1932

Abstract

The dynamics of the turbulent atmospheric boundary layer play a fundamental role in wind farm energy production, governing the velocity field that enters the farm as well as the turbulent mixing that regenerates energy for extraction at downstream rows. Understanding the dynamic interactions among turbines, wind farms, and the atmospheric boundary layer can therefore be beneficial in improving the efficiency of wind farm control approaches. Anticipated increases in the sizes of new wind farms to meet renewable energy targets will increase the importance of exploiting this understanding to advance wind farm control capabilities. This review discusses approaches for modeling and estimation of the wind farm flow field that have exploited such knowledge in closed-loop control, to varying degrees. We focus on power tracking as an example application that will be of critical importance as wind farms transition into their anticipated role as major suppliers of electricity. The discussion highlights the benefits of including the dynamics of the flow field in control and points to critical shortcomings of the current approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-070221-114032
2022-05-03
2025-02-09
Loading full text...

Full text loading...

/deliver/fulltext/control/5/1/annurev-control-070221-114032.html?itemId=/content/journals/10.1146/annurev-control-070221-114032&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    White House 2021. President Biden takes executive actions to tackle the climate crisis at home and abroad, create jobs, and restore scientific integrity across federal government Fact Sheet, White House Washington, DC: https://www.whitehouse.gov/briefing-room/statements-releases/2021/01/27/fact-sheet-president-biden-takes-executive-actions-to-tackle-the-climate-crisis-at-home-and-abroad-create-jobs-and-restore-scientific-integrity-across-federal-government
    [Google Scholar]
  2. 2. 
    Eur. Comm 2020. 2030 Climate Target Plan. European Commission https://ec.europa.eu/clima/policies/eu-climate-action/2030_ctp_en
    [Google Scholar]
  3. 3. 
    Ahlstrom M, Ela E, Riesz J, O'Sullivan J, Hobbs BF, et al. 2015. The evolution of the market: designing a market for high levels of variable generation. IEEE Power Energy Mag. 13:660–66
    [Google Scholar]
  4. 4. 
    Kroposki B, Johnson B, Zhang Y, Gevorgian V, Denholm P, et al. 2017. Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy. IEEE Power Energy Mag. 15:261–73
    [Google Scholar]
  5. 5. 
    Stevens RJ, Meneveau C. 2017. Flow structure and turbulence in wind farms. Annu. Rev. Fluid Mech. 49:311–39
    [Google Scholar]
  6. 6. 
    Porté-Agel F, Bastankhah M, Shamsoddin S. 2019. Wind-turbine and wind-farm flows: a review. Bound.-Layer Meteorol. 174:1–59
    [Google Scholar]
  7. 7. 
    Bossuyt J, Howland MF, Meneveau C, Meyers J. 2016. Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel. Exp. Fluids 58:1
    [Google Scholar]
  8. 8. 
    Stevens RJAM, Meneveau C. 2014. Temporal structure of aggregate power fluctuations in large-eddy simulations of extended wind-farms. J. Renew. Sustain. Energy 6:043102
    [Google Scholar]
  9. 9. 
    Apt J. 2007. The spectrum of power from wind turbines. J. Power Sources 169:369–74
    [Google Scholar]
  10. 10. 
    Bandi MM. 2017. Spectrum of wind power fluctuations. Phys. Rev. Lett. 118:028301
    [Google Scholar]
  11. 11. 
    Veers P, Dykes K, Lantz E, Barth S, Bottasso CL, et al. 2019. Grand challenges in the science of wind energy. Science 366:eaau2027
    [Google Scholar]
  12. 12. 
    Meneveau C. 2019. Big wind power: seven questions for turbulence research. J. Turbul. 20:2–20
    [Google Scholar]
  13. 13. 
    Fleming P, Gebraad PM, Lee S, van Wingerden JW, Johnson K, et al. 2014. Simulation comparison of wake mitigation control strategies for a two-turbine case. Wind Energy 18:2135–43
    [Google Scholar]
  14. 14. 
    Campagnolo F, Petrovic V, Bottasso CL, Croce A. 2016. Wind tunnel testing of wake control strategies. In 2016 American Control Conference (ACC)pp513–18 Piscataway, NJ: IEEE
    [Google Scholar]
  15. 15. 
    Boersma S, Doekemeijer B, Gebraad P, Fleming P, Annoni J, et al. 2017. A tutorial on control-oriented modeling and control of wind farms. In 2017 American Control Conference (ACC)pp1–18 Piscataway, NJ: IEEE
    [Google Scholar]
  16. 16. 
    Fleming P, Aho J, Gebraad P, Pao L, Zhang Y. 2016. Computational fluid dynamics simulation study of active power control in wind plants. In 2016 American Control Conference (ACC)pp1413–20 Piscataway, NJ: IEEE
    [Google Scholar]
  17. 17. 
    Munters W, Meyers J. 2018. Towards practical dynamic induction control of wind farms: analysis of optimally controlled wind-farm boundary layers and sinusoidal induction control of first-row turbines. Wind Energy Sci. 3:409–25
    [Google Scholar]
  18. 18. 
    Shapiro CR, Bauweraerts P, Meyers J, Meneveau C, Gayme DF. 2017. Model-based receding horizon control of wind farms for secondary frequency regulation. Wind Energy 20:1261–75
    [Google Scholar]
  19. 19. 
    Shapiro CR, Meyers J, Meneveau C, Gayme DF. 2018. Wind farms providing secondary frequency regulation: evaluating the performance of model-based receding horizon control. Wind Energy Sci. 3:11–24
    [Google Scholar]
  20. 20. 
    Frederik JA, Doekemeijer BM, Mulders SP, Wingerden JW. 2020. The helix approach: using dynamic individual pitch control to enhance wake mixing in wind farms. Wind Energy 23:1739–51
    [Google Scholar]
  21. 21. 
    Frederik JA, Weber R, Cacciola S, Campagnolo F, Croce A, et al. 2020. Periodic dynamic induction control of wind farms: proving the potential in simulations and wind tunnel experiments. Wind Energy Sci. 5:245–57
    [Google Scholar]
  22. 22. 
    Barlas T, van Kuik G. 2010. Review of state of the art in smart rotor control research for wind turbines. Prog. Aerosp. Sci. 46:1–27
    [Google Scholar]
  23. 23. 
    Pao LY, Johnson KE. 2011. Control of wind turbines. IEEE Control Syst. 31:44–62
    [Google Scholar]
  24. 24. 
    Njiri JG, Söffker D. 2016. State-of-the-art in wind turbine control: trends and challenges. Renew. Sustain. Energy Rev. 60:377–93
    [Google Scholar]
  25. 25. 
    Howland MF, Lele SK, Dabiri JO. 2019. Wind farm power optimization through wake steering. PNAS 116:14495–500
    [Google Scholar]
  26. 26. 
    Simley E, Fleming P, King J. 2020. Design and analysis of a wake steering controller with wind direction variability. Wind Energy Sci. 5:451–68
    [Google Scholar]
  27. 27. 
    Bernardoni F, Ciri U, Rotea M, Leonardi S. 2020. Real-time identification of clusters of turbines. J. Phys. Conf. Ser. 1618:022032
    [Google Scholar]
  28. 28. 
    Ciri U, Rotea M, Santoni C, Leonardi S. 2017. Large-eddy simulations with extremum-seeking control for individual wind turbine power optimization. Wind Energy 20:1617–34
    [Google Scholar]
  29. 29. 
    Johnson KE, Fritsch G. 2012. Assessment of extremum seeking control for wind farm energy production. Wind Eng. 36:701–15
    [Google Scholar]
  30. 30. 
    Bin Salamah Y, Ozguner U. 2021. Distributed extremum-seeking for wind farm power maximization using sliding mode control. Energies 14:828
    [Google Scholar]
  31. 31. 
    Raach S, van Wingerden JW, Boersma S, Schlipf D, Cheng PW. 2017. H controller design for closed-loop wake redirection. In 2017 American Control Conference (ACC)pp703–8 Piscataway, NJ: IEEE
    [Google Scholar]
  32. 32. 
    Raach S, Schlipf D, Cheng PW. 2017. Lidar-based wake tracking for closed-loop wind farm control. Wind Energy Sci. 2:257–67
    [Google Scholar]
  33. 33. 
    Reyes HM, Kanev S, Doekemeijer B, van Wingerden JW. 2019. Validation of a lookup-table approach to modeling turbine fatigue loads in wind farms under active wake control. Wind Energy Sci. 4:549–61
    [Google Scholar]
  34. 34. 
    Yang Z, Li Y, Seem JE. 2015. Multi-model predictive control for wind turbine operation under meandering wake of upstream turbines. Control Eng. Pract. 45:37–45
    [Google Scholar]
  35. 35. 
    Riverso S, Mancini S, Sarzo F, Ferrari-Trecate G. 2017. Model predictive controllers for reduction of mechanical fatigue in wind farms. IEEE Trans. Control Syst. Technol. 25:535–49
    [Google Scholar]
  36. 36. 
    Singh P, Seiler P. 2017. Controlling a meandering wake: insights from full-information control. In 2017 American Control Conference (ACC)pp697–702 Piscataway, NJ: IEEE
    [Google Scholar]
  37. 37. 
    Singh P, Seiler P. 2019. Controlling the meandering wake using measurement feedback. In 2019 American Control Conference (ACC)pp4144–50 Piscataway, NJ: IEEE
    [Google Scholar]
  38. 38. 
    Zhao R, Shen W, Knudsen T, Bak T. 2012. Fatigue distribution optimization for offshore wind farms using intelligent agent control. Wind Energy 15:927–44
    [Google Scholar]
  39. 39. 
    Bartl J, Ostovan Y, Uzol O, Sætran L. 2017. Experimental study on power curtailment of three in-line turbines. Energy Procedia 137:307–14
    [Google Scholar]
  40. 40. 
    De Rijcke S, Driesen J, Meyers J. 2014. Power smoothing in large wind farms using optimal control of rotating kinetic energy reserves. Wind Energy 18:1777–91
    [Google Scholar]
  41. 41. 
    Aho J, Buckspan A, Laks J, Fleming P, Jeong Y, et al. 2012. A tutorial of wind turbine control for supporting grid frequency through active power control. In 2012 American Control Conference (ACC)pp3120–31 Piscataway, NJ: IEEE
    [Google Scholar]
  42. 42. 
    Shapiro CR, Meyers J, Meneveau C, Gayme DF. 2017. Dynamic wake modeling and state estimation for improved model-based receding horizon control of wind farms. In 2017 American Control Conference (ACC)pp709–16 Piscataway, NJ: IEEE
    [Google Scholar]
  43. 43. 
    van Wingerden JW, Pao L, Aho J, Fleming P. 2017. Active power control of waked wind farms. IFAC-PapersOnLine 50:14484–91
    [Google Scholar]
  44. 44. 
    Bastankhah M, Porté-Agel F. 2019. Wind farm power optimization via yaw angle control: a wind tunnel study. J. Renew. Sustain. Energy 11:023301
    [Google Scholar]
  45. 45. 
    Annoni J, Fleming P, Scholbrock A, Roadman J, Dana S, et al. 2018. Analysis of control-oriented wake modeling tools using lidar field results. Wind Energy Sci. 3:819–31
    [Google Scholar]
  46. 46. 
    Fleming P, Annoni J, Shah JJ, Wang L, Ananthan S, et al. 2017. Field test of wake steering at an offshore wind farm. Wind Energy Sci. 2:229–39
    [Google Scholar]
  47. 47. 
    Fleming P, King J, Dykes K, Simley E, Roadman J, et al. 2019. Initial results from a field campaign of wake steering applied at a commercial wind farm – part 1. Wind Energy Sci. 4:273–85
    [Google Scholar]
  48. 48. 
    Ahmad T, Basit A, Ahsan M, Coupiac O, Girard N, et al. 2019. Implementation and analyses of yaw based coordinated control of wind farms. Energies 12:1266
    [Google Scholar]
  49. 49. 
    Bromm M, Rott A, Beck H, Vollmer L, Steinfeld G, Kühn M. 2018. Field investigation on the influence of yaw misalignment on the propagation of wind turbine wakes. Wind Energy 21:1011–28
    [Google Scholar]
  50. 50. 
    Jensen NO. 1983. A note on wind generator interaction Tech. Rep. Risø-M-2411, Risø Natl. Lab. Roskilde, Den:.
    [Google Scholar]
  51. 51. 
    Ahmadyar AS, Verbic G. 2017. Coordinated operation strategy of wind farms for frequency control by exploring wake interaction. IEEE Trans. Sustain. Energy 8:230–38
    [Google Scholar]
  52. 52. 
    Stotsky A, Egardt B, Carlson O. 2013. Control of wind turbines: a tutorial on proactive perspectives. In 2013 American Control Conference (ACC)pp3429–36 Piscataway, NJ: IEEE
    [Google Scholar]
  53. 53. 
    Kazda J, Mirzaei M, Cutululis NA. 2018. On the architecture of wind turbine control required for induction-based optimal wind farm control. In 2018 American Control Conference (ACC)pp3074–79 Piscataway, NJ: IEEE
    [Google Scholar]
  54. 54. 
    van der Hoek D, Kanev S, Engels W. 2018. Comparison of down-regulation strategies for wind farm control and their effects on fatigue loads. In 2018 American Control Conference (ACC)pp3116–21 Piscataway, NJ: IEEE
    [Google Scholar]
  55. 55. 
    Shapiro CR, Meyers J, Meneveau C, Gayme DF. 2018. Coordinated pitch and torque control of wind farms for power tracking. In 2018 American Control Conference (ACC)pp688–94 Piscataway, NJ: IEEE
    [Google Scholar]
  56. 56. 
    Howland MF, González CM, Martínez JJP, Quesada JB, Larrañaga FP, et al. 2020. Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment. J. Renew. Sustain. Energy 12:063307
    [Google Scholar]
  57. 57. 
    Shapiro CR, Gayme DF, Meneveau C. 2018. Modelling yawed wind turbine wakes: a lifting line approach. J. Fluid Mech. 841:R1
    [Google Scholar]
  58. 58. 
    Zong H, Porté-Agel F. 2021. Experimental investigation and analytical modelling of active yaw control for wind farm power optimization. Renew. Energy 170:1228–44
    [Google Scholar]
  59. 59. 
    Bossuyt J, Scott R, Ali N, Cal RB. 2021. Quantification of wake shape modulation and deflection for tilt and yaw misaligned wind turbines. J. Fluid Mech. 917:A3
    [Google Scholar]
  60. 60. 
    Martínez-Tossas LA, Annoni J, Fleming PA, Churchfield MJ. 2019. The aerodynamics of the curled wake: a simplified model in view of flow control. Wind Energy Sci. 4:127–38
    [Google Scholar]
  61. 61. 
    Annoni J, Seiler P, Johnson K, Fleming P, Gebraad P. 2014. Evaluating wake models for wind farm control. In 2014 American Control Conference (ACC)pp2517–23 Piscataway, NJ: IEEE
    [Google Scholar]
  62. 62. 
    Gonzalez AG, Enevoldsen PB, Barlas A, Madsen HA. 2021. Field test of an active flap system on a full-scale wind turbine. Wind Energy Sci. 6:33–43
    [Google Scholar]
  63. 63. 
    Bartl J, Mühle F, Schottler J, Sætran L, Peinke J, et al. 2018. Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear. Wind Energy Sci. 3:329–43
    [Google Scholar]
  64. 64. 
    Schreiber J, Bottasso CL, Salbert B, Campagnolo F. 2020. Improving wind farm flow models by learning from operational data. Wind Energy Sci. 5:647–73
    [Google Scholar]
  65. 65. 
    Goit J, Munters W, Meyers J. 2016. Optimal coordinated control of power extraction in LES of a wind farm with entrance effects. Energies 9:29
    [Google Scholar]
  66. 66. 
    Bossanyi E, Ruisi R. 2021. Axial induction controller field test at Sedini wind farm. Wind Energy Sci. 6:389–408
    [Google Scholar]
  67. 67. 
    Petrović V, Schottler J, Neunaber I, Hölling M, Kühn M. 2018. Wind tunnel validation of a closed loop active power control for wind farms. J. Phys. Conf. Ser. 1037:032020
    [Google Scholar]
  68. 68. 
    Miller MA, Kiefer J, Westergaard C, Hansen MOL, Hultmark M. 2019. Horizontal axis wind turbine testing at high Reynolds numbers. Phys. Rev. Fluids 4:110504
    [Google Scholar]
  69. 69. 
    Bartl J, Sætran L. 2016. Experimental testing of axial induction based control strategies for wake control and wind farm optimization. J. Phys. Conf. Ser. 753:032035
    [Google Scholar]
  70. 70. 
    Stevens RJAM, Martínez LA, Meneveau C. 2018. Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments. Renew. Energy 116:470–78
    [Google Scholar]
  71. 71. 
    Fleming PA, Ning A, Gebraad PMO, Dykes K. 2015. Wind plant system engineering through optimization of layout and yaw control. Wind Energy 19:329–44
    [Google Scholar]
  72. 72. 
    Annoni J, Gebraad PMO, Scholbrock AK, Fleming PA, van Wingerden JW. 2016. Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model. Wind Energy 19:1135–50
    [Google Scholar]
  73. 73. 
    Ciri U, Rotea M, Santoni C, Leonardi S. 2016. Large Eddy Simulation for an array of turbines with Extremum Seeking Control. In 2016 American Control Conference (ACC)pp531–36 Piscataway, NJ: IEEE
    [Google Scholar]
  74. 74. 
    Gebraad P, Fleming P, van Wingerden J. 2015. Comparison of actuation methods for wake control in wind plants. In 2015 American Control Conference (ACC)pp1695–701 Piscataway, NJ: IEEE
    [Google Scholar]
  75. 75. 
    van der Hoek D, Kanev S, Allin J, Bieniek D, Mittelmeier N. 2019. Effects of axial induction control on wind farm energy production - a field test. Renew. Energy 140:994–1003
    [Google Scholar]
  76. 76. 
    Kheirabadi AC, Nagamune R. 2019. A quantitative review of wind farm control with the objective of wind farm power maximization. J. Wind Eng. Ind. Aerodyn. 192:45–73
    [Google Scholar]
  77. 77. 
    Goit JP, Meyers J. 2015. Optimal control of energy extraction in wind-farm boundary layers. J. Fluid Mech. 768:5–50
    [Google Scholar]
  78. 78. 
    Munters W, Meyers J. 2017. An optimal control framework for dynamic induction control of wind farms and their interaction with the atmospheric boundary layer. Philos. Trans. R. Soc. A 375:20160100
    [Google Scholar]
  79. 79. 
    Munters W, Meyers J. 2018. Dynamic strategies for yaw and induction control of wind farms based on large-eddy simulation and optimization. Energies 11:177
    [Google Scholar]
  80. 80. 
    Bauweraerts P, Meyers J. 2019. On the feasibility of using large-eddy simulations for real-time turbulent-flow forecasting in the atmospheric boundary layer. Bound.-Layer Meteorol. 171:213–35
    [Google Scholar]
  81. 81. 
    Bauweraerts P, Meyers J. 2020. Reconstruction of turbulent flow fields from lidar measurements based on large-eddy simulation. J. Fluid Mech. 906:A17
    [Google Scholar]
  82. 82. 
    Boersma S, Doekemeijer B, Vali M, Meyers J, van Wingerden JW. 2018. A control-oriented dynamic wind farm model: WFSim. Wind Energy Sci. 3:75–95
    [Google Scholar]
  83. 83. 
    Annoni J, Gebraad P, Seiler P. 2016. Wind farm flow modeling using an input-output reduced-order model. In 2016 American Control Conference (ACC)pp506–12 Piscataway, NJ: IEEE
    [Google Scholar]
  84. 84. 
    Boersma S, Gebraad P, Vali M, Doekemeijer B, van Wingerden J. 2016. A control-oriented dynamic wind farm flow model: “WFSim.”. J. Phys. Conf. Ser. 753:032005
    [Google Scholar]
  85. 85. 
    Iungo GV, Viola F, Ciri U, Rotea MA, Leonardi S. 2015. Data-driven RANS for simulations of large wind farms. J. Phys. Conf. Ser. 625:012025
    [Google Scholar]
  86. 86. 
    Annoni J, Seiler P. 2015. A low-order model for wind farm control. In 2015 American Control Conference (ACC)pp1721–27 Piscataway, NJ: IEEE
    [Google Scholar]
  87. 87. 
    Fortes-Plaza A, Campagnolo F, Wang J, Wang C, Bottasso C. 2018. A POD reduced-order model for wake steering control. J. Phys. Conf. Ser. 1037:032014
    [Google Scholar]
  88. 88. 
    Iungo GV, Santoni-Ortiz C, Abkar M, Porté-Agel F, Rotea MA, Leonardi S. 2015. Data-driven reduced order model for prediction of wind turbine wakes. J. Phys. Conf. Ser. 625:012009
    [Google Scholar]
  89. 89. 
    VerHulst C, Meneveau C. 2014. Large eddy simulation study of the kinetic energy entrainment by energetic turbulent flow structures in large wind farms. Phys. Fluids 26:025113
    [Google Scholar]
  90. 90. 
    Hamilton N, Tutkun M, Cal RB. 2016. Low-order representations of the canonical wind turbine array boundary layer via double proper orthogonal decomposition. Phys. Fluids 28:025103
    [Google Scholar]
  91. 91. 
    Mezić I. 2005. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41:309–25
    [Google Scholar]
  92. 92. 
    Schmid PJ. 2010. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656:5–28
    [Google Scholar]
  93. 93. 
    Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson DS. 2009. Spectral analysis of nonlinear flows. J. Fluid Mech. 641:115–27
    [Google Scholar]
  94. 94. 
    Hamilton N, Viggiano B, Calaf M, Tutkun M, Cal RB. 2018. A generalized framework for reduced-order modeling of a wind turbine wake. Wind Energy 21:373–90
    [Google Scholar]
  95. 95. 
    Debnath M, Santoni C, Leonardi S, Iungo GV. 2017. Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes. Philos. Trans. R. Soc. A 375:20160108
    [Google Scholar]
  96. 96. 
    Zhang M, Stevens RJAM. 2020. Characterizing the coherent structures within and above large wind farms. Bound.-Layer Meteorol. 174:61–80
    [Google Scholar]
  97. 97. 
    Cassamo N, van Wingerden JW. 2021. Model predictive control for wake redirection in wind farms: a Koopman dynamic mode decomposition approach. In 2021 American Control Conference (ACC)pp1776–82 Piscataway, NJ: IEEE
    [Google Scholar]
  98. 98. 
    Boersma S, Vali M, Kuhn M, van Wingerden JW. 2016. Quasi Linear Parameter Varying modeling for wind farm control using the 2D Navier-Stokes equations. In 2016 American Control Conference (ACC)pp4409–14 Piscataway, NJ: IEEE
    [Google Scholar]
  99. 99. 
    Annoni J, Howard K, Seiler P, Guala M. 2015. An experimental investigation on the effect of individual turbine control on wind farm dynamics. Wind Energy 19:1453–67
    [Google Scholar]
  100. 100. 
    Buccafusca L, Jansch-Porto JP, Dullerud GE, Beck CL. 2019. An application of nested control synthesis for wind farms. IFAC-PapersOnLine 52:20199–204
    [Google Scholar]
  101. 101. 
    Bay CJ, Annoni J, Taylor T, Pao L, Johnson K. 2018. Active power control for wind farms using distributed model predictive control and nearest neighbor communication. In 2018 American Control Conference (ACC)pp682–87 Piscataway, NJ: IEEE
    [Google Scholar]
  102. 102. 
    Larsen GC, Madsen HA, Thomsen K, Larsen TJ. 2008. Wake meandering: a pragmatic approach. Wind Energy 11:377–95
    [Google Scholar]
  103. 103. 
    Gebraad PMO, van Wingerden JW. 2014. A control-oriented dynamic model for wakes in wind plants. J. Phys. Conf. Ser. 524:012186
    [Google Scholar]
  104. 104. 
    Annoni J, Bay C, Johnson K, Dall'Anese E, Quon E, et al. 2019. Wind direction estimation using SCADA data with consensus-based optimization. Wind Energy Sci. 4:355–68
    [Google Scholar]
  105. 105. 
    Starke GM, Stanfel P, Meneveau C, Gayme DF, King J. 2021. Network based estimation of wind farm power and velocity data under changing wind direction. In 2021 American Control Conference (ACC)pp1803–10 Piscataway, NJ: IEEE
    [Google Scholar]
  106. 106. 
    Rogozin A, Uribe CA, Gasnikov AV, Malkovsky N, Nedić A. 2020. Optimal distributed convex optimization on slowly time-varying graphs. IEEE Trans. Control Netw. Syst. 7:829–41
    [Google Scholar]
  107. 107. 
    Annoni J, Bay C, Taylor T, Pao L, Fleming P, Johnson K. 2018. Efficient optimization of large wind farms for real-time control. In 2018 American Control Conference (ACC)pp6200–5 Piscataway, NJ: IEEE
    [Google Scholar]
  108. 108. 
    Annoni J, Dall'Anese E, Hong M, Bay CJ. 2019. Efficient distributed optimization of wind farms using proximal primal-dual algorithms. In 2019 American Control Conference (ACC)pp4173–78 Piscataway, NJ: IEEE
    [Google Scholar]
  109. 109. 
    Gebraad P, Fleming P, van Wingerden J. 2015. Wind turbine wake estimation and control using FLORIDyn, a control-oriented dynamic wind plant model. In 2015 American Control Conference (ACC)pp1702–8 Piscataway, NJ: IEEE
    [Google Scholar]
  110. 110. 
    Adcock C, King RN. 2018. Data-driven wind farm optimization incorporating effects of turbulence intensity. In 2018 American Control Conference (ACC)pp695–700 Piscataway, NJ: IEEE
    [Google Scholar]
  111. 111. 
    Doekemeijer B, Boersma S, Pao L, van Wingerden J. 2018. Joint state-parameter estimation for a control-oriented LES wind farm model. J. Phys. Conf. Ser. 1037:032013
    [Google Scholar]
  112. 112. 
    Herges TG, Keyantuo P. 2019. Robust lidar data processing and quality control methods developed for the SWiFT wake steering experiment. J. Phys. Conf. Ser. 1256:012005
    [Google Scholar]
  113. 113. 
    Laks J, Simley E, Pao L. 2013. A spectral model for evaluating the effect of wind evolution on wind turbine preview control. In 2013 American Control Conference (ACC)pp3673–79 Piscataway, NJ: IEEE
    [Google Scholar]
  114. 114. 
    Simley E, Pao L. 2013. Reducing LIDAR wind speed measurement error with optimal filtering. In 2013 American Control Conference (ACC)pp621–27 Piscataway, NJ: IEEE
    [Google Scholar]
  115. 115. 
    Raach S, Schlipf D, Haizmann F, Cheng PW. 2014. Three dimensional dynamic model based wind field reconstruction from lidar data. J. Phys. Conf. Ser. 524:012005
    [Google Scholar]
  116. 116. 
    Dhiman H, Deb D, Muresan V, Balas V. 2019. Wake management in wind farms: an adaptive control approach. Energies 12:1247
    [Google Scholar]
  117. 117. 
    Sinner M, Pao LY, King J. 2020. Estimation of large-scale wind field characteristics using supervisory control and data acquisition measurements. In 2020 American Control Conference (ACC)pp2357–62 Piscataway, NJ: IEEE
    [Google Scholar]
  118. 118. 
    Moustakis N, Mulders SP, Kober J, van Wingerden JW. 2019. A practical Bayesian optimization approach for the optimal estimation of the rotor effective wind speed. In 2019 American Control Conference (ACC)pp4179–85 Piscataway, NJ: IEEE
    [Google Scholar]
  119. 119. 
    Doekemeijer BM, van Wingerden JW, Boersma S, Pao LY. 2016. Enhanced Kalman filtering for a 2D CFD NS wind farm flow model. J. Phys. Conf. Ser. 753:052015
    [Google Scholar]
  120. 120. 
    Doekemeijer BM, Boersma S, Pao LY, Knudsen T, van Wingerden JW. 2018. Online model calibration for a simplified LES model in pursuit of real-time closed-loop wind farm control. Wind Energy Sci. 3:749–65
    [Google Scholar]
  121. 121. 
    Doekemeijer BM, Boersma S, Pao LY, van Wingerden JW. 2017. Ensemble Kalman filtering for wind field estimation in wind farms. In 2017 American Control Conference (ACC)pp19–24 Piscataway, NJ: IEEE
    [Google Scholar]
  122. 122. 
    Knudsen T, Bak T, Soltani M. 2011. Prediction models for wind speed at turbine locations in a wind farm. Wind Energy 14:877–94
    [Google Scholar]
  123. 123. 
    Knudsen T, Bak T. 2013. Simple model for describing and estimating wind turbine dynamic inflow. In 2013 American Control Conference (ACC)pp640–46 Piscataway, NJ: IEEE
    [Google Scholar]
  124. 124. 
    Kalnay E. 2003. Atmospheric Modeling, Data Assimilation, and Predictability Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  125. 125. 
    Cherukuru NW, Calhoun R, Krishnamurthy R, Benny S, Reuder J, Flügge M. 2017. 2D VAR single Doppler lidar vector retrieval and its application in offshore wind energy. Energy Procedia 137:497–504
    [Google Scholar]
  126. 126. 
    Annoni J, Bay C, Johnson K, Fleming P. 2019. Short-term forecasting across a network for the autonomous wind farm. In 2019 American Control Conference (ACC)pp2837–42 Piscataway, NJ: IEEE
    [Google Scholar]
  127. 127. 
    Rose S, Apt J. 2013. The cost of curtailing wind turbines for secondary frequency regulation capacity. Energy Syst. 5:407–22
    [Google Scholar]
  128. 128. 
    Vali M, Petrović V, Steinfeld G, Pao LY, Kühn M. 2019. An active power control approach for wake-induced load alleviation in a fully developed wind farm boundary layer. Wind Energy Sci. 4:139–61
    [Google Scholar]
  129. 129. 
    Vali M, Petrović V, Steinfeld G, Pao LY, Kühn M. 2018. Large-eddy simulation study of wind farm active power control with a coordinated load distribution. J. Phys. Conf. Ser. 1037:032018
    [Google Scholar]
  130. 130. 
    Boersma S, Doekemeijer B, Keviczky T, van Wingerden J. 2019. Stochastic Model Predictive Control: uncertainty impact on wind farm power tracking. In 2019 American Control Conference (ACC)pp4167–72 Piscataway, NJ: IEEE
    [Google Scholar]
  131. 131. 
    Boersma S, Doekemeijer B, Siniscalchi-Minna S, van Wingerden J. 2019. A constrained wind farm controller providing secondary frequency regulation: an LES study. Renew. Energy 134:639–52
    [Google Scholar]
  132. 132. 
    Shapiro CR, Ji C, Gayme DF. 2020. Real-time energy market arbitrage via aerodynamic energy storage in wind farms. In 2020 American Control Conference (ACC)pp4830–35 Piscataway, NJ: IEEE
    [Google Scholar]
  133. 133. 
    Vali M, Petrović V, Boersma S, van Wingerden JW, Pao LY, Kühn M. 2019. Adjoint-based model predictive control for optimal energy extraction in waked wind farms. Control Eng. Pract. 84:48–62
    [Google Scholar]
  134. 134. 
    Gionfra N, Sandou G, Siguerdidjane H, Faille D, Loevenbruck P 2019. A discrete-time PID-like consensus control: application to the wind farm distributed control problem. Informatics in Control, Automation and Robotics O Gusikhin, K Madani 106–34 Cham, Switz.: Springer
    [Google Scholar]
  135. 135. 
    Ebegbulem J, Guay M. 2017. Distributed extremum seeking control for wind farm power maximization. IFAC-PapersOnLine 50:1147–52
    [Google Scholar]
  136. 136. 
    Siniscalchi-Minna S, Bianchi FD, Ocampo-Martinez C, Domínguez-García JL, Schutter BD. 2020. A non-centralized predictive control strategy for wind farm active power control: a wake-based partitioning approach. Renew. Energy 150:656–69
    [Google Scholar]
  137. 137. 
    Natl. Renew. Energy Lab 2021. FLORIS. GitHub https://github.com/NREL/floris
    [Google Scholar]
  138. 138. 
    Göçmen T, Giebel G, Poulsen NK, Sørensen PE. 2018. Possible power of down-regulated offshore wind power plants: the PossPOW algorithm. Wind Energy 22:205–18
    [Google Scholar]
  139. 139. 
    Siniscalchi-Minna S, Bianchi FD, De-Prada-Gil M, Ocampo-Martinez C. 2019. A wind farm control strategy for power reserve maximization. Renew. Energy 131:37–44
    [Google Scholar]
  140. 140. 
    Doekemeijer B, Wingerden JW. 2020. Observability of the ambient conditions in model-based estimation for wind farm control: a focus on static models. Wind Energy 23:1777–91
    [Google Scholar]
/content/journals/10.1146/annurev-control-070221-114032
Loading
/content/journals/10.1146/annurev-control-070221-114032
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error