1932

Abstract

This article reviews the literature on the design of robotic mechanical grippers, with a focus on the mechanical aspects, which are believed to be the main bottleneck for effective designs. Our discussion includes gripper architectures and means of actuation, anthropomorphism and grasp planning, and robotic manipulation, emphasizing the complementary concepts of intrinsic and extrinsic dexterity. We also consider interactions of robotic grippers with the environment and with the objects to be grasped and argue that the proper handling of such interactions is key to the development of grasping and manipulation tools and scenarios. Finally, we briefly present examples of recent designs to support the discussion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-061520-010405
2021-05-03
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/control/4/1/annurev-control-061520-010405.html?itemId=/content/journals/10.1146/annurev-control-061520-010405&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kaboli M, De La Rosa A, Walker R, Cheng G 2015. In-hand object recognition via texture properties with robotic hands, artificial skin, and novel tactile descriptors. 2015 IEEE-RAS 15th International Conference on Humanoid Robots1155–60 Piscataway, NJ: IEEE
    [Google Scholar]
  2. 2. 
    Cerulo I, Ficuciello F, Lippiello V, Siciliano B 2017. Teleoperation of the SCHUNK S5FH under-actuated anthropomorphic hand using human hand motion tracking. Robot. Auton. Syst. 89:75–84
    [Google Scholar]
  3. 3. 
    Kobayashi F, Ikai G, Fukui W, Kojima F 2011. Two-fingered haptic device for robot hand teleoperation. J. Robot. 2011:419465
    [Google Scholar]
  4. 4. 
    Cutkosky MR. 1989. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans. Robot. Autom. 5:269–79
    [Google Scholar]
  5. 5. 
    Feix T, Romero J, Schmiedmayer HB, Dollar AM, Kragic D 2015. The grasp taxonomy of human grasp types. IEEE Trans. Hum.-Mach. Syst. 46:66–77
    [Google Scholar]
  6. 6. 
    Piazza C, Grioli G, Catalano M, Bicchi A 2019. A century of robotic hands. Annu. Rev. Control Robot. Auton. Syst. 2:1–32
    [Google Scholar]
  7. 7. 
    Babin V, Gosselin C. 2018. Picking, grasping, or scooping small objects lying on flat surfaces: a design approach. Int. J. Robot. Res. 37:1484–99
    [Google Scholar]
  8. 8. 
    Babin V, St-Onge D, Gosselin C 2019. Stable and repeatable grasping of flat objects on hard surfaces using passive and epicyclic mechanisms. Robot. Comput.-Integr. Manuf. 55:1–10
    [Google Scholar]
  9. 9. 
    Dafle NC, Rodriguez A, Paolini R, Tang B, Srinivasa SS et al. 2014. Extrinsic dexterity: in-hand manipulation with external forces. 2014 IEEE International Conference on Robotics and Automation1578–85 Piscataway, NJ: IEEE
    [Google Scholar]
  10. 10. 
    Hou Y, Jia Z, Mason MT 2019. Reorienting objects in 3D space using pivoting. arXiv:1912.02752 [cs.RO]
  11. 11. 
    Bicchi A. 2000. Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans. Robot. Autom. 16:652–62
    [Google Scholar]
  12. 12. 
    Ciullo AS, Veerbeek JM, Temperli E, Luft AR, Tonis FJ et al. 2020. A novel soft robotic supernumerary hand for severely affected stroke patients. IEEE Trans. Neural Syst. Rehabil. Eng. 28:1168–77
    [Google Scholar]
  13. 13. 
    Laliberté T, Gosselin C. 1998. Simulation and design of underactuated mechanical hands. Mech. Mach. Theory 33:39–57
    [Google Scholar]
  14. 14. 
    Birglen L, Laliberté T, Gosselin C 2007. Underactuated Robotic Hands Berlin: Springer
  15. 15. 
    Laliberté T, Baril M, Guay F, Gosselin C 2010. Towards the design of a prosthetic underactuated hand. Mech. Sci. 1:19–26
    [Google Scholar]
  16. 16. 
    Ulrich NT. 1989. Grasping with mechanical intelligence PhD Thesis, Univ. Pa Philadelphia:
  17. 17. 
    Hirose S, Umetani Y. 1978. The development of soft gripper for the versatile robot hand. Mech. Mach. Theory 13:351–59
    [Google Scholar]
  18. 18. 
    Laliberté T, Birglen L, Gosselin C 2002. Underactuation in robotic grasping hands. Mach. Intell. Robot. Control 4:1–11
    [Google Scholar]
  19. 19. 
    Birglen L, Gosselin C. 2006. Optimally unstable underactuated gripper: synthesis and applications. ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 23–11 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  20. 20. 
    Palli G, Melchiorri C, Vassura G, Scarcia U, Moriello L et al. 2014. The DEXMART hand: mechatronic design and experimental evaluation of synergy-based control for human-like grasping. Int. J. Robot. Res. 33:799–824
    [Google Scholar]
  21. 21. 
    Spanjer SA, Balasubramanian R, Dollar AM, Herder JL 2012. Underactuated gripper that is able to convert from precision to power grasp by a variable transmission ratio. Advances in Reconfigurable Mechanisms and Robots I J Dai, M Zoppi, X Kong 669–79 London: Springer
    [Google Scholar]
  22. 22. 
    Catalano MG, Grioli G, Farnioli E, Serio A, Piazza C, Bicchi A 2014. Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int. J. Robot. Res. 33:768–82
    [Google Scholar]
  23. 23. 
    Ko T. 2020. A tendon-driven robot gripper with passively switchable underactuated surface and its physics simulation based parameter optimization. IEEE Robot. Autom. Lett. 5:5002–9
    [Google Scholar]
  24. 24. 
    Howell LL, Magleby SP, Olsen BM 2013. Handbook of Compliant Mechanisms New York: Wiley & Sons
  25. 25. 
    Boudreault E, Gosselin C. 2006. Design of sub-centimetre underactuated compliant grippers. ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 2119–27 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  26. 26. 
    Moon YM, Trease BP, Kota S 2002. Design of large-displacement compliant joints. ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 565–76 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  27. 27. 
    Mutlu R, Alici G, in het Panhuis M, Spinks G. 2015. Effect of flexure hinge type on a 3D printed fully compliant prosthetic finger. In 2015 IEEE International Conference on Advanced Intelligent Mechatronicspp790–95 Piscataway, NJ: IEEE
    [Google Scholar]
  28. 28. 
    Groenewegen MW, Aguirre ME, Herder JL 2015. Design of a partially compliant, three-phalanx underactuated prosthetic finger. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 5A pap. V05AT08A040 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  29. 29. 
    Lee K, Wang Y, Zheng C 2020. TWISTER Hand: underactuated robotic gripper inspired by origami twisted tower. IEEE Trans. Robot. 36:488–500
    [Google Scholar]
  30. 30. 
    Kim S, Laschi C, Trimmer B 2013. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 31:287–94
    [Google Scholar]
  31. 31. 
    Subramaniam V, Jain S, Agarwal J, Valdivia y Alvarado P 2020. Design and characterization of a hybrid soft gripper with active palm pose control. Int. J. Robot. Res. 39:1668–85
    [Google Scholar]
  32. 32. 
    Wang Z, Or K, Hirai S 2020. A dual-mode soft gripper for food packaging. Robot. Auton. Syst. 125:103427
    [Google Scholar]
  33. 33. 
    Nishimura H, Kakogawa A, Ma S 2012. Development of an underactuated robot gripper capable of retracting motion. 2012 IEEE International Conference on Robotics and Biomimetics2161–66 Piscataway, NJ: IEEE
    [Google Scholar]
  34. 34. 
    Tincani V, Catalano MG, Farnioli E, Garabini M, Grioli G et al. 2012. Velvet Fingers: a dexterous gripper with active surfaces. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems1257–63 Piscataway, NJ: IEEE
    [Google Scholar]
  35. 35. 
    Yuan S, Epps AD, Nowak JB, Salisbury JK 2020. Design of a roller-based dexterous hand for object grasping and within-hand manipulation. 2020 IEEE International Conference on Robotics and Automation8870–76 Piscataway, NJ: IEEE
    [Google Scholar]
  36. 36. 
    Golan Y, Shapiro A, Rimon E 2020. Jamming-free immobilizing grasps using dual-friction robotic fingertips. IEEE Robot. Autom. Lett. 5:2889–96
    [Google Scholar]
  37. 37. 
    Nishida T, Shigehisa D, Kawashima N, Tadakuma K 2014. Development of universal jamming gripper with a force feedback mechanism. 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS)242–46 Piscataway, NJ: IEEE
    [Google Scholar]
  38. 38. 
    Nishida T, Okatani Y, Tadakuma K 2016. Development of universal robot gripper using MR α fluid. Int. J. Humanoid Robot. 13:1650017
    [Google Scholar]
  39. 39. 
    Mo A, Zhang W. 2017. Pin array hand: a universal robot gripper with pins of ellipse contour. 2017 IEEE International Conference on Robotics and Biomimetics2075–80 Piscataway, NJ: IEEE
    [Google Scholar]
  40. 40. 
    Millet O, Bernardoni P, Régnier S, Bidaud P, Tsitsiris E et al. 2004. Electrostatic actuated micro gripper using an amplification mechanism. Sens. Actuators A 114:371–78
    [Google Scholar]
  41. 41. 
    Enikov ET, Minkov LL, Clark S 2005. Microassembly experiments with transparent electrostatic gripper under optical and vision-based control. IEEE Trans. Ind. Electron. 52:1005–12
    [Google Scholar]
  42. 42. 
    Fantoni G, Biganzoli F. 2004. Design of a novel electrostatic gripper. J. Manuf. Sci. Prod. 6:163–80
    [Google Scholar]
  43. 43. 
    Gama Melo EN, Aviles Sanchez OF, Amaya Hurtado D 2014. Anthropomorphic robotic hands: a review. Ing. Desarrollo 32:279–313
    [Google Scholar]
  44. 44. 
    Kaneko M, Higashimori M, Takenaka R, Namiki A, Ishikawa M 2003. The 100 G capturing robot – too fast to see. IEEE/ASME Trans. Mechatron. 8:37–44
    [Google Scholar]
  45. 45. 
    Takaki T, Omata T. 2006. 100G-100N finger joint with load-sensitive continuously variable transmission. 2006 IEEE International Conference on Robotics and Automation976–81 Piscataway, NJ: IEEE
    [Google Scholar]
  46. 46. 
    Véronneau C, Denis J, Lebel LP, Denninger M, Blanchard V et al. 2020. Multifunctional remotely actuated 3-DOF supernumerary robotic arm based on magnetorheological clutches and hydrostatic transmission lines. IEEE Robot. Autom. Lett. 5:2546–53
    [Google Scholar]
  47. 47. 
    Babin V, Gosselin C, Allan JF 2014. A dual-motor robot joint mechanism with epicyclic gear train. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems472–77 Piscataway, NJ: IEEE
    [Google Scholar]
  48. 48. 
    Shin YJ, Lee HJ, Kim KS, Kim S 2012. A robot finger design using a dual-mode twisting mechanism to achieve high-speed motion and large grasping force. IEEE Trans. Robot. 28:1398–405
    [Google Scholar]
  49. 49. 
    Jeong SH, Kim KS. 2018. A 2-speed small transmission mechanism based on twisted string actuation and a dog clutch. IEEE Robot. Autom. Lett. 3:1338–45
    [Google Scholar]
  50. 50. 
    Mason MT, Salisbury JKJr 1985. Robot Hands and the Mechanics of Manipulation Cambridge, MA: MIT Press
  51. 51. 
    Lee JJ, Tsai LW. 1991. The structural synthesis of tendon-driven manipulators having a pseudotriangular structure matrix. Int. J. Robot. Res. 10:255–62
    [Google Scholar]
  52. 52. 
    Dollar AM, Howe RD. 2008. Simple, reliable robotic grasping for human environments. 2008 IEEE International Conference on Technologies for Practical Robot Applications156–61 Piscataway, NJ: IEEE
    [Google Scholar]
  53. 53. 
    Son H, Lee G, Lee C, Choi Y 2018. Underactuated tendon-driven finger design with bio-inspired ligamentous joint mechanism. 2018 IEEE International Conference on Cyborg and Bionic Systems171–76 Piscataway, NJ: IEEE
    [Google Scholar]
  54. 54. 
    Brock O, Fagg A, Grupen R, Platt R, Rosenstein M, Sweeney J 2005. A framework for learning and control in intelligent humanoid robots. Int. J. Humanoid Robot. 2:301–36
    [Google Scholar]
  55. 55. 
    Röthling F, Haschke R, Steil JJ, Ritter H 2007. Platform portable anthropomorphic grasping with the Bielefeld 20-DOF Shadow and 9-DOF TUM hand. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems2951–56 Piscataway, NJ: IEEE
    [Google Scholar]
  56. 56. 
    Isaksson M, Gosselin C, Marlow K 2016. An introduction to utilising the redundancy of a kinematically redundant parallel manipulator to operate a gripper. Mech. Mach. Theory 101:50–59
    [Google Scholar]
  57. 57. 
    Lambert P, Herder J. 2015. A novel parallel haptic device with 7 degrees of freedom. 2015 IEEE World Haptics Conference183–88 Piscataway, NJ: IEEE
    [Google Scholar]
  58. 58. 
    Wen K, Harton D, Laliberté T, Gosselin C 2019. Kinematically redundant (6+3)-dof hybrid parallel robot with large orientational workspace and remotely operated gripper. 2019 International Conference on Robotics and Automation1672–78 Piscataway, NJ: IEEE
    [Google Scholar]
  59. 59. 
    Gosselin C, Laliberté T, Veillette A 2015. Singularity-free kinematically redundant planar parallel mechanisms with unlimited rotational capability. IEEE Trans. Robot. 31:457–67
    [Google Scholar]
  60. 60. 
    Yamaguchi A, Atkeson CG. 2019. Recent progress in tactile sensing and sensors for robotic manipulation: Can we turn tactile sensing into vision. ? Adv. Robot. 33:661–73
    [Google Scholar]
  61. 61. 
    Galajda P, Svecova M, Drutarovsky M, Slovak S, Pecovsky M et al. 2020. Wireless UWB sensor system for robot gripper monitoring in non-cooperative environments. Recent Advances in Intelligent Engineering L Kovács, T Haidegger, A Szakál 177–207 Cham, Switz: Springer
    [Google Scholar]
  62. 62. 
    Chen CH, Chong WD 2013. Force controlled robot gripper with flexible joint for delicate assembly task. 2013 13th International Conference on Control, Automation and Systems935–39 Piscataway, NJ: IEEE
    [Google Scholar]
  63. 63. 
    Chu Z, Sarro P, Middelhoek S 1996. Silicon three-axial tactile sensor. Sens. Actuators A 54:505–10
    [Google Scholar]
  64. 64. 
    Yousef H, Boukallel M, Althoefer K 2011. Tactile sensing for dexterous in-hand manipulation in robotics—a review. Sens. Actuators A 167:171–87
    [Google Scholar]
  65. 65. 
    Chossat JB, Park YL, Wood RJ, Duchaine V 2013. A soft strain sensor based on ionic and metal liquids. IEEE Sens. J. 13:3405–14
    [Google Scholar]
  66. 66. 
    Kappassov Z, Corrales JA, Perdereau V 2015. Tactile sensing in dexterous robot hands. Robot. Auton. Syst. 74:195–220
    [Google Scholar]
  67. 67. 
    Rana A, Roberge JP, Duchaine V 2016. An improved soft dielectric for a highly sensitive capacitive tactile sensor. IEEE Sens. J. 16:7853–63
    [Google Scholar]
  68. 68. 
    Biagiotti L, Lotti F, Melchiorri C, Vassura G 2004. How far is the human hand? A review on anthropomorphic robotic end-effectors Tech. Rep., Univ. Bologna Italy:
  69. 69. 
    Tubiana R, Thomine JM. 1990. La main: anatomie fonctionnelle et examen clinique Paris: Masson
  70. 70. 
    Gosselin C, Pelletier F, Laliberté T 2008. An anthropomorphic underactuated robotic hand with 15 dofs and a single actuator. 2008 IEEE International Conference on Robotics and Automation749–54 Piscataway, NJ: IEEE
    [Google Scholar]
  71. 71. 
    Rodriguez A, Mason MT, Ferry S 2012. From caging to grasping. Int. J. Robot. Res. 31:886–900
    [Google Scholar]
  72. 72. 
    Guay F, Cardou P, Cruz-Ruiz AL, Caro S 2014. Measuring how well a structure supports varying external wrenches. New Advances in Mechanisms, Transmissions and Applications V Petuya, C Pinto, EC Lovasz 385–92 Dordrecht, Neth: Springer
    [Google Scholar]
  73. 73. 
    Xiong C, Xiong Y. 1998. Stability index and contact configuration planning for multifingered grasp. J. Robot. Syst. 15:183–90
    [Google Scholar]
  74. 74. 
    Negrello F, Friedl W, Grioli G, Garabini M, Brock O et al. 2020. Benchmarking hand and grasp resilience to dynamic loads. IEEE Robot. Autom. Lett. 5:1780–87
    [Google Scholar]
  75. 75. 
    Falco J, Hemphill D, Kimble K, Messina E, Norton A et al. 2020. Benchmarking protocols for evaluating grasp strength, grasp cycle time, finger strength, and finger repeatability of robot end-effectors. IEEE Robot. Autom. Lett. 5:644–51
    [Google Scholar]
  76. 76. 
    Bekiroglu Y, Marturi N, Roa MA, Adjigble KJM, Pardi T et al. 2019. Benchmarking protocol for grasp planning algorithms. IEEE Robot. Autom. Lett. 5:315–22
    [Google Scholar]
  77. 77. 
    Bottarel F, Vezzani G, Pattacini U, Natale L 2020. GRASPA 1.0: GRASPA is a robot arm grasping performance benchmark. IEEE Robot. Autom. Lett. 5:836–43
    [Google Scholar]
  78. 78. 
    Wen R, Yuan K, Wang Q, Heng S, Li Z 2020. Force-guided high-precision grasping control of fragile and deformable objects using sEMG-based force prediction. IEEE Robot. Autom. Lett. 5:2762–69
    [Google Scholar]
  79. 79. 
    Gabellieri C, Angelini F, Arapi V, Palleschi A, Catalano MG et al. 2020. Grasp it like a pro: grasp of unknown objects with robotic hands based on skilled human expertise. IEEE Robot. Autom. Lett. 5:2808–15
    [Google Scholar]
  80. 80. 
    Song Y, Gao L, Li X, Shen W 2020. A novel robotic grasp detection method based on region proposal networks. Robot. Comput.-Integr. Manuf. 65:101963
    [Google Scholar]
  81. 81. 
    Shao L, Ferreira F, Jorda M, Nambiar V, Luo J et al. 2020. UniGrasp: learning a unified model to grasp with multifingered robotic hands. IEEE Robot. Autom. Lett. 5:2286–93
    [Google Scholar]
  82. 82. 
    Ueda J, Kondo M, Ogasawara T 2010. The multifingered NAIST hand system for robot in-hand manipulation. Mech. Mach. Theory 45:224–38
    [Google Scholar]
  83. 83. 
    Wegner LM. 1991. Let the fingers do the walking: object manipulation in an NF2 database editor. New Results and New Trends in Computer Science H Maurer 337–58 Berlin: Springer
    [Google Scholar]
  84. 84. 
    Andrychowicz M, Baker B, Chociej M, Jozefowicz R, McGrew B et al. 2018. Learning dexterous in-hand manipulation. arXiv:1808.00177 [cs.LG]
  85. 85. 
    Cheng B, Wu W, Tao D, Mei S, Mao T, Cheng J 2020. Random cropping ensemble neural network for image classification in a robotic arm grasping system. IEEE Trans. Instrum. Meas. 69:6795–806
    [Google Scholar]
  86. 86. 
    Zimmermann S, Hakimifard G, Zamora M, Poranne R, Coros S 2020. A multi-level optimization framework for simultaneous grasping and motion planning. IEEE Robot. Autom. Lett. 5:2966–72
    [Google Scholar]
  87. 87. 
    Eppner C, Deimel R, Alvarez-Ruiz J, Maertens M, Brock O 2015. Exploitation of environmental constraints in human and robotic grasping. Int. J. Robot. Res. 34:1021–38
    [Google Scholar]
  88. 88. 
    Hogan FR, Rodriguez A. 2020. Reactive planar non-prehensile manipulation with hybrid model predictive control. Int. J. Robot. Res. 39:755–73
    [Google Scholar]
  89. 89. 
    Kluz R, Trzepieciński T. 2015. Analysis of the optimal orientation of robot gripper for an improved capability assembly process. Robot. Auton. Syst. 74:253–66
    [Google Scholar]
  90. 90. 
    Park JJ, Kim HS, Song JB 2009. Safe robot arm with safe joint mechanism using nonlinear spring system for collision safety. 2009 IEEE International Conference on Robotics and Automation3371–76 Piscataway, NJ: IEEE
    [Google Scholar]
  91. 91. 
    Pettersson A, Davis S, Gray JO, Dodd TJ, Ohlsson T 2010. Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes. J. Food Eng. 98:332–38
    [Google Scholar]
  92. 92. 
    Ahmed RM, Ananiev AV, Kalaykov IG 2009. Safe robot with reconfigurable compliance/stiffness actuation. 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots603–8 Piscataway, NJ: IEEE
    [Google Scholar]
  93. 93. 
    Zhang M, Laliberté T, Gosselin C 2017. Design and static analysis of elastic force and torque limiting devices for safe physical human–robot interaction. J. Mech. Robot. 9:021003
    [Google Scholar]
  94. 94. 
    Dimeas F, Sako DV, Moulianitis VC, Aspragathos N 2013. Towards designing a robot gripper for efficient strawberry harvesting. RAAD 2013: 22nd International Workshop on Robotics in Alpe-Adria-Danube Region B Nemec, L Žlajpah 220–26 Ljubljana, Slovenia: Jožef Stefan Inst.
    [Google Scholar]
  95. 95. 
    Zhang T, Huang Z, You W, Lin J, Tang X, Huang H 2020. An autonomous fruit and vegetable harvester with a low-cost gripper using a 3D sensor. Sensors 20:93
    [Google Scholar]
  96. 96. 
    Xiong Y, Peng C, Grimstad L, From PJ, Isler V 2019. Development and field evaluation of a strawberry harvesting robot with a cable-driven gripper. Comput. Electron. Agric. 157:392–402
    [Google Scholar]
  97. 97. 
    Correll N, Bekris KE, Berenson D, Brock O, Causo A et al. 2016. Analysis and observations from the first Amazon Picking Challenge. IEEE Trans. Autom. Sci. Eng. 15:172–88
    [Google Scholar]
  98. 98. 
    Pierce RM, Fedalei EA, Kuchenbecker KJ 2014. A wearable device for controlling a robot gripper with fingertip contact, pressure, vibrotactile, and grip force feedback. 2014 IEEE Haptics Symposium19–25 Piscataway, NJ: IEEE
    [Google Scholar]
  99. 99. 
    Chauhan R, Sebastian B, Ben-Tzvi P 2020. Grasp prediction toward naturalistic exoskeleton glove control. IEEE Trans. Hum.-Mach. Syst. 50:22–31
    [Google Scholar]
  100. 100. 
    Yurkewich A, Kozak IJ, Hebert D, Wang RH, Mihailidis A 2020. Hand Extension Robot Orthosis (HERO) Grip Glove: enabling independence amongst persons with severe hand impairments after stroke. J. Neuroeng. Rehabil. 17:33
    [Google Scholar]
  101. 101. 
    Pedemonte N, Abi-Farraj F, Giordano PR 2017. Visual-based shared control for remote telemanipulation with integral haptic feedback. 2017 IEEE International Conference on Robotics and Automation5342–49 Piscataway, NJ: IEEE
    [Google Scholar]
  102. 102. 
    Chan WP, Parker CA, Van der Loos HM, Croft EA 2012. Grip forces and load forces in handovers: implications for designing human-robot handover controllers. 2012 7th ACM/IEEE International Conference on Human-Robot Interaction9–16 Piscataway, NJ: IEEE
    [Google Scholar]
  103. 103. 
    Yang W, Paxton C, Cakmak M, Fox D 2020. Human grasp classification for reactive human-to-robot handovers. arXiv:2003.06000 [cs.RO]
  104. 104. 
    Marullo S, Pozzi M, Prattichizzo D, Malvezzi M 2020. Cooperative human-robot grasping with extended contact patches. IEEE Robot. Autom. Lett. 5:3121–28
    [Google Scholar]
  105. 105. 
    Tagne G, Hénaff P, Gregori N 2016. Measurement and analysis of physical parameters of the handshake between two persons according to simple social contexts. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems674–79 Piscataway, NJ: IEEE
    [Google Scholar]
  106. 106. 
    Arns M, Laliberté T, Gosselin C 2017. Design, control and experimental validation of a haptic robotic hand performing human-robot handshake with human-like agility. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems4626–33 Piscataway, NJ: IEEE
    [Google Scholar]
  107. 107. 
    Beaudoin J, Laliberté T, Gosselin C 2019. Haptic interface for handshake emulation. IEEE Robot. Autom. Lett. 4:4124–30
    [Google Scholar]
  108. 108. 
    Pedemonte N, Laliberté T, Gosselin C 2017. A haptic bilateral system for the remote human–human handshake. J. Dyn. Syst. Meas. Control 139:044503
    [Google Scholar]
  109. 109. 
    Wang Z, Peer A, Buss M 2009. An HMM approach to realistic haptic human-robot interaction. World Haptics 2009 – Third Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems374–79 Piscataway, NJ: IEEE
    [Google Scholar]
  110. 110. 
    Stock-Homburg R, Peters J, Schneider K, Prasad V, Nukovic L 2020. Evaluation of the handshake turing test for anthropomorphic robots. Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction456–58 Piscataway, NJ: IEEE
    [Google Scholar]
  111. 111. 
    Bonilla M, Farnioli E, Piazza C, Catalano M, Grioli G et al. 2014. Grasping with soft hands. 2014 IEEE-RAS International Conference on Humanoid Robots581–87 Piscataway, NJ: IEEE
    [Google Scholar]
  112. 112. 
    Godfrey SB, Rossi M, Piazza C, Catalano MG, Bianchi M et al. 2017. SoftHand at the CYBATHLON: a user's experience. J. Neuroeng. Rehabil. 14:124
    [Google Scholar]
/content/journals/10.1146/annurev-control-061520-010405
Loading
/content/journals/10.1146/annurev-control-061520-010405
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error