1932

Abstract

Intelligent micromachines, with dimensions ranging from a few millimeters down to hundreds of nanometers, are miniature systems capable of performing specific tasks autonomously at small scales. Enhancing the intelligence of micromachines to tackle the uncertainty and variability in complex microenvironments has applications in minimally invasive medicine, bioengineering, water cleaning, analytical chemistry, and more. Over the past decade, significant progress has been made in the construction of intelligent micromachines, evolving from simple micromachines to soft, compound, reconfigurable, encodable, multifunctional, and integrated micromachines, as well as from individual to multiagent, multiscale, hierarchical, self-organizing, and swarm micromachines. The field leverages two important trends in robotics research—the miniaturization and intelligentization of machines—but a compelling combination of these two features has yet to be realized. The core technologies required to make such tiny machines intelligent include information media, transduction, processing, exchange, and energy supply, but embedding all of these functions into a system at the micro- or nanoscale is challenging. This article offers a comprehensive introduction to the state-of-the-art technologies used to create intelligence for micromachines and provides insight into the construction of next-generation intelligent micromachines that can adapt to diverse scenarios for use in emerging fields.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-042920-013322
2022-05-03
2024-09-08
Loading full text...

Full text loading...

/deliver/fulltext/control/5/1/annurev-control-042920-013322.html?itemId=/content/journals/10.1146/annurev-control-042920-013322&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Feynman RP. 2011 (1959). There's plenty of room at the bottom: an invitation to enter a new field of physics. Resonance 16:890–905
    [Google Scholar]
  2. 2. 
    Frutiger DR, Vollmers K, Kratochvil BE, Nelson BJ. 2010. Small, fast, and under control: wireless resonant magnetic micro-agents. Int. J. Robot. Res. 29:613–36
    [Google Scholar]
  3. 3. 
    Nelson BJ, Kaliakatsos IK, Abbott JJ. 2010. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12:55–85
    [Google Scholar]
  4. 4. 
    Li J, Esteban-Fernández de Ávila B, Gao W, Zhang L, Wang J 2017. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2:eaam6431
    [Google Scholar]
  5. 5. 
    Peng F, Tu Y, Wilson DA. 2017. Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem. Soc. Rev. 46:5289–310
    [Google Scholar]
  6. 6. 
    Ceylan H, Giltinan J, Kozielski K, Sitti M. 2017. Mobile microrobots for bioengineering applications. Lab Chip 17:1705–24
    [Google Scholar]
  7. 7. 
    Hu CZ, Pané S, Nelson BJ. 2018. Soft micro- and nanorobotics. Annu. Rev. Control Robot. Auton. Syst. 1:53–75
    [Google Scholar]
  8. 8. 
    Li J, Gao W, Dong R, Pei A, Sattayasamitsathit S, Wang J 2014. Nanomotor lithography. Nat. Commun. 5:5026
    [Google Scholar]
  9. 9. 
    Srivastava SK, Guix M, Schmidt OG. 2016. Wastewater mediated activation of micromotors for efficient water cleaning. Nano Lett 16:817–21
    [Google Scholar]
  10. 10. 
    Mushtaq F, Asani A, Hoop M, Chen XZ, Ahmed D et al. 2016. Highly efficient coaxial TiO2-PtPd tubular nanomachines for photocatalytic water purification with multiple locomotion strategies. Adv. Funct. Mater. 26:6995–7002
    [Google Scholar]
  11. 11. 
    Vilela D, Parmar J, Zeng Y, Zhao Y, Sanchez S. 2016. Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett 16:2860–66
    [Google Scholar]
  12. 12. 
    Duan W, Wang W, Das S, Yadav V, Mallouk TE, Sen A. 2015. Synthetic nano- and micromachines in analytical chemistry: sensing, migration, capture, delivery, and separation. Annu. Rev. Anal. Chem. 8:311–33
    [Google Scholar]
  13. 13. 
    Ma KY, Chirarattananon P, Fuller SB, Wood RJ. 2013. Controlled flight of a biologically inspired, insect-scale robot. Science 340:603–7
    [Google Scholar]
  14. 14. 
    Baisch AT, Ozcan O, Goldberg B, Ithier D, Wood RJ 2014. High speed locomotion for a quadrupedal microrobot. Int. J. Robot. Res. 33:1063–82
    [Google Scholar]
  15. 15. 
    Koh JS, Yang E, Jung GP, Jung SP, Son JH et al. 2015. Jumping on water: surface tension-dominated jumping of water striders and robotic insects. Science 349:517–21
    [Google Scholar]
  16. 16. 
    de Rivaz SD, Goldberg B, Doshi N, Jayaram K, Zhou J, Wood RJ. 2018. Inverted and vertical climbing of a quadrupedal microrobot using electroadhesion. Sci. Robot. 3:eaau3038
    [Google Scholar]
  17. 17. 
    Yang XF, Chang LLPerez-Arancibia NO 2020. An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle. Sci. Robot. 5:eaba0015
    [Google Scholar]
  18. 18. 
    Wang MQ, Vecchio D, Wang CY, Emre A, Xiao XY et al. 2020. Biomorphic structural batteries for robotics. Sci. Robot. 5:eaba1912
    [Google Scholar]
  19. 19. 
    Palagi S, Mark AG, Reigh SY, Melde K, Qiu T et al. 2016. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15:647–53
    [Google Scholar]
  20. 20. 
    Park SJ, Gazzola M, Park KS, Park S, Di Santo V et al. 2016. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353:158–62
    [Google Scholar]
  21. 21. 
    Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM et al. 2016. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:451–55
    [Google Scholar]
  22. 22. 
    Hu W, Lum GZ, Mastrangeli M, Sitti M 2018. Small-scale soft-bodied robot with multimodal locomotion. Nature 554:81–85
    [Google Scholar]
  23. 23. 
    Ren Z, Hu W, Dong X, Sitti M 2019. Multi-functional soft-bodied jellyfish-like swimming. Nat. Commun. 10:2703
    [Google Scholar]
  24. 24. 
    Gu HR, Boehler Q, Cui HY, Secchi E, Savorana G et al. 2020. Magnetic cilia carpets with programmable metachronal waves. Nat. Commun. 11:2637
    [Google Scholar]
  25. 25. 
    Rubenstein M, Cornejo A, Nagpal R. 2014. Programmable self-assembly in a thousand-robot swarm. Science 345:795–99
    [Google Scholar]
  26. 26. 
    Li S, Batra R, Brown D, Chang HD, Ranganathan N et al. 2019. Particle robotics based on statistical mechanics of loosely coupled components. Nature 567:361–65
    [Google Scholar]
  27. 27. 
    Zhang L, Abbott JJ, Dong LX, Kratochvil BE, Bell D, Nelson BJ. 2009. Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94:064107
    [Google Scholar]
  28. 28. 
    Tottori S, Zhang L, Qiu FM, Krawczyk KK, Franco-Obregon A, Nelson BJ. 2012. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24:811–16
    [Google Scholar]
  29. 29. 
    Wu ZG, Wu YJ, He WP, Lin XK, Sun JM, He Q. 2013. Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew. Chem. Int. Ed. 52:7000–3
    [Google Scholar]
  30. 30. 
    Kim S, Qiu FM, Kim S, Ghanbari A, Moon C et al. 2013. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv. Mater. 25:5863–68
    [Google Scholar]
  31. 31. 
    Ahmed D, Lu M, Nourhani A, Lammert PE, Stratton Z et al. 2015. Selectively manipulable acoustic-powered microswimmers. Sci. Rep. 5:9744
    [Google Scholar]
  32. 32. 
    Huang TY, Sakar MS, Mao A, Petruska AJ, Qiu F et al. 2015. 3D printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents. Adv. Mater. 27:6644–50
    [Google Scholar]
  33. 33. 
    Gao W, Sattayasamitsathit S, Manesh KM, Weihs D, Wang J 2010. Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc. 132:14403–5
    [Google Scholar]
  34. 34. 
    Qiu T, Lee TC, Mark AG, Morozov KI, Munster R et al. 2014. Swimming by reciprocal motion at low Reynolds number. Nat. Commun. 5:5119
    [Google Scholar]
  35. 35. 
    Zeng H, Wasylczyk P, Parmeggiani C, Martella D, Burresi M, Wiersma DS. 2015. Light-fueled microscopic walkers. Adv. Mater. 27:3883–87
    [Google Scholar]
  36. 36. 
    Huang HW, Sakar MS, Petruska AJ, Pané S, Nelson BJ 2016. Soft micromachines with programmable motility and morphology. Nat. Commun. 7:12263
    [Google Scholar]
  37. 37. 
    Huang TY, Huang HW, Jin DD, Chen QY, Huang JY et al. 2020. Four-dimensional micro-building blocks. Sci. Adv. 6:eaav8219
    [Google Scholar]
  38. 38. 
    Alcântara CCJ, Landers FC, Kim S, De Marco C, Ahmed D et al. 2020. Mechanically interlocked 3D multi-material micromachines. Nat. Commun. 11:5957
    [Google Scholar]
  39. 39. 
    Cui J, Huang TY, Luo Z, Testa P, Gu H et al. 2019. Nanomagnetic encoding of shape-morphing micromachines. Nature 575:164–68
    [Google Scholar]
  40. 40. 
    Bandari VK, Nan Y, Karnaushenko D, Hong Y, Sun BK et al. 2020. A flexible microsystem capable of controlled motion and actuation by wireless power transfer. Nat. Electron. 3:172–80
    [Google Scholar]
  41. 41. 
    Miskin MZ, Cortese AJ, Dorsey K, Esposito EP, Reynolds MF et al. 2020. Electronically integrated, mass-manufactured, microscopic robots. Nature 584:557–61
    [Google Scholar]
  42. 42. 
    Medina-Sanchez M, Schwarz L, Meyer AK, Hebenstreit F, Schmidt OG. 2016. Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett 16:555–61
    [Google Scholar]
  43. 43. 
    Xie H, Sun MM, Fan XJ, Lin ZH, Chen WN et al. 2019. Reconfigurable magnetic microrobot swarm: multimode transformation, locomotion, and manipulation. Sci. Robot. 4:eaav8006
    [Google Scholar]
  44. 44. 
    Service RF. 2016. Chemistry Nobel heralds age of molecular machines. Science 354:158–59
    [Google Scholar]
  45. 45. 
    Huang TY, Qiu FM, Tung HW, Peyer KE, Shamsudhin N et al. 2014. Cooperative manipulation and transport of microobjects using multiple helical microcarriers. RSC Adv. 4:26771–76
    [Google Scholar]
  46. 46. 
    Servant A, Qiu FM, Mazza M, Kostarelos K, Nelson BJ 2015. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 27:2981–88
    [Google Scholar]
  47. 47. 
    Ding Y, Qiu FM, Solvas XCI, Chiu FWY, Nelson BJ, deMello A. 2016. Microfluidic-based droplet and cell manipulations using artificial bacterial flagella. Micromachines 7:25
    [Google Scholar]
  48. 48. 
    Chen XZ, Hoop M, Shamsudhin N, Huang T, Ozkale B et al. 2017. Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Adv. Mater. 29:1605458
    [Google Scholar]
  49. 49. 
    Fusco S, Sakar MS, Kennedy S, Peters C, Bottani R et al. 2014. An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv. Mater. 26:952–57
    [Google Scholar]
  50. 50. 
    Qiu FM, Fujita S, Mhanna R, Zhang L, Simona BR, Nelson BJ 2015. Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv. Funct. Mater. 25:1666–71
    [Google Scholar]
  51. 51. 
    Li JY, Mooney DJ. 2016. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1:16071
    [Google Scholar]
  52. 52. 
    Wu YC, Yim JK, Liang JM, Shao ZC, Qi MJ et al. 2019. Insect-scale fast moving and ultrarobust soft robot. Sci. Robot. 4:eaax1594
    [Google Scholar]
  53. 53. 
    Purcell EM. 1977. Life at low Reynolds number. Am. J. Phys. 45:3–11
    [Google Scholar]
  54. 54. 
    Tottori S, Zhang L, Peyer KE, Nelson BJ. 2013. Assembly, disassembly, and anomalous propulsion of microscopic helices. Nano Lett 13:4263–68
    [Google Scholar]
  55. 55. 
    Abbott JJ, Peyer KE, Lagomarsino MC, Zhang L, Dong L et al. 2009. How should microrobots swim?. Int. J. Robot. Res. 28:1434–47
    [Google Scholar]
  56. 56. 
    Zhang L, Petit T, Lu Y, Kratochvil BE, Peyer KE et al. 2010. Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. ACS Nano 4:6228–34
    [Google Scholar]
  57. 57. 
    Jang B, Gutman E, Stucki N, Seitz BF, Wendel-Garcia PD et al. 2015. Undulatory locomotion of magnetic multilink nanoswimmers. Nano Lett 15:4829–33
    [Google Scholar]
  58. 58. 
    Aghakhani A, Yasa O, Wrede P, Sitti M. 2020. Acoustically powered surface-slipping mobile microrobots. PNAS 117:3469–77
    [Google Scholar]
  59. 59. 
    Power M, Thompson AJ, Anastasova S, Yang GZ. 2018. A monolithic force-sensitive 3D microgripper fabricated on the tip of an optical fiber using 2-photon polymerization. Small 14:e1703964
    [Google Scholar]
  60. 60. 
    Jin DD, Chen QY, Huang TY, Huang JY, Zhang L, Duan HL. 2020. Four-dimensional direct laser writing of reconfigurable compound micromachines. Mater. Today 32:19–25
    [Google Scholar]
  61. 61. 
    Kaynak M, Ayhan F, Sakar MS 2019. Compound micromachines powered by acoustic streaming. 2019 International Conference on Robotics and Automation225–30 Piscataway, NJ: IEEE
    [Google Scholar]
  62. 62. 
    Chen Q, Huang T-Y, Lv P, Huang J, Duan H. 2021. Programmable self-locking micromachines with tunable couplings. Adv. Intell. Syst. 3:2000232
    [Google Scholar]
  63. 63. 
    Ahmed D, Baasch T, Jang B, Pané S, Dual J, Nelson BJ. 2016. Artificial swimmers propelled by printed acoustically activated flagella. Nano Lett 16:4968–74
    [Google Scholar]
  64. 64. 
    Chen Y, Zhao H, Mao J, Chirarattananon P, Helbling EF et al. 2019. Controlled flight of a microrobot powered by soft artificial muscles. Nature 575:324–29
    [Google Scholar]
  65. 65. 
    Li GR, Chen XP, Zhou FH, Liang YM, Xiao YH et al. 2021. Self-powered soft robot in the Mariana Trench. Nature 591:66–71
    [Google Scholar]
  66. 66. 
    Chen Q, Lv P, Huang T-Y, Huang J, Duan H. 2020. Encoding smart microjoints for microcrawlers with enhanced locomotion. Adv. Intell. Syst. 2:1900128
    [Google Scholar]
  67. 67. 
    Shintake J, Cacucciolo V, Floreano D, Shea H. 2018. Soft robotic grippers. Adv. Mater. 30:e1707035
    [Google Scholar]
  68. 68. 
    Rafsanjani A, Zhang Y, Liu B, Rubinstein SM, Bertoldi K. 2018. Kirigami skins make a simple soft actuator crawl. Sci. Robot. 3:eaar7555
    [Google Scholar]
  69. 69. 
    Araromi OA, Graule MA, Dorsey KL, Castellanos S, Foster JR et al. 2020. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 587:219–24
    [Google Scholar]
  70. 70. 
    Cvetkovic C, Raman R, Chan V, Williams BJ, Tolish M et al. 2014. Three-dimensionally printed biological machines powered by skeletal muscle. PNAS 111:10125–30
    [Google Scholar]
  71. 71. 
    Huang HW, Uslu FE, Katsamba P, Lauga E, Sakar MS, Nelson BJ. 2019. Adaptive locomotion of artificial microswimmers. Sci. Adv. 5:eaau1532
    [Google Scholar]
  72. 72. 
    Sun JY, Zhao XH, Illeperuma WRK, Chaudhuri O, Oh KH et al. 2012. Highly stretchable and tough hydrogels. Nature 489:133–36
    [Google Scholar]
  73. 73. 
    Wang XP, Qin XH, Hu CZ, Terzopoulou A, Chen XZ et al. 2018. 3D printed enzymatically biodegradable soft helical microswimmers. Adv. Funct. Mater. 28:1804107
    [Google Scholar]
  74. 74. 
    Cianchetti M, Laschi C, Menciassi A, Dario P 2018. Biomedical applications of soft robotics. Nat. Rev. Mater. 3:143–53
    [Google Scholar]
  75. 75. 
    Fu YL, Liu H, Huang WT, Wang SG, Liang ZG 2009. Steerable catheters in minimally invasive vascular surgery. Int. J. Med. Robot. Comput. Assist. Surg. 5:381–91
    [Google Scholar]
  76. 76. 
    Laschi C, Cianchetti M, Mazzolai B, Margheri L, Follador M, Dario P. 2012. Soft robot arm inspired by the octopus. Adv. Robot. 26:709–27
    [Google Scholar]
  77. 77. 
    Burgner-Kahrs J, Rucker DC, Choset H. 2015. Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31:1261–80
    [Google Scholar]
  78. 78. 
    da Veiga T, Chandler JH, Lloyd P, Pittiglio G, Wilkinson NJ et al. 2020. Challenges of continuum robots in clinical context: a review. Prog. Biomed. Eng. 2:032003
    [Google Scholar]
  79. 79. 
    Chautems C, Tonazzini A, Boehler Q, Jeong SH, Floreano D, Nelson BJ 2019. Magnetic continuum device with variable stiffness for minimally invasive surgery. Adv. Intell. Syst. 2:1900086
    [Google Scholar]
  80. 80. 
    Kim Y, Parada GA, Liu S, Zhao X. 2019. Ferromagnetic soft continuum robots. Sci. Robot. 4:eaax7329
    [Google Scholar]
  81. 81. 
    Pancaldi L, Dirix P, Fanelli A, Lima AM, Stergiopulos N et al. 2020. Flow driven robotic navigation of microengineered endovascular probes. Nat. Commun. 11:6356
    [Google Scholar]
  82. 82. 
    Shi C, Luo X, Qi P, Li T, Song S et al. 2017. Shape sensing techniques for continuum robots in minimally invasive surgery: a survey. IEEE Trans. Biomed. Eng. 64:1665–78
    [Google Scholar]
  83. 83. 
    Runciman M, Darzi A, Mylonas GP 2019. Soft robotics in minimally invasive surgery. Soft Robot 6:423–43
    [Google Scholar]
  84. 84. 
    Heunis C, Sikorski J, Misra S. 2018. Flexible instruments for endovascular interventions. IEEE Robot. Autom. Mag. 25:371–82
    [Google Scholar]
  85. 85. 
    Kim Y, Yuk H, Zhao R, Chester SA, Zhao X. 2018. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558:274–79
    [Google Scholar]
  86. 86. 
    Huang HW, Huang TY, Charilaou M, Lyttle S, Zhang Q et al. 2018. Investigation of magnetotaxis of reconfigurable micro-origami swimmers with competitive and cooperative anisotropy. Adv. Funct. Mater. 28:1802110
    [Google Scholar]
  87. 87. 
    Wang W, Timonen JVI, Carlson A, Drotlef DM, Zhang CT et al. 2018. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature 559:77–82
    [Google Scholar]
  88. 88. 
    Montelongo Y, Yetisen AK, Butt H, Yun SH. 2016. Reconfigurable optical assembly of nanostructures. Nat. Commun. 7:12002
    [Google Scholar]
  89. 89. 
    Ko H, Javey A. 2017. Smart actuators and adhesives for reconfigurable matter. Acc. Chem. Res. 50:691–702
    [Google Scholar]
  90. 90. 
    Zhu Y, Birla M, Oldham KR, Filipov ET. 2020. Elastically and plastically foldable electrothermal micro-origami for controllable and rapid shape morphing. Adv. Funct. Mater. 30:2003741
    [Google Scholar]
  91. 91. 
    Rus D, Tolley MT. 2018. Design, fabrication and control of origami robots. Nat. Rev. Mater. 3:101–12
    [Google Scholar]
  92. 92. 
    Liu QK, Wang W, Reynolds MF, Cao MC, Miskin MZ et al. 2021. Micrometer-sized electrically programmable shape-memory actuators for low-power microrobotics. Sci. Robot. 6:eabe6663
    [Google Scholar]
  93. 93. 
    Miskin MZ, Dorsey KJ, Bircan B, Han Y, Muller DA et al. 2018. Graphene-based bimorphs for micron-sized, autonomous origami machines. PNAS 115:466–70
    [Google Scholar]
  94. 94. 
    de Marco C, Alcântara CCJ, Kim S, Briatico F, Kadioglu A et al. 2019. Indirect 3D and 4D printing of soft robotic microstructures. Adv. Mater. Technol. 4:1900332
    [Google Scholar]
  95. 95. 
    Spiegel CA, Hippler M, Munchinger A, Bastmeyer M, Barner-Kowollik C et al. 2020. 4D printing at the microscale. Adv. Funct. Mater. 30:1907615
    [Google Scholar]
  96. 96. 
    Seo J, Paik J, Yim M. 2019. Modular reconfigurable robotics. Annu. Rev. Control Robot. Auton. Syst. 2:63–88
    [Google Scholar]
  97. 97. 
    Diller E, Pawashe C, Floyd S, Sitti M 2011. Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. Int. J. Robot. Res. 30:1667–80
    [Google Scholar]
  98. 98. 
    Lum GZ, Ye Z, Dong X, Marvi H, Erin O et al. 2016. Shape-programmable magnetic soft matter. PNAS 113:E6007–15
    [Google Scholar]
  99. 99. 
    Xu T, Zhang J, Salehizadeh M, Onaizah O, Diller E 2019. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Sci. Robot. 4:eaav4494
    [Google Scholar]
  100. 100. 
    Kim J, Chung SE, Choi SE, Lee H, Kim J, Kwon S 2011. Programming magnetic anisotropy in polymeric microactuators. Nat. Mater. 10:747–52
    [Google Scholar]
  101. 101. 
    Gu H, Boehler Q, Ahmed D, Nelson BJ 2019. Magnetic quadrupole assemblies with arbitrary shapes and magnetizations. Sci. Robot. 4:eaax8977
    [Google Scholar]
  102. 102. 
    Lee H, Kim J, Kim H, Kim J, Kwon S 2010. Colour-barcoded magnetic microparticles for multiplexed bioassays. Nat. Mater. 9:745–49
    [Google Scholar]
  103. 103. 
    Douglas SM, Bachelet I, Church GM. 2012. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–34
    [Google Scholar]
  104. 104. 
    Terzopoulou A, Nicholas JD, Chen XZ, Nelson BJ, Pané S, Puigmarti-Luis J. 2020. Metal-organic frameworks in motion. Chem. Rev. 120:11175–93
    [Google Scholar]
  105. 105. 
    Schwarz L, Medina-Sanchez M, Schmidt OG. 2017. Hybrid biomicromotors. Appl. Phys. Rev. 4:031301
    [Google Scholar]
  106. 106. 
    Huang C-M, Kucinic A, Johnson JA, Su H-J, Castro CE. 2021. Integrated computer-aided engineering and design for DNA assemblies. Nat. Mater. 20:1264–71
    [Google Scholar]
  107. 107. 
    Chen XZ, Jang BM, Ahmed D, Hu CZ, De Marco C et al. 2018. Small-scale machines driven by external power sources. Adv. Mater. 30:1705061
    [Google Scholar]
  108. 108. 
    Wang XP, Chen XZ, Alcantara CCJ, Sevim S, Hoop M et al. 2019. MOFBOTS: metal–organic-framework-based biomedical microrobots. Adv. Mater. 31:1901592
    [Google Scholar]
  109. 109. 
    Ricotti L, Trimmer B, Feinberg AW, Raman R, Parker KK et al. 2017. Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci. Robot. 2:eaaq0495
    [Google Scholar]
  110. 110. 
    Ahmed D, Baasch T, Blondel N, Laubli N, Dual J, Nelson BJ. 2017. Neutrophil-inspired propulsion in a combined acoustic and magnetic field. Nat. Commun. 8:770
    [Google Scholar]
  111. 111. 
    Ma PX. 2008. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 60:184–98
    [Google Scholar]
  112. 112. 
    Wang Y, Yang X, Chen Y, Wainwright DK, Kenaley CP et al. 2017. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Sci. Robot. 2:eaan8072
    [Google Scholar]
  113. 113. 
    Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. 2016. Biomimetic 4D printing. Nat. Mater. 15:413–18
    [Google Scholar]
  114. 114. 
    Palagi S, Fischer P. 2018. Bioinspired microrobots. Nat. Rev. Mater. 3:113–24
    [Google Scholar]
  115. 115. 
    Someya T, Bao Z, Malliaras GG 2016. The rise of plastic bioelectronics. Nature 540:379–85
    [Google Scholar]
  116. 116. 
    Khan Y, Thielens A, Muin S, Ting J, Baumbauer C, Arias AC. 2020. A new frontier of printed electronics: flexible hybrid electronics. Adv. Mater. 32:e1905279
    [Google Scholar]
  117. 117. 
    Yuk H, Lu BY, Zhao XH. 2019. Hydrogel bioelectronics. Chem. Soc. Rev. 48:1642–67
    [Google Scholar]
  118. 118. 
    Yang L, Zhang L 2021. Motion control in magnetic microrobotics: from individual and multiple robots to swarms. Annu. Rev. Control Robot. Auton. Syst. 4:509–34
    [Google Scholar]
  119. 119. 
    Wang QQ, Zhang L. 2021. External power-driven microrobotic swarm: from fundamental understanding to imaging-guided delivery. ACS Nano 15:149–74
    [Google Scholar]
  120. 120. 
    Dey S, Fan C, Gothelf KV, Li J, Lin C et al. 2021. DNA origami. Nat. Rev. Methods Primers 1:13
    [Google Scholar]
  121. 121. 
    Ge P, Scholl D, Prokhorov NS, Avaylon J, Shneider MM et al. 2020. Action of a minimal contractile bactericidal nanomachine. Nature 580:658–62
    [Google Scholar]
  122. 122. 
    Balzani V, Credi A, Raymo FM, Stoddart JF. 2000. Artificial molecular machines. Angew. Chem. Int. Ed. 39:3348–91
    [Google Scholar]
  123. 123. 
    Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL. 2015. Artificial molecular machines. Chem. Rev. 115:10081–206
    [Google Scholar]
  124. 124. 
    Kinbara K, Aida T. 2005. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105:1377–400
    [Google Scholar]
  125. 125. 
    Krause S, Feringa B. 2020. Towards artificial molecular factories from framework-embedded molecular machines. Nat. Rev. Chem. 4:550–62
    [Google Scholar]
  126. 126. 
    de Marco C, Pané S, Nelson BJ. 2018. 4D printing and robotics. Sci. Robot. 3:eaau0449
    [Google Scholar]
  127. 127. 
    Erol O, Pantula A, Liu WQ, Gracias DH. 2019. Transformer hydrogels: a review. Adv. Mater. Technol. 4:1900043
    [Google Scholar]
  128. 128. 
    Luo Z, Hrabec A, Dao TP, Sala G, Finizio S et al. 2020. Current-driven magnetic domain-wall logic. Nature 579:214–18
    [Google Scholar]
  129. 129. 
    Li JH, Pumera M. 2021. 3D printing of functional microrobots. Chem. Soc. Rev. 50:2794–838
    [Google Scholar]
  130. 130. 
    Soto F, Karshalev E, Zhang F, Esteban Fernandez de Avila B, Nourhani A, Wang J 2021. Smart materials for microrobots. Chem. Rev. https://doi.org/10.1021/acs.chemrev.0c00999
    [Crossref] [Google Scholar]
  131. 131. 
    Kotikian A, Morales JM, Lu A, Mueller J, Davidson ZS et al. 2021. Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Adv. Mater. 33:2101814
    [Google Scholar]
  132. 132. 
    Zolfagharian A, Kaynak A, Kouzani A. 2020. Closed-loop 4D-printed soft robots. Mater. Des. 188:108411
    [Google Scholar]
  133. 133. 
    Abbott JJ, Diller E, Petruska AJ 2020. Magnetic methods in robotics. Annu. Rev. Control Robot. Auton. Syst. 3:57–90
    [Google Scholar]
  134. 134. 
    Xu T, Xu L-P, Zhang X. 2017. Ultrasound propulsion of micro-/nanomotors. Appl. Mater. Today 9:493–503
    [Google Scholar]
  135. 135. 
    Kopperger E, List J, Madhira S, Rothfischer F, Lamb DC, Simmel FC. 2018. A self-assembled nanoscale robotic arm controlled by electric fields. Science 359:296–301
    [Google Scholar]
  136. 136. 
    Sanchez S, Soler L, Katuri J. 2015. Chemically powered micro- and nanomotors. Angew. Chem. Int. Ed. 54:1414–44
    [Google Scholar]
  137. 137. 
    Han M, Chen L, Aras K, Liang CM, Chen X et al. 2020. Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery. Nat. Biomed. Eng. 4:997–1009
    [Google Scholar]
  138. 138. 
    Chen D, Pei Q 2017. Electronic muscles and skins: a review of soft sensors and actuators. Chem. Rev. 117:11239–68
    [Google Scholar]
  139. 139. 
    Li JX, Shklyaev OE, Li TL, Liu WJ, Shum H et al. 2015. Self-propelled nanomotors autonomously seek and repair cracks. Nano Lett 15:7077–85
    [Google Scholar]
  140. 140. 
    Jin D, Yu J, Yuan K, Zhang L 2019. Mimicking the structure and function of ant bridges in a reconfigurable microswarm for electronic applications. ACS Nano 13:5999–6007
    [Google Scholar]
  141. 141. 
    Jurado-Sanchez B, Wang J. 2018. Micromotors for environmental applications: a review. Environ. Sci. Nano 5:1530–44
    [Google Scholar]
  142. 142. 
    Roper JM, Garcia JF, Tsutsui H. 2021. Emerging technologies for monitoring plant health in vivo. ACS Omega 6:5101–7
    [Google Scholar]
  143. 143. 
    Yu WZ, Lin HS, Wang YL, He X, Chen N et al. 2020. A ferrobotic system for automated microfluidic logistics. Sci. Robot. 5:eaba4411
    [Google Scholar]
  144. 144. 
    Herrmann IK, Schlegel AA, Graf R, Stark WJ, Beck-Schimmer B. 2015. Magnetic separation-based blood purification: a promising new approach for the removal of disease-causing compounds?. J. Nanobiotechnol. 13:49
    [Google Scholar]
  145. 145. 
    Soreni-Harari M, St. Pierre R, McCue C, Moreno K, Bergbreiter S 2020. Multimaterial 3D printing for microrobotic mechanisms. Soft Robot. 7:59–67
    [Google Scholar]
  146. 146. 
    Barbot A, Tan HJ, Power M, Seichepine F, Yang GZ 2019. Floating magnetic microrobots for fiber functionalization. Sci. Robot. 4:eaax8336
    [Google Scholar]
  147. 147. 
    Xu S, Yan Z, Jang KI, Huang W, Fu HR et al. 2015. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347:154–59
    [Google Scholar]
  148. 148. 
    Gabler F, Karnaushenko DD, Karnaushenko D, Schmidt OG. 2019. Magnetic origami creates high performance micro devices. Nat. Commun. 10:3013
    [Google Scholar]
  149. 149. 
    Mazzolai B, Laschi C. 2020. A vision for future bioinspired and biohybrid robots. Sci. Robot. 5:eaba6893
    [Google Scholar]
  150. 150. 
    St. Pierre R, Bergbreiter S 2019. Toward autonomy in sub-gram terrestrial robots. Annu. Rev. Control Robot. Auton. Syst. 2:231–52
    [Google Scholar]
  151. 151. 
    Piech DK, Johnson BC, Shen K, Ghanbari MM, Li KY et al. 2020. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat. Biomed. Eng. 4:207–22
    [Google Scholar]
  152. 152. 
    Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. 2000. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. PNAS 97:8206–10
    [Google Scholar]
  153. 153. 
    Dai BH, Wang JZ, Xiong Z, Zhan XJ, Dai W et al. 2016. Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 11:1087–92
    [Google Scholar]
  154. 154. 
    Palacci J, Sacanna S, Abramian A, Barral J, Hanson K et al. 2015. Artificial rheotaxis. Sci. Adv. 1:e1400214
    [Google Scholar]
  155. 155. 
    Zhuang J, Sitti M. 2016. Chemotaxis of bio-hybrid multiple bacteria-driven microswimmers. Sci. Rep. 6:32135
    [Google Scholar]
  156. 156. 
    Imre A, Csaba G, Ji L, Orlov A, Bernstein GH, Porod W 2006. Majority logic gate for magnetic quantum-dot cellular automata. Science 311:205–8
    [Google Scholar]
  157. 157. 
    Wu ZG, Li L, Yang YR, Hu P, Li Y et al. 2019. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4:eaax0613
    [Google Scholar]
  158. 158. 
    Wang QQ, Chan KF, Schweizer K, Du XZ, Jin DD et al. 2021. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci. Adv. 7:eabe5914
    [Google Scholar]
  159. 159. 
    Hortelao AC, Simo C, Guix M, Guallar-Garrido S, Julian E et al. 2021. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci. Robot. 6:eabd2823
    [Google Scholar]
  160. 160. 
    Nummelin S, Shen BX, Piskunen P, Liu Q, Kostiainen MA, Linko V. 2020. Robotic DNA nanostructures. ACS Synth. Biol. 9:1923–40
    [Google Scholar]
  161. 161. 
    Rogers WB, Shih WM, Manoharan VN. 2016. Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nat. Rev. Mater. 1:16008
    [Google Scholar]
  162. 162. 
    Shih B, Shah D, Li JX, Thuruthel TG, Park YL et al. 2020. Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 5:eaaz9239
    [Google Scholar]
  163. 163. 
    Hawkes EW, Blumenschein LH, Greer JD, Okamura AM. 2017. A soft robot that navigates its environment through growth. Sci. Robot. 2:eaan3028
    [Google Scholar]
  164. 164. 
    Sadeghi A, Mondini A, Mazzolai B. 2017. Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies. Soft Robot. 4:211–23
    [Google Scholar]
  165. 165. 
    Vutukuri HR, Hoore M, Abaurrea-Velasco C, van Buren L, Dutto A et al. 2020. Active particles induce large shape deformations in giant lipid vesicles. Nature 586:52–56
    [Google Scholar]
  166. 166. 
    Lavergne FA, Wendehenne H, Bauerle T, Bechinger C. 2019. Group formation and cohesion of active particles with visual perception-dependent motility. Science 364:70–74
    [Google Scholar]
  167. 167. 
    Barbot A, Wales D, Yeatman E, Yang GZ 2021. Microfluidics at fiber tip for nanoliter delivery and sampling. Adv. Sci. 8:2004643
    [Google Scholar]
  168. 168. 
    Won SM, Cai L, Gutruf P, Rogers JA 2021. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-021-00683-3
    [Crossref] [Google Scholar]
  169. 169. 
    Jeong JW, McCall JG, Shin G, Zhang YH, Al-Hasani R et al. 2015. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162:662–74
    [Google Scholar]
  170. 170. 
    Hong A, Petruska AJ, Zemmar A, Nelson BJ 2021. Magnetic control of a flexible needle in neurosurgery. IEEE Trans. Biomed. Eng. 68:616–27
    [Google Scholar]
  171. 171. 
    McClintock H, Temel FZ, Doshi N, Koh JS, Wood RJ. 2018. The milliDelta: a high-bandwidth, high-precision, millimeter-scale Delta robot. Sci. Robot. 3:eaar3018
    [Google Scholar]
  172. 172. 
    Gao W, Uygun A, Wang J 2012. Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. J. Am. Chem. Soc. 134:897–900
    [Google Scholar]
  173. 173. 
    Zhang S, Elsayed M, Peng R, Chen Y, Zhang Y et al. 2021. Reconfigurable multi-component micromachines driven by optoelectronic tweezers. Nat. Commun. 12:5349
    [Google Scholar]
  174. 174. 
    Felekis D, Vogler H, Mecja G, Muntwyler S, Nestorova A et al. 2015. Real-time automated characterization of 3D morphology and mechanics of developing plant cells. Int. J. Robot. Res. 34:1136–46
    [Google Scholar]
  175. 175. 
    Gutruf P, Krishnamurthi V, Vázquez-Guardado A, Xie Z, Banks A et al. 2018. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat. Electron. 1:652–60
    [Google Scholar]
/content/journals/10.1146/annurev-control-042920-013322
Loading
/content/journals/10.1146/annurev-control-042920-013322
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error