, NJ:: IEEE
    [Google Scholar]
  28. 28.
    Heertjes MF, van den Eijnden SJAM, Sharif B. 2023.. An overview on hybrid integrator-gain systems with applications to wafer scanners. . In 2023 IEEE International Conference on Mechatronics. Piscataway, NJ:: IEEE. https://doi.org/10.1109/ICM54990.2023.10102062
    [Google Scholar]
  29. 29.
    Saikumar N, Sinha RK, HosseinNia SH. 2019.. `` Constant in gain lead in phase'' element—application in precision motion control. . IEEE/ASME Trans. Mechatron. 24:(3):117685
    [Crossref] [Google Scholar]
  30. 30.
    Zoss LM, Witte AG, Marsch JE. 1968.. A nonlinear three response controller with two response adjustment. . In Advances in Instrumentation: Proceedings of the 23rd Annual ISA Conference, Part 1 , pp. 81011. Pittsburgh, PA:: Instrum. Soc. Am.
    [Google Scholar]
  31. 31.
    Aangenent W, van de Molengraft MJG, Steinbuch M. 2005.. Nonlinear control of a linear motion system. . IFAC Proc. Vol. 38:(1):44651
    [Crossref] [Google Scholar]
  32. 32.
    Dastjerdi AA. 2021.. Frequency-domain analysis of ``constant in gain lead in phase (CGLP)'' reset compensators: application to precision motion systems. PhD Thesis , Delft Univ. Technol., Delft, Neth:.
    [Google Scholar]
  33. 33.
    Karbasizadeh Esfahani N. 2023.. Shaping nonlinearity in reset control systems to realize complex-order controllers: application in precision motion control. PhD Thesis , Delft Univ. Technol., Delft, Neth:.
    [Google Scholar]
  34. 34.
    van Loon SJLM, Hunnekens BGB, Heemels WPMH, van de Wouw N, Nijmeijer H. 2016.. Split-path nonlinear integral control for transient performance improvement. . Automatica 66::26270
    [Crossref] [Google Scholar]
  35. 35.
    van der Maas A, van de Wouw N, Heemels WPMH. 2017.. Filtered split-path nonlinear integrator (F-SPANI) for improved transient performance. . In Proceedings of the 2017 American Control Conference, pp. 35005. Piscataway, NJ:: IEEE
    [Google Scholar]
  36. 36.
    Sharif B, van der Maas A, van de Wouw N, Heemels WPMH. 2022.. Filtered split-path nonlinear integrator: a hybrid controller for transient performance improvement. . IEEE Trans. Control Syst. Technol. 30:(2):45163
    [Crossref] [Google Scholar]
  37. 37.
    Zhao G, Nešić D, Tan Y, Hua C. 2019.. Overcoming overshoot performance limitations of linear systems with reset control. . Automatica 101::2735
    [Crossref] [Google Scholar]
  38. 38.
    van den Eijnden SJAM, Heertjes MF, Heemels WPMH, Nijmeijer H. 2020.. Hybrid integrator-gain systems: a remedy for overshoot limitations in linear control?. IEEE Control Syst. Lett. 4:(4):104247
    [Crossref] [Google Scholar]
  39. 39.
    Beker O, Hollot CV, Chait Y. 2001.. Plant with integrator: an example of reset control overcoming limitations of linear feedback. . IEEE Trans. Autom. Control 46:(11):179799
    [Crossref] [Google Scholar]
  40. 40.
    Baños A, Barreiro A. 2012.. Reset Control Systems. New York:: Springer
    [Google Scholar]
  41. 41.
    Deenen DA, Sharif B, van den Eijnden SJAM, Nijmeijer H, Heemels WPMH, Heertjes MF. 2021.. Projection-based integrators for improved motion control: formalization, well-posedness and stability of hybrid integrator-gain systems. . Automatica 133::109830
    [Crossref] [Google Scholar]
  42. 42.
    Sharif B, Heertjes MF, Heemels WPMH. 2019.. Extended projected dynamical systems with applications to hybrid integrator-gain systems. . In 2019 IEEE 58th Conference on Decision and Control, pp. 577378. Piscataway, NJ:: IEEE
    [Google Scholar]
  43. 43.
    Sharif B, Heertjes MF, Nijmeijer H, Heemels WPMH. 2021.. On the equivalence of extended and oblique projected dynamics with applications to hybrid integrator-gain systems. . In Proceedings of the 2021 American Control Conference, pp. 343439. Piscataway, NJ:: IEEE
    [Google Scholar]
  44. 44.
    Zhao G, Nešić D, Tan Y, Wang J. 2013.. Open problems in reset control. . In 52nd IEEE Conference on Decision Control, pp. 332631. Piscataway, NJ:: IEEE
    [Google Scholar]
  45. 45.
    van den Eijnden SJAM, Heertjes MF, Nijmeijer H, Heemels WPMH. 2022.. On convergence of systems with sector-bounded hybrid integrators. . In 2022 IEEE 61st Conference on Decision and Control, pp. 763641. Piscataway, NJ:: IEEE
    [Google Scholar]
  46. 46.
    Khalil HK. 1996.. Nonlinear Systems. Upper Saddle River, NJ:: Prentice Hall. , 2nd ed..
    [Google Scholar]
  47. 47.
    Beker O, Hollot CV, Chait Y, Han H. 2004.. Fundamental properties of reset control systems. . Automatica 40::90515
    [Crossref] [Google Scholar]
  48. 48.
    van der Schaft A. 2017.. L2-Gain and Passivity Techniques in Nonlinear Control. Cham, Switz:.: Springer. , 3rd ed..
    [Google Scholar]
  49. 49.
    Leonov GA, Ponomarenko DV, Smirnova VB. 1996.. Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications. Singapore:: World Sci.
    [Google Scholar]
  50. 50.
    Yakubovich VA, Leonov GA, Gelig AK. 2004.. Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities. Singapore:: World Sci.
    [Google Scholar]
  51. 51.
    van den Eijnden SJAM, Heemels WPMH, Nijmeijer H, Heertjes MF. 2022.. Stability and performance analysis of hybrid integrator-gain systems: a linear matrix inequality approach. . Nonlinear Anal. Hybrid Syst. 45:(8):101192
    [Crossref] [Google Scholar]
  52. 52.
    Sharif B, Alferink DWT, Heertjes MF, Nijmeijer H, Heemels WPMH. 2022.. A discrete-time approach to analysis of sampled-data hybrid integrator-gain systems. . In 2022 IEEE 61st Conference on Decision and Control, pp. 761217. Piscataway, NJ:: IEEE
    [Google Scholar]
  53. 53.
    Aangenent WHTM, Witvoet G, Heemel WPMH, van de Molengraft MJG, Steinbuch M. 2010.. Performance analysis of reset control systems. . Int. J. Robust Nonlinear Control 20::121333
    [Crossref] [Google Scholar]
  54. 54.
    van den Eijnden SJAM, Heertjes MF, Heemels WPMH, Nijmeijer H. 2021.. Frequency-domain tools for stability analysis of hybrid integrator-gain systems. . In 2021 European Control Conference, pp. 1895900. Piscataway, NJ:: IEEE
    [Google Scholar]
  55. 55.
    Haddad WMO, Bernstein DS. 1991.. Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle and Popov theorems and their application to robust stability. . In Proceedings of the 30th Conference on Decision and Control, pp. 261823. Piscataway, NJ:: IEEE
    [Google Scholar]
  56. 56.
    Jayawardhana B, Logemann H, Ryan EP. 2011.. The circle criterion and input-to-state stability. . IEEE Control Syst. Mag. 31:(4):3267
    [Crossref] [Google Scholar]
  57. 57.
    Heertjes MF, Zenteno Torres J, Al Janaideh M. 2023.. Fourth-order reference trajectories in lithography stages with weakly-damped modes—a frequency-domain perspective. . In 2023 62nd IEEE Conference on Decision and Control, pp. 8696701. Piscataway, NJ:: IEEE
    [Google Scholar]
  58. 58.
    Levinson HJ. 2010.. Principles of Lithography. Bellingham, WA:: SPIE Press. , 3rd ed..
    [Google Scholar]
  59. 59.
    Lin BJ. 2021.. Optical Lithography: Here Is Why. Bellingham, WA:: SPIE Press. , 2nd ed..
    [Google Scholar]
  60. 60.
    Preumont A. 2011.. Vibration Control of Active Structures: An Introduction. Berlin:: Springer. , 3rd ed..
    [Google Scholar]
  61. 61.
    Trentelman HL, Stoorvogel AA, Hautus MLJ. 2001.. Control Theory for Linear Systems. London:: Springer
    [Google Scholar]
  62. 62.
    Chen J, Lundberg KH, Davidson DE, Bernstein DS. 2007.. The final value theorem revisited—infinite limits and irrational functions. . IEEE Control Syst. Mag. 27:(3):9799
    [Crossref] [Google Scholar]
  63. 63.
    Chen J, Fang S, Ishii H. 2019.. Fundamental limitations and intrinsic limits of feedback: an overview in an information age. . Annu. Rev. Control 47::15577
    [Crossref] [Google Scholar]
  64. 64.
    Steinbuch M, Norg M. 1998.. Advanced motion control: an industrial perspective. . Eur. J. Control 4::27893
    [Crossref] [Google Scholar]
  65. 65.
    Karbasizadeh N, HosseinNia SH. 2022.. Complex-order reset control. In 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 42733. Piscataway, NJ:: IEEE
    [Google Scholar]
  66. 66.
    Chu H, van den Eijnden SJAM, Heertjes MF, Heemels WPMH. 2024.. Filtering in projection-based integrators for improved phase characteristics. . In 2024 63rd IEEE Conference on Decision and Control. Piscataway, NJ:: IEEE. Forthcoming
    [Google Scholar]
  67. 67.
    Goebel R, Sanfelice RC, Teel AR. 2012.. Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  68. 68.
    Cai C, Teel AR. 2009.. Characterizations of input-to-state stability for hybrid systems. . Syst. Control Lett. 58:(1):4753
    [Crossref] [Google Scholar]
  69. 69.
    Heemels WPMH, Tanwani A. 2023.. Existence and completeness of solutions to extended projected dynamical systems and sector-bounded projection-based controllers. . IEEE Control Syst. Lett. 7::159095
    [Crossref] [Google Scholar]
  70. 70.
    Sontag ED. 2007.. Input to state stability: basic concepts and results. . In Nonlinear and Optimal Control Theory, ed. P Nistri, G Stefani , pp. 163220. Berlin:: Springer
    [Google Scholar]
  71. 71.
    Lofberg J. 2004.. YALMIP: a toolbox for modeling and optimization in MATLAB. . In 2004 IEEE International Symposium on Computer Aided Control and System Design, pp. 28589. Piscataway, NJ:: IEEE
    [Google Scholar]
  72. 72.
    Andersen ED, Roos C, Terlaky T. 2003.. On implementing a primal–dual interior-point method for conic quadratic optimization. . Math. Programm. 95:(2):24977
    [Crossref] [Google Scholar]
  73. 73.
    van Loon SJLM, Gruntens KGJ, Heertjes MF, van de Wouw N, Heemels WPMH. 2017.. Frequency-domain tools for stability analysis of reset control systems. . Automatica 82::1018
    [Crossref] [Google Scholar]
  74. 74.
    van den Eijnden SJAM, Heertjes MF, Nijmeijer H, Heemels WPMH. 2024.. Stability analysis of hybrid integrator-gain systems: a frequency-domain approach. . Automatica 164::111641
    [Crossref] [Google Scholar]
  75. 75.
    van den Eijnden SJAM, Sharif B, Heertjes MF, Heemels WPMH. 2023.. Frequency-domain stability conditions for split-path nonlinear systems. . IFAC-PapersOnLine 56:(1):3016
    [Crossref] [Google Scholar]
  76. 76.
    Kamenetskiy VA. 2017.. Frequency-domain stability conditions for hybrid systems. . Autom. Remote Control 78:(12):210119
    [Crossref] [Google Scholar]
  77. 77.
    van den Eijnden SJAM. 2022.. Hybrid integrator-gain systems: analysis, design, and applications. PhD Thesis , Eindhoven Univ. Technol., Eindhoven, Neth:.
    [Google Scholar]
  78. 78.
    Heertjes MF, van den Eijnden SJAM, Heemels WPMH, Nijmeijer H. 2021.. A solution to gain loss in hybrid integrator-gain systems. . In 2021 IEEE Conference on Control Technology and Applications, pp. 117984. Piscataway, NJ:: IEEE
    [Google Scholar]
  79. 79.
    Hollot CV. 1997.. Revisiting Clegg integrators: periodicity, stability and IQCs. . IFAC Proc. Vol. 30:(27):3138
    [Crossref] [Google Scholar]
  80. 80.
    Apkarian P, Dao MN, Noll D. 2015.. Parametric robust structured control design. . IEEE Trans. Autom. Control 60:(7):185769
    [Crossref] [Google Scholar]
  81. 81.
    Sanders SR. 1992.. Justification of the describing function method for periodically switched circuits. . In 1992 IEEE International Symposium on Circuits and Systems, pp. 188790. Piscataway, NJ:: IEEE
    [Google Scholar]
  82. 82.
    Caporale D, van Eijk LF, Karbasizadeh N, Beer S, Kostić D, HosseinNia SH. 2024.. Practical implementation of a reset controller to improve performance of an industrial motion stage. . IEEE Trans. Control Syst. Technol. 32:(4):145162
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-control-030323-024047
Loading
/content/journals/10.1146/annurev-control-030323-024047
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error