1932

Abstract

The development of control methods based on data has seen a surge of interest in recent years. When applying data-driven controllers in real-world applications, providing theoretical guarantees for the closed-loop system is of crucial importance to ensure reliable operation. In this review, we provide an overview of data-driven model predictive control (MPC) methods for controlling unknown systems with guarantees on systems-theoretic properties such as stability, robustness, and constraint satisfaction. The considered approaches rely on the fundamental lemma from behavioral theory in order to predict input–output trajectories directly from data. We cover various setups, ranging from linear systems and noise-free data to more realistic formulations with noise and nonlinearities, and we provide an overview of different techniques to ensure guarantees for the closed-loop system. Moreover, we discuss avenues for future research that may further improve the theoretical understanding and practical applicability of data-driven MPC.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-030323-024328
2025-05-05
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/control/8/1/annurev-control-030323-024328.html?itemId=/content/journals/10.1146/annurev-control-030323-024328&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ljung L. 1987.. System Identification: Theory for the User. Englewood Cliffs, NJ:: Prentice Hall
    [Google Scholar]
  2. 2.
    Tsiamis A, Ziemann I, Matni N, Pappas GJ. 2023.. Statistical learning theory for control: a finite-sample perspective. . IEEE Control Syst. Mag. 43:(6):6797
    [Crossref] [Google Scholar]
  3. 3.
    Hou ZS, Wang Z. 2013.. From model-based control to data-driven control: survey, classification and perspective. . Inf. Sci. 235::335
    [Crossref] [Google Scholar]
  4. 4.
    Willems JC, Rapisarda P, Markovsky I, De Moor B. 2005.. A note on persistency of excitation. . Syst. Control Lett. 54::32529
    [Crossref] [Google Scholar]
  5. 5.
    Markovsky I, Dörfler F. 2021.. Behavioral systems theory in data-driven analysis, signal processing, and control. . Annu. Rev. Control 52::4264
    [Crossref] [Google Scholar]
  6. 6.
    Rawlings JB, Mayne DQ, Diehl MM. 2020.. Model Predictive Control: Theory, Computation, and Design. Madison, WI:: Nob Hill. , 2nd ed..
    [Google Scholar]
  7. 7.
    Hewing L, Wabersich KP, Menner M, Zeilinger MN. 2020.. Learning-based model predictive control: toward safe learning in control. . Annu. Rev. Control Robot. Auton. Syst. 3::26996
    [Crossref] [Google Scholar]
  8. 8.
    Adetola V, Guay M. 2011.. Robust adaptive MPC for constrained uncertain nonlinear systems. . Int. J. Adapt. Control Signal Process. 25:(2):15567
    [Crossref] [Google Scholar]
  9. 9.
    Tanaskovic M, Fagiano L, Smith R, Morari M. 2014.. Adaptive receding horizon control for constrained MIMO systems. . Automatica 50:(12):301929
    [Crossref] [Google Scholar]
  10. 10.
    Lu X, Cannon M, Koksal-Rivet D. 2021.. Robust adaptive model predictive control: performance and parameter estimation. . Int. J. Robust Nonlinear Control 31:(18):870324
    [Crossref] [Google Scholar]
  11. 11.
    Yang H, Li S. 2015.. A data-driven predictive controller design based on reduced Hankel matrix. . In 201510th Asian Control Conference. Piscataway, NJ:: IEEE. https://doi.org/10.1109/ASCC.2015.7244723
    [Google Scholar]
  12. 12.
    Coulson J, Lygeros J, Dörfler F. 2019.. Data-enabled predictive control: in the shallows of the DeePC. . In 2019 18th European Control Conference, pp. 30712. Piscataway, NJ:: IEEE
    [Google Scholar]
  13. 13.
    Elokda E, Coulson J, Lygeros J, Dörfler F. 2021.. Data-enabled predictive control for quadcopters. . Int. J. Robust Nonlinear Control 31:(18):891636
    [Crossref] [Google Scholar]
  14. 14.
    Berberich J, Köhler J, Müller MA, Allgöwer F. 2021.. Data-driven model predictive control: closed-loop guarantees and experimental results. . Automatisierungstechnik 69:(7):60818
    [Crossref] [Google Scholar]
  15. 15.
    Carlet PG, Favato A, Bolognani S, Dörfler F. 2022.. Data-driven continuous-set predictive current control for synchronous motor drives. . IEEE Trans. Power Electron. 37:(6):663746
    [Crossref] [Google Scholar]
  16. 16.
    Fawcett RT, Afsari K, Ames AD, Hamed KA. 2022.. Toward a data-driven template model for quadrupedal locomotion. . IEEE Robot. Autom. Lett. 7:(3):763643
    [Crossref] [Google Scholar]
  17. 17.
    Müller D, Feilhauer J, Wickert J, Berberich J, Allgöwer F, Sawodny O. 2022.. Data-driven predictive disturbance observer for quasi continuum manipulators. . In 2022 IEEE 61st Conference on Decision and Control, pp. 181622. Piscataway, NJ:: IEEE
    [Google Scholar]
  18. 18.
    Hemming S, de Zwart F, Elings E, Petropoulou A, Righini I. 2020.. Cherry tomato production in intelligent greenhouses—sensors and AI for control of climate, irrigation, crop yield, and quality. . Sensors 20:(22):6430
    [Crossref] [Google Scholar]
  19. 19.
    Wang J, Lian Y, Jiang Y, Xu Q, Li K, Jones CN. 2023.. Distributed data-driven predictive control for cooperatively smoothing mixed traffic flow. . Transport. Res. C 155::104274
    [Crossref] [Google Scholar]
  20. 20.
    Wang J, Zheng Y, Li K, Xu Q. 2023.. DeeP-LCC: data-enabled predictive leading cruise control in mixed traffic flow. . IEEE Trans. Control Syst. Technol. 31:(6):276076
    [Crossref] [Google Scholar]
  21. 21.
    Shang X, Wang J, Zheng Y. 2023.. Smoothing mixed traffic with robust data-driven predictive control for connected and autonomous vehicles. . arXiv:2310.00509 [math.OC]
  22. 22.
    Rimoldi A, Cenedese C, Padoan A, Dörfler F, Lygeros J. 2023.. Urban traffic congestion control: a DeePC change. . arXiv:2311.09851 [eess.SY]
  23. 23.
    Huang L, Coulson J, Lygeros J, Dörfler F. 2019.. Data-enabled predictive control for grid-connected power converters. . In 2019 IEEE 58th Conference on Decision and Control, pp. 813035. Piscataway, NJ:: IEEE
    [Google Scholar]
  24. 24.
    Huang L, Zhen J, Lygeros J, Dörfler F. 2021.. Quadratic regularization of data-enabled predictive control: theory and application to power converter experiments. . IFAC-PapersOnLine 54:(7):19297
    [Crossref] [Google Scholar]
  25. 25.
    Huang L, Coulson J, Lygeros J, Dörfler F. 2021.. Decentralized data-enabled predictive control for power system oscillation damping. . IEEE Trans. Control Syst. Technol. 30:(3):106577
    [Crossref] [Google Scholar]
  26. 26.
    Lian Y, Shi J, Koch MP, Jones CN. 2021.. Adaptive robust data-driven building control via bi-level reformulation: an experimental result. . arXiv:2106.05740 [eess.SY]
  27. 27.
    O'Dwyer E, Falugi P, Shah N, Kerrigan E. 2022.. Automating the data-driven predictive control design process for building thermal management. . In Proceedings of ECOS 2022: The 35th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ed. B Elmegaard, E Sciubba, AM Blanco-Marigorta, JK Jensen, WB Markussen , et al., pp. 131524. Kongens Lyngby, Den:.: DTU Constr.
    [Google Scholar]
  28. 28.
    Di Natale L, Lian Y, Maddalena ET, Shi J, Jones CN. 2022.. Lessons learned from data-driven building control experiments: contrasting Gaussian process-based MPC, bilevel DeePC, and deep reinforcement learning. . In 2022 IEEE 61st Conference on Decision and Control, pp. 111117. Piscataway, NJ:: IEEE
    [Google Scholar]
  29. 29.
    Behrunani V, Zagorowska M, Hudoba de Badyn M, Ricca F, Heer P, Lygeros J. 2023.. Degradation-aware data-enabled predictive control of energy hubs. . arXiv:2307.01543 [eess.SY]
  30. 30.
    Chen K, Zhang X, Lin X, Zheng Y, Yin X, et al. 2022.. Data-enabled predictive control for fast charging of lithium-ion batteries with constraint handling. . arXiv:2209.12862 [eess.SY]
  31. 31.
    Mahdavipour P, Wieland C, Spliethoff H. 2022.. Optimal control of combined-cycle power plants: a data-enabled predictive control perspective. . IFAC-PapersOnLine 55:(13):9196
    [Crossref] [Google Scholar]
  32. 32.
    Bilgic D, Koch A, Pan G, Faulwasser T. 2022.. Toward data-driven predictive control of multi-energy distribution systems. . Electr. Power Syst. Res. 212::108311
    [Crossref] [Google Scholar]
  33. 33.
    Schmitz P, Engelmann A, Faulwasser T, Worthmann K. 2022.. Data-driven MPC of descriptor systems: a case study for power networks. . IFAC-PapersOnLine 55:(30):35964
    [Crossref] [Google Scholar]
  34. 34.
    Yin M, Cai H, Gattiglio A, Khayatian F, Smith RS. 2024.. Data-driven predictive control for demand side management: theoretical and experimental results. . Appl. Energy 353::122101
    [Crossref] [Google Scholar]
  35. 35.
    Schmitt L, Beerwerth J, Bahr M, Abel D. 2023.. Data-driven predictive control with online adaption: application to a fuel cell system. . IEEE Trans. Control Syst. Technol. 32:(1):6172
    [Crossref] [Google Scholar]
  36. 36.
    Markovsky I, Huang L, Dörfler F. 2023.. Data-driven control based on the behavioral approach: from theory to applications in power systems. . IEEE Control Syst. 43:(5):2868
    [Crossref] [Google Scholar]
  37. 37.
    Verheijen PCN, Breschi V, Lazar M. 2023.. Handbook of linear data-driven predictive control: theory, implementation and design. . Annu. Rev. Control 56::100914
    [Crossref] [Google Scholar]
  38. 38.
    van Waarde HJ, De Persis C, Camlibel MK, Tesi P. 2020.. Willems' fundamental lemma for state-space systems and its extension to multiple datasets. . IEEE Control Syst. Lett. 4:(3):6027
    [Crossref] [Google Scholar]
  39. 39.
    Berberich J, Iannelli A, Padoan A, Coulson J, Dörfler F, Allgöwer F. 2023.. A quantitative and constructive proof of Willems' Fundamental Lemma and its implications. . In 2023 American Control Conference, pp. 415560. Piscataway, NJ:: IEEE
    [Google Scholar]
  40. 40.
    Markovsky I, Rapisarda P. 2008.. Data-driven simulation and control. . Int. J. Control 81:(12):194659
    [Crossref] [Google Scholar]
  41. 41.
    Maupong TM, Mayo-Maldonado JC, Rapisarda P. 2017.. On Lyapunov functions and data-driven dissipativity. . IFAC-PapersOnLine 50:(1):778388
    [Crossref] [Google Scholar]
  42. 42.
    Romer A, Berberich J, Köhler J, Allgöwer F. 2019.. One-shot verification of dissipativity properties from input-output data. . IEEE Control Syst. Lett. 3:(3):70914
    [Crossref] [Google Scholar]
  43. 43.
    De Persis C, Tesi P. 2020.. Formulas for data-driven control: stabilization, optimality and robustness. . IEEE Trans. Autom. Control 65:(3):90924
    [Crossref] [Google Scholar]
  44. 44.
    Berberich J, Koch A, Scherer CW, Allgöwer F. 2020.. Robust data-driven state-feedback design. . In 2020 American Control Conference, pp. 153238. Piscataway, NJ:: IEEE
    [Google Scholar]
  45. 45.
    van Waarde HJ, Eising J, Trentelman HL, Camlibel MK. 2020.. Data informativity: a new perspective on data-driven analysis and control. . IEEE Trans. Autom. Control 65:(11):475368
    [Crossref] [Google Scholar]
  46. 46.
    Martin T, Schön TB, Allgöwer F. 2023.. Guarantees for data-driven control of nonlinear systems using semidefinite programming: a survey. . Annu. Rev. Control 56::100911
    [Crossref] [Google Scholar]
  47. 47.
    De Persis C, Tesi P. 2023.. Learning controllers for nonlinear systems from data. . Annu. Rev. Control 56::100915
    [Crossref] [Google Scholar]
  48. 48.
    van Waarde HJ, Eising J, Camlibel MK, Trentelman HL. 2023.. The informativity approach to data-driven analysis and control. . IEEE Control Syst. Mag. 43:(6):3266
    [Crossref] [Google Scholar]
  49. 49.
    Raff T, Huber S, Nagy ZK, Allgöwer F. 2006.. Nonlinear model predictive control of a four tank system: an experimental stability study. . In 2006 IEEE International Conference on Control Applications, pp. 23742. Piscataway, NJ:: IEEE
    [Google Scholar]
  50. 50.
    Grüne L. 2012.. NMPC without terminal constraints. . IFAC Proc. Vol. 45:(17):113
    [Crossref] [Google Scholar]
  51. 51.
    Berberich J, Köhler J, Müller MA, Allgöwer F. 2021.. Data-driven model predictive control with stability and robustness guarantees. . IEEE Trans. Autom. Control 66:(4):170217
    [Crossref] [Google Scholar]
  52. 52.
    Berberich J, Köhler J, Müller MA, Allgöwer F. 2021.. On the design of terminal ingredients for data-driven MPC. . IFAC-PapersOnLine 54:(6):25763
    [Crossref] [Google Scholar]
  53. 53.
    Goodwin GC, Sin KS. 2014.. Adaptive Filtering Prediction and Control. Chelmsford, MA:: Courier
    [Google Scholar]
  54. 54.
    Koch A, Berberich J, Allgöwer F. 2022.. Provably robust verification of dissipativity properties from data. . IEEE Trans. Autom. Control 67:(8):424855
    [Crossref] [Google Scholar]
  55. 55.
    Berberich J, Scherer CW, Allgöwer F. 2023.. Combining prior knowledge and data for robust controller design. . IEEE Trans. Autom. Control 68:(8):461833
    [Crossref] [Google Scholar]
  56. 56.
    van Waarde HJ, Eising J, Camlibel MK, Trentelman HL. 2024.. A behavioral approach to data-driven control with noisy input-output data. . IEEE Trans. Autom. Control 69:(2):81327
    [Crossref] [Google Scholar]
  57. 57.
    Alsalti M, Lopez VG, Müller MA. 2023.. Notes on data-driven output-feedback control of linear MIMO systems. . arXiv:2311.17484 [eess.SY]
  58. 58.
    Bongard J, Berberich J, Köhler J, Allgöwer F. 2023.. Robust stability analysis of a simple data-driven model predictive control approach. . IEEE Trans. Autom. Control 68:(5):262537
    [Crossref] [Google Scholar]
  59. 59.
    Lazar M. 2021.. A dissipativity-based framework for analyzing stability of predictive controllers. . IFAC-PapersOnLine 54:(6):15965
    [Crossref] [Google Scholar]
  60. 60.
    Lazar M, Verheijen PCN. 2023.. Generalized data-driven predictive control: merging subspace and Hankel predictors. . Mathematics 11:(9):2216
    [Crossref] [Google Scholar]
  61. 61.
    Limón D, Alvarado I, Alamo T, Camacho EF. 2008.. MPC for tracking piecewise constant references for constrained linear systems. . Automatica 44:(9):238287
    [Crossref] [Google Scholar]
  62. 62.
    Berberich J, Köhler J, Müller MA, Allgöwer F. 2020.. Data-driven tracking MPC for changing setpoints. . IFAC-PapersOnLine 53:(2):692330
    [Crossref] [Google Scholar]
  63. 63.
    Köhler J, Müller MA, Allgöwer F. 2020.. A nonlinear tracking model predictive control scheme for dynamic target signals. . Automatica 118::109030
    [Crossref] [Google Scholar]
  64. 64.
    Cai C, Teel AR. 2008.. Input–output-to-state stability for discrete-time systems. . Automatica 44:(2):32636
    [Crossref] [Google Scholar]
  65. 65.
    Favoreel W, Moor BD, Gevers M. 1999.. SPC: subspace predictive control. . IFAC Proc. Vol. 32:(2):40049
    [Crossref] [Google Scholar]
  66. 66.
    Huang B, Kadali R. 2008.. Dynamic Modeling, Predictive Control and Performance Monitoring: A Data-Driven Subspace Approach. London:: Springer
    [Google Scholar]
  67. 67.
    Klöppelt C, Berberich J, Allgöwer F, Müller MA. 2022.. A novel constraint tightening approach for robust data-driven predictive control. . Int. J. Robust Nonlinear Control. https://doi.org/10.1002/rnc.6532
    [Google Scholar]
  68. 68.
    Berberich J, Köhler J, Müller MA, Allgöwer F. 2020.. Robust constraint satisfaction in data-driven MPC. . In 2020 59th IEEE Conference on Decision and Control, pp. 126067. Piscataway, NJ:: IEEE
    [Google Scholar]
  69. 69.
    Grüne L, Palma VG. 2015.. Robustness of performance and stability for multistep and updated multistep MPC schemes. . Discrete Contin. Dyn. Syst. 35:(9):4385414
    [Crossref] [Google Scholar]
  70. 70.
    Berberich J. 2022.. Stability and robustness in data-driven predictive control. PhD Thesis, Univ. Stuttgart, Stuttgart, Ger:.
    [Google Scholar]
  71. 71.
    Berberich J, Köhler J, Müller MA, Allgöwer F. 2022.. Stability in data-driven MPC: an inherent robustness perspective. . In 2022 IEEE 61st Conference on Decision and Control, pp. 110510. Piscataway, NJ:: IEEE
    [Google Scholar]
  72. 72.
    Berberich J, Köhler J, Müller MA, Allgöwer F. 2022.. Linear tracking MPC for nonlinear systems part II: the data-driven case. . IEEE Trans. Autom. Control 67:(9):440621
    [Crossref] [Google Scholar]
  73. 73.
    Yu S, Reble M, Chen H, Allgöwer F. 2014.. Inherent robustness properties of quasi-infinite horizon nonlinear model predictive control. . Automatica 50:(9):226980
    [Crossref] [Google Scholar]
  74. 74.
    Coulson J, Lygeros J, Dörfler F. 2022.. Distributionally robust chance constrained data-enabled predictive control. . IEEE Trans. Autom. Control 67:(7):3289304
    [Crossref] [Google Scholar]
  75. 75.
    Yin M, Iannelli A, Smith RS. 2021.. Maximum likelihood signal matrix model for data-driven predictive control. . In Proceedings of the 3rd Conference on Learning for Dynamics and Control, ed. A Jadbabaie, J Lygeros, GJ Pappas, PA Parrilo, B Recht , et al., pp. 100414. Proc. Mach. Learn. Res. 144 . N.p.:: PMLR
    [Google Scholar]
  76. 76.
    Yin M, Iannelli A, Smith RS. 2021.. Maximum likelihood estimation in data-driven modeling and control. . IEEE Trans. Autom. Control 68:(1):31728
    [Crossref] [Google Scholar]
  77. 77.
    Yin M, Iannelli A, Smith RS. 2023.. Stochastic data-driven predictive control: regularization, estimation, and constraint tightening. . arXiv:2312.02758 [eess.SY]
  78. 78.
    Breschi V, Chiuso A, Formentin S. 2023.. Data-driven predictive control in a stochastic setting: a unified framework. . Automatica 152::110961
    [Crossref] [Google Scholar]
  79. 79.
    Breschi V, Fabris M, Formentin S, Chiuso A. 2023.. Uncertainty-aware data-driven predictive control in a stochastic setting. . IFAC-PapersOnLine 56:(2):1008388
    [Crossref] [Google Scholar]
  80. 80.
    Breschi V, Chiuso A, Fabris M, Formentin S. 2023.. On the impact of regularization in data-driven predictive control. . arXiv:2304.00263 [eess.SY]
  81. 81.
    Chiuso A, Fabris M, Breschi V, Formentin S. 2023.. Harnessing the final control error for optimal data-driven predictive control. . arXiv:2312.14788 [eess.SY]
  82. 82.
    Sader M, Wang Y, Huang D, Shang C, Huang B. 2023.. Causality-informed data-driven predictive control. . arXiv:2311.09545 [math.OC]
  83. 83.
    Klädtke M, Schulze Darup M. 2024.. Towards a unifying framework for data-driven predictive control with quadratic regularization. . arXiv:2404.02721 [eess.SY]
  84. 84.
    Huang L, Lygeros J, Dörfler F. 2022.. Robust and kernelized data-enabled predictive control for nonlinear systems. . arXiv:2206.01866 [eess.SY]
  85. 85.
    Dörfler F, Coulson J, Markovsky I. 2023.. Bridging direct and indirect data-driven control formulations via regularizations and relaxations. . IEEE Trans. Autom. Control 68:(2):88397
    [Crossref] [Google Scholar]
  86. 86.
    Shang X, Zheng Y. 2023.. Convex approximations for a bi-level formulation of data-enabled predictive control. . arXiv:2312.15431 [math.OC]
  87. 87.
    Klädtke M, Schulze Darup M. 2023.. Implicit predictors in regularized data-driven predictive control. . IEEE Control Syst. Lett. 7::247984
    [Crossref] [Google Scholar]
  88. 88.
    Mattsson P, Schön TB. 2023.. On the regularization in DeePC. . IFAC-PapersOnLine 56:(2):62531
    [Crossref] [Google Scholar]
  89. 89.
    Mattsson P, Bonassi F, Breschi V, Schön TB. 2024.. On the equivalence of direct and indirect data-driven predictive control approaches. . arXiv:2403.05860 [eess.SY]
  90. 90.
    Pan G, Ou R, Faulwasser T. 2022.. On a stochastic fundamental lemma and its use for data-driven MPC. . IEEE Trans. Autom. Control 68:(10):592237
    [Crossref] [Google Scholar]
  91. 91.
    Faulwasser T, Ou R, Pan G, Schmitz P, Worthmann K. 2023.. Behavioral theory for stochastic systems? A data-driven journey from Willems to Wiener and back again. . Annu. Rev. Control 55::92117
    [Crossref] [Google Scholar]
  92. 92.
    Pan G, Ou R, Faulwasser T. 2022.. Towards data-driven stochastic predictive control. . arXiv:2212.10663 [eess.SY]
  93. 93.
    Pan G, Ou R, Faulwasser T. 2022.. On data-driven stochastic output-feedback predictive control. . arXiv:2211.17074 [eess.SY]
  94. 94.
    Pan G, Ou R, Faulwasser T. 2023.. Data-driven stochastic output-feedback predictive control: recursive feasibility through interpolated initial conditions. . In Proceedings of the 5th Annual Learning for Dynamics and Control Conference, ed. N Matni, M Morari, GJ Pappas , pp. 98092. Proc. Mach. Learn. Res. 211 . N.p.:: PMLR
    [Google Scholar]
  95. 95.
    Ou R, Pan G, Faulwasser T. 2022.. Data-driven multiple shooting for stochastic optimal control. . IEEE Control Syst. Lett. 7::31318
    [Crossref] [Google Scholar]
  96. 96.
    Kerz S, Teutsch J, Brüdigam T, Wollherr D, Leibold M. 2023.. Data-driven tube-based stochastic predictive control. . IEEE Open J. Control Syst. 2::18599
    [Crossref] [Google Scholar]
  97. 97.
    Teutsch J, Kerz S, Wollherr D, Leibold M. 2024.. Sampling-based stochastic data-driven predictive control under data uncertainty. . arXiv:2402.00681 [eess.SY]
  98. 98.
    Allibhoy A, Cortés J. 2021.. Data-based receding horizon control of linear network systems. . IEEE Control Syst. Lett. 5:(4):120712
    [Crossref] [Google Scholar]
  99. 99.
    Alonso CA, Yang F, Matni N. 2022.. Data-driven distributed and localized model predictive control. . IEEE Open J. Control Syst. 1::2940
    [Crossref] [Google Scholar]
  100. 100.
    Köhler M, Berberich J, Müller MA, Allgöwer F. 2022.. Data-driven distributed MPC of dynamically coupled linear systems. . IFAC-PapersOnLine 55:(30):36570
    [Crossref] [Google Scholar]
  101. 101.
    Breschi V, Sassella A, Formentin S. 2023.. On the design of regularized explicit predictive controllers from input-output data. . IEEE Trans. Autom. Control 68:(8):497783
    [Crossref] [Google Scholar]
  102. 102.
    Xie Y, Berberich J, Allgöwer F. 2023.. Linear data-driven economic MPC with generalized terminal constraint. . IFAC-PapersOnLine 56:(2):551217
    [Crossref] [Google Scholar]
  103. 103.
    Liu W, Sun J, Wang G, Bullo F, Chen J. 2023.. Data-driven resilient predictive control under denial-of-service. . IEEE Trans. Autom. Control 68:(8):472237
    [Crossref] [Google Scholar]
  104. 104.
    Liu W, Sun J, Wang G, Bullo F, Chen J. 2023.. Data-driven self-triggered control via trajectory prediction. . IEEE Trans. Autom. Control 68:(11):695158
    [Crossref] [Google Scholar]
  105. 105.
    Deng L, Shu Z, Chen T. 2024.. Event-triggered robust MPC with terminal inequality constraints: a data-driven approach. . IEEE Trans. Autom. Control 69:(7):477380
    [Crossref] [Google Scholar]
  106. 106.
    Bajelani M, van Heusden K. 2023.. Data-driven safety filter: an input-output perspective. . arXiv:2309.00189 [eess.SY]
  107. 107.
    Bajelani M, van Heusden K. 2024.. From raw data to safety: reducing conservatism by set expansion. . arXiv:2403.15883 [eess.SY]
  108. 108.
    Schmitz P, Lanza L, Worthmann K. 2023.. Safe data-driven reference tracking with prescribed performance. . In 2023 27th International Conference on System Theory, Control and Computing, pp. 45460. Piscataway, NJ:: IEEE
    [Google Scholar]
  109. 109.
    Khaledi M, Tooranjipour P, Kiumarsi B. 2023.. Data-driven safety-certified predictive control for linear systems. . IEEE Control Syst. Lett. 7::368792
    [Crossref] [Google Scholar]
  110. 110.
    van Waarde HJ, Camlibel MK, Mesbahi M. 2022.. From noisy data to feedback controllers: non-conservative design via a matrix S-lemma. . IEEE Trans. Autom. Control 67:(1):16275
    [Crossref] [Google Scholar]
  111. 111.
    Nguyen HH, Friedel M, Findeisen R. 2023.. LMI-based data-driven robust model predictive control. . IFAC-PapersOnLine 56:(2):478388
    [Crossref] [Google Scholar]
  112. 112.
    Xie Y, Berberich J, Allgöwer F. 2024.. Data-driven min-max MPC for linear systems: robustness and adaptation. . arXiv:2404.19096 [eess.SY]
  113. 113.
    Alpago D, Dörfler F, Lygeros J. 2020.. An extended Kalman filter for data-enabled predictive control. . IEEE Control Syst. Lett. 4:(4):99499
    [Crossref] [Google Scholar]
  114. 114.
    Schmitz P, Faulwasser T, Worthmann K. 2022.. Willems' fundamental lemma for linear descriptor systems and its use for data-driven output-feedback MPC. . IEEE Control Syst. Lett. 6::244348
    [Crossref] [Google Scholar]
  115. 115.
    Zhang K, Zuliani R, Balta EC, Lygeros J. 2024.. Data-enabled predictive iterative control. . IEEE Control Syst. Lett. 8::118691
    [Crossref] [Google Scholar]
  116. 116.
    Wolff TM, Lopez VG, Müller MA. 2022.. Robust data-driven moving horizon estimation for linear discrete-time systems. . arXiv:2210.09017 [eess.SY]
  117. 117.
    Berberich J, Allgöwer F. 2020.. A trajectory-based framework for data-driven system analysis and control. . In 2020 European Control Conference, pp. 136570. Piscataway, NJ:: IEEE
    [Google Scholar]
  118. 118.
    Rueda-Escobedo JG, Schiffer J. 2020.. Data-driven internal model control of second-order discrete Volterra systems. . In 2020 59th IEEE Conference on Decision and Control, pp. 457279. Piscataway, NJ:: IEEE
    [Google Scholar]
  119. 119.
    Verhoek C, Tóth R, Haesart S, Koch A. 2021.. Fundamental Lemma for data-driven analysis of linear parameter-varying systems. . In 2021 60th IEEE Conference on Decision and Control, pp. 504046. Piscataway, NJ:: IEEE
    [Google Scholar]
  120. 120.
    Martinelli A, Gargiani M, Draskovic M, Lygeros J. 2022.. Data-driven optimal control of affine systems: a linear programming perspective. . arXiv:2203.12044 [eess.SY]
  121. 121.
    Mishra VK, Markovsky I, Fazzi A, Dreesen P. 2021.. Data-driven simulation for NARX systems. . In 2021 29th European Signal Processing Conference, pp. 105559. Piscataway, NJ:: IEEE
    [Google Scholar]
  122. 122.
    Yuan Z, Cortés J. 2022.. Data-driven optimal control of bilinear systems. . IEEE Control Syst. Lett. 6::247984
    [Crossref] [Google Scholar]
  123. 123.
    Li R, Simpson-Porco JW, Smith SL. 2022.. Data-driven model predictive control for linear time-periodic systems. . In 2022 IEEE 61st Conference on Decision and Control, pp. 366168. Piscataway, NJ:: IEEE
    [Google Scholar]
  124. 124.
    Alsalti M, Lopez VG, Berberich J, Allgöwer F, Müller MA. 2023.. Data-based control of feedback linearizable systems. . IEEE Trans. Autom. Control 68:(11):701421
    [Crossref] [Google Scholar]
  125. 125.
    Lazar M. 2023.. Basis functions nonlinear data-enabled predictive control: consistent and computationally efficient formulations. . arXiv:2311.05360 [eess.SY]
  126. 126.
    Lian Y, Wang R, Jones CN. 2021.. Koopman based data-driven predictive control. . arXiv:2102.05122 [eess.SY]
  127. 127.
    Huang L, Zhen J, Lygeros J, Dörfler F. 2023.. Robust data-enabled predictive control: tractable formulations and performance guarantees. . IEEE Trans. Autom. Control 68:(5):316370
    [Crossref] [Google Scholar]
  128. 128.
    Molodchyk O, Faulwasser T. 2024.. Exploring the links between the fundamental lemma and kernel regression. . arXiv:2403.05368 [eess.SY]
  129. 129.
    Alsalti M, Lopez VG, Berberich J, Allgöwer F, Müller MA. 2023.. Data-driven nonlinear predictive control for feedback linearizable systems. . IFAC-PapersOnLine 56:(2):61724
    [Crossref] [Google Scholar]
  130. 130.
    Alsalti M, Lopez VG, Berberich J, Allgöwer F, Müller MA. 2022.. Practical exponential stability of a robust data-driven nonlinear predictive control scheme. . arXiv:2204.01150 [eess.SY]
  131. 131.
    Verhoek C, Abbas HS, Tóth R, Haesart S. 2021.. Data-driven predictive control for linear parameter-varying systems. . IFAC-PapersOnLine 54:(8):1018
    [Crossref] [Google Scholar]
  132. 132.
    Verhoek C, Berberich J, Haesaert S, Tóth R, Abbas HS. 2023.. A linear parameter-varying approach to data predictive control. . arXiv:2311.07140 [eess.SY]
  133. 133.
    Berberich J, Köhler J, Müller MA, Allgöwer F. 2022.. Linear tracking MPC for nonlinear systems part I: the model-based case. . IEEE Trans. Autom. Control 67:(9):4390405
    [Crossref] [Google Scholar]
  134. 134.
    Dörfler F. 2023.. Data-driven control: part two of two: hot take: Why not go with models?. IEEE Control Syst. Mag. 43:(6):2731
    [Crossref] [Google Scholar]
  135. 135.
    Fiedler F, Lucia S. 2021.. On the relationship between data-enabled predictive control and subspace predictive control. . In 2021 European Control Conference, pp. 22229. Piscataway, NJ:: IEEE
    [Google Scholar]
  136. 136.
    Lazar M, Verheijen PCN. 2022.. Offset-free data-driven predictive control. . In 2022 IEEE 61st Conference on Decision and Control, pp. 1099104. Piscataway, NJ:: IEEE
    [Google Scholar]
  137. 137.
    Smith RS, Abdalmoaty M, Yin M. 2024.. Optimal data-driven prediction and predictive control using signal matrix models. . arXiv:2403.15329 [eess.SY]
  138. 138.
    Krishnan V, Pasqualetti F. 2021.. On direct versus indirect data-driven predictive control. . In 2021 60th IEEE Conference on Decision and Control, pp. 73641. Piscataway, NJ:: IEEE
    [Google Scholar]
  139. 139.
    Sathyanarayanan KK, Pan G, Faulwasser T. 2023.. Towards data-driven predictive control using wavelets. . IFAC-PapersOnLine 56:(2):63237
    [Crossref] [Google Scholar]
  140. 140.
    O'Dwyer E, Kerrigan EC, Falugi P, Zagorowska M, Shah N. 2023.. Data-driven predictive control with improved performance using segmented trajectories. . IEEE Trans. Control Syst. Technol. 31:(3):135565
    [Crossref] [Google Scholar]
  141. 141.
    Zhang K, Zheng Y, Shang C, Li Z. 2023.. Dimension reduction for efficient data-enabled predictive control. . IEEE Control Syst. Lett. 7::327782
    [Crossref] [Google Scholar]
  142. 142.
    Alsalti M, Barkey M, Lopez VG, Müller MA. 2023.. Sample- and computationally efficient data-driven predictive control. . arXiv:2309.11238 [eess.SY]
  143. 143.
    Schmitz P, Schaller M, Voigt M, Worthmann K. 2024.. Fast and memory-efficient optimization for large-scale data-driven predictive control. . arXiv:2402.13090 [math.OC]
  144. 144.
    Zhou Y, Lu Y, Li Z, Yan J, Mo Y. 2024.. Learning-based efficient approximation of data-enabled predictive control. . arXiv:2404.16727 [eess.SY]
  145. 145.
    Köhler J, Wabersich KP, Berberich J, Zeilinger MN. 2022.. State space models vs. multi-step predictors in predictive control: Are state space models complicating safe data-driven designs?. In 2022 IEEE 61st Conference on Decision and Control, pp. 49198. Piscataway, NJ:: IEEE
    [Google Scholar]
/content/journals/10.1146/annurev-control-030323-024328
Loading
/content/journals/10.1146/annurev-control-030323-024328
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error