1932

Abstract

Dynamic walking on bipedal robots has evolved from an idea in science fiction to a practical reality. This is due to continued progress in three key areas: a mathematical understanding of locomotion, the computational ability to encode this mathematics through optimization, and the hardware capable of realizing this understanding in practice. In this context, this review outlines the end-to-end process of methods that have proven effective in the literature for achieving dynamic walking on bipedal robots. We begin by introducing mathematical models of locomotion, from reduced-order models that capture essential walking behaviors to hybrid dynamical systems that encode the full-order continuous dynamics along with discrete foot-strike dynamics. These models form the basis for gait generation via (nonlinear) optimization problems. Finally, models and their generated gaits merge in the context of real-time control, wherein walking behaviors are translated to hardware. The concepts presented are illustrated throughout in simulation, and experimental instantiations on multiple walking platforms are highlighted to demonstrate the ability to realize dynamic walking on bipedal robots that is both agile and efficient.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-071020-045021
2021-05-03
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/control/4/1/annurev-control-071020-045021.html?itemId=/content/journals/10.1146/annurev-control-071020-045021&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Lim HO, Takanishi A. 2007. Biped walking robots created at Waseda University: WL and WABIAN family. Philos. Trans. R. Soc. A 365:49–64
    [Google Scholar]
  2. 2. 
    Vukobratović M, Hristic D, Stojiljkovic Z 1974. Development of active anthropomorphic exoskeletons. Med. Biol. Eng. 12:66–80
    [Google Scholar]
  3. 3. 
    Vukobratović M, Stepanenko J 1972. On the stability of anthropomorphic systems. Math. Biosci. 15:1–37
    [Google Scholar]
  4. 4. 
    Vukobratović M, Borovac B 2004. Zero-moment point—thirty five years of its life. Int. J. Humanoid Robot. 1:157–73
    [Google Scholar]
  5. 5. 
    Collins S, Ruina A, Tedrake R, Wisse M 2005. Efficient bipedal robots based on passive-dynamic walkers. Science 307:1082–85
    [Google Scholar]
  6. 6. 
    Hirose M, Ogawa K 2007. Honda humanoid robots development. Philos. Trans. R. Soc. A 365:11–19
    [Google Scholar]
  7. 7. 
    Kaneko K, Kanehiro F, Kajita S, Yokoyama K, Akachi K, et al 2002. Design of prototype humanoid robotics platform for HRP. IEEE/RSJ International Conference on Intelligent Robots and Systems2431–36 Piscataway, NJ: IEEE
    [Google Scholar]
  8. 8. 
    Akachi K, Kaneko K, Kanehira N, Ota S, Miyamori G, et al 2005. Development of humanoid robot HRP-3P. 5th IEEE-RAS International Conference on Humanoid Robots50–55 Piscataway, NJ: IEEE
    [Google Scholar]
  9. 9. 
    Ito Y, Nozawa S, Urata J, Nakaoka T, Kobayashi K, et al 2014. Development and verification of life-size humanoid with high-output actuation system. 2014 IEEE International Conference on Robotics and Automation3433–38 Piscataway, NJ: IEEE
    [Google Scholar]
  10. 10. 
    Park IW, Kim JY, Lee J, Oh JH 2005. Mechanical design of humanoid robot platform KHR-3 (KAIST Humanoid Robot 3: HUBO). 5th IEEE-RAS International Conference on Humanoid Robots321–26 Piscataway, NJ: IEEE
    [Google Scholar]
  11. 11. 
    Raibert MH, Brown HB Jr., Chepponis M 1984. Experiments in balance with a 3D one-legged hopping machine. Int. J. Robot. Res. 3:75–92
    [Google Scholar]
  12. 12. 
    Raibert MH 1986. Legged Robots That Balance Cambridge, MA: MIT Press
  13. 13. 
    Hürmüzlü Y, Moskowitz GD 1986. The role of impact in the stability of bipedal locomotion. Dyn. Stab. Syst. 1:217–34
    [Google Scholar]
  14. 14. 
    McGeer T 1990. Passive dynamic walking. Int. J. Robot. Res. 9:62–82
    [Google Scholar]
  15. 15. 
    Westervelt ER, Grizzle JW, Koditschek DE 2003. Hybrid zero dynamics of planar biped walkers. IEEE Trans. Autom. Control 48:42–56
    [Google Scholar]
  16. 16. 
    Westervelt ER, Grizzle JW, Chevallereau C, Choi JH, Morris B 2018. Feedback Control of Dynamic Bipedal Robot Locomotion Boca Raton, FL: CRC
  17. 17. 
    Ames AD, Galloway K, Sreenath K, Grizzle JW 2014. Rapidly exponentially stabilizing control Lyapunov functions and hybrid zero dynamics. IEEE Trans. Autom. Control 59:876–91
    [Google Scholar]
  18. 18. 
    Sreenath K, Park HW, Poulakakis I, Grizzle JW 2013. Embedding active force control within the compliant hybrid zero dynamics to achieve stable, fast running on MABEL. Int. J. Robot. Res. 32:324–45
    [Google Scholar]
  19. 19. 
    Ma WL, Kolathaya S, Ambrose ER, Hubicki CM, Ames AD 2017. Bipedal robotic running with DURUS-2D: bridging the gap between theory and experiment. Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control265–74 New York: ACM
    [Google Scholar]
  20. 20. 
    Reher J, Cousineau EA, Hereid A, Hubicki CM, Ames AD 2016. Realizing dynamic and efficient bipedal locomotion on the humanoid robot DURUS. 2016 IEEE International Conference on Robotics and Automation1794–801 Piscataway, NJ: IEEE
    [Google Scholar]
  21. 21. 
    Reher J, Hereid A, Kolathaya S, Hubicki CM, Ames AD 2016. Algorithmic foundations of realizing multi-contact locomotion on the humanoid robot DURUS. Algorithmic Foundations of Robotics XII K Goldberg, P Abbeel, K Bekris, L Miller401–15 Cham, Switz.: Springer
    [Google Scholar]
  22. 22. 
    Hereid A, Ames AD 2017. FROST: Fast Robot Optimization and Simulation Toolkit. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems719–26 Piscataway, NJ: IEEE
    [Google Scholar]
  23. 23. 
    Featherstone R 2014. Rigid Body Dynamics Algorithms New York: Springer
  24. 24. 
    Pfeiffer F, Glocker C 1996. Multibody Dynamics with Unilateral Contacts New York: Wiley & Sons
  25. 25. 
    Murray RM, Li Z, Sastry SS 1994. A Mathematical Introduction to Robotic Manipulation Boca Raton, FL: CRC
  26. 26. 
    Grizzle JW, Chevallereau C, Sinnet RW, Ames AD 2014. Models, feedback control, and open problems of 3D bipedal robotic walking. Automatica 50:1955–88
    [Google Scholar]
  27. 27. 
    Vukobratović M, Frank AA, Juricic D 1970. On the stability of biped locomotion. IEEE Trans. Biomed. Eng. BME-17:25–36
    [Google Scholar]
  28. 28. 
    Arakawa T, Fukuda T 1997. Natural motion generation of biped locomotion robot using hierarchical trajectory generation method consisting of GA, EP layers. Proceedings of the International Conference on Robotics and AutomationVol 1211–16 Piscataway, NJ: IEEE
    [Google Scholar]
  29. 29. 
    Shih CL, Li Y, Churng S, Lee TT, Gruver WA 1990. Trajectory synthesis and physical admissibility for a biped robot during the single-support phase. Proceedings of the IEEE International Conference on Robotics and Automation1646–52 Piscataway, NJ: IEEE
    [Google Scholar]
  30. 30. 
    Yamaguchi Ji, Takanishi A, Kato I 1993. Development of a biped walking robot compensating for three-axis moment by trunk motion. J. Robot. Soc. Jpn. 11:581–86
    [Google Scholar]
  31. 31. 
    Sardain P, Bessonnet G 2004. Forces acting on a biped robot. Center of pressure–zero moment point. IEEE Trans. Syst. Man Cybernet. A 34:630–37
    [Google Scholar]
  32. 32. 
    Hirukawa H, Hattori S, Harada K, Kajita S, Kaneko K, et al 2006. A universal stability criterion of the foot contact of legged robots – adios ZMP. Proceedings of the 2006 IEEE International Conference on Robotics and Automation1976–83 Piscataway, NJ: IEEE
    [Google Scholar]
  33. 33. 
    Kajita S, Matsumoto O, Saigo M 2001. Real-time 3D walking pattern generation for a biped robot with telescopic legs. Proceedings of the 2001 IEEE International Conference on Robotics and AutomationVol 32299–306 Piscataway, NJ: IEEE
    [Google Scholar]
  34. 34. 
    Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, et al 2003. Biped walking pattern generation by using preview control of zero-moment point. Proceedings of the 2003 IEEE International Conference on Robotics and AutomationVol 21620–26 Piscataway, NJ: IEEE
    [Google Scholar]
  35. 35. 
    Pfeiffer F, Loffler K, Gienger M 2002. The concept of jogging Johnnie. Proceedings of the 2002 IEEE International Conference on Robotics and AutomationVol 33129–35 Piscataway, NJ: IEEE
    [Google Scholar]
  36. 36. 
    Pratt J, Carff J, Drakunov S, Goswami A 2006. Capture point: a step toward humanoid push recovery. 2006 6th IEEE-RAS International Conference on Humanoid Robots200–7 Piscataway, NJ: IEEE
    [Google Scholar]
  37. 37. 
    Hof AL 2008. The extrapolated center of mass concept suggests a simple control of balance in walking. Hum. Mov. Sci. 27:112–25
    [Google Scholar]
  38. 38. 
    Koolen T, De Boer T, Rebula J, Goswami A, Pratt J 2012. Capturability-based analysis and control of legged locomotion, part 1: theory and application to three simple gait models. Int. J. Robot. Res. 31:1094–113
    [Google Scholar]
  39. 39. 
    Johnson M, Shrewsbury B, Bertrand S, Wu T, Duran D, et al 2015. Team IHMC's lessons learned from the DARPA robotics challenge trials. J. Field Robot. 32:192–208
    [Google Scholar]
  40. 40. 
    Kuindersma S, Deits R, Fallon M, Valenzuela A, Dai H, et al 2016. Optimization-based locomotion planning, estimation, and control design for the Atlas humanoid robot. Auton. Robots 40:429–55
    [Google Scholar]
  41. 41. 
    DeDonato M, Dimitrov V, Du R, Giovacchini R, Knoedler K, et al 2015. Human-in-the-loop control of a humanoid robot for disaster response: a report from the DARPA robotics challenge trials. J. Field Robot. 32:275–92
    [Google Scholar]
  42. 42. 
    Pratt JE, Drakunov SV 2007. Derivation and application of a conserved orbital energy for the inverted pendulum bipedal walking model. Proceedings of the 2007 IEEE International Conference on Robotics and Automation4653–60 Piscataway, NJ: IEEE
    [Google Scholar]
  43. 43. 
    Park JH, Kim KD 1998. Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control. Proceedings of the 1998 IEEE International Conference on Robotics and AutomationVol 43528–33 Piscataway, NJ: IEEE
    [Google Scholar]
  44. 44. 
    Stephens B 2011. Push recovery control for force-controlled humanoid robots PhD Thesis, Carnegie Mellon Univ., Pittsburgh, PA
  45. 45. 
    Pratt J, Koolen T, De Boer T, Rebula J, Cotton S, et al 2012. Capturability-based analysis and control of legged locomotion, part 2: application to M2V2, a lower-body humanoid. Int. J. Robot. Res. 31:1117–33
    [Google Scholar]
  46. 46. 
    Hof A, Gazendam M, Sinke W 2005. The condition for dynamic stability. J. Biomech. 38:1–8
    [Google Scholar]
  47. 47. 
    Hyon SH, Hale JG, Cheng G 2007. Full-body compliant human–humanoid interaction: balancing in the presence of unknown external forces. IEEE Trans. Robot. 23:884–98
    [Google Scholar]
  48. 48. 
    Stephens B 2007. Humanoid push recovery. 2007 7th IEEE-RAS International Conference on Humanoid Robots589–95 Piscataway, NJ: IEEE
    [Google Scholar]
  49. 49. 
    Takanishi A, Takeya T, Karaki H, Kato I 1990. A control method for dynamic biped walking under unknown external force. EEE International Workshop on Intelligent Robots and Systems: Towards a New Frontier of Applications795–801 Piscataway, NJ: IEEE
    [Google Scholar]
  50. 50. 
    Englsberger J, Ott C, Roa MA, Albu-Schäffer A, Hirzinger G 2011. Bipedal walking control based on capture point dynamics. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems4420–27 Piscataway, NJ: IEEE
    [Google Scholar]
  51. 51. 
    Takenaka T, Matsumoto T, Yoshiike T 2009. Real time motion generation and control for biped robot – 1st report: walking gait pattern generation. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems1084–91 Piscataway, NJ: IEEE
    [Google Scholar]
  52. 52. 
    Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N, Fujimura K 2002. The intelligent ASIMO: system overview and integration. IEEE/RSJ International Conference on Intelligent Robots and SystemsVol 32478–83 Piscataway, NJ: IEEE
    [Google Scholar]
  53. 53. 
    Geyer H, Seyfarth A, Blickhan R 2006. Compliant leg behaviour explains basic dynamics of walking and running. Proc. R. Soc. Lond. B 273:2861–67
    [Google Scholar]
  54. 54. 
    Blickhan R 1989. The spring-mass model for running and hopping. J. Biomech. 22:1217–27
    [Google Scholar]
  55. 55. 
    Pratt J, Chew CM, Torres A, Dilworth P, Pratt G 2001. Virtual model control: an intuitive approach for bipedal locomotion. Int. J. Robot. Res. 20:129–43
    [Google Scholar]
  56. 56. 
    Ahmadi M, Buehler M 2006. Controlled passive dynamic running experiments with the ARL-Monopod II. IEEE Trans. Robot. 22:974–86
    [Google Scholar]
  57. 57. 
    Altendorfer R, Koditschek DE, Holmes P 2004. Stability analysis of legged locomotion models by symmetry-factored return maps. Int. J. Robot. Res. 23:979–99
    [Google Scholar]
  58. 58. 
    Rummel J, Blum Y, Maus HM, Rode C, Seyfarth A 2010. Stable and robust walking with compliant legs. 2010 IEEE International Conference on Robotics and Automation5250–55 Piscataway, NJ: IEEE
    [Google Scholar]
  59. 59. 
    Zeglin G, Brown B 1998. Control of a bow leg hopping robot. Proceedings of the 1998 IEEE International Conference on Robotics and AutomationVol 1793–98 Piscataway, NJ: IEEE
    [Google Scholar]
  60. 60. 
    Hobbelen DGE, Wisse M 2007. Limit cycle walking. Humanoid Robots: Human-Like Machines M Hackel277–94 London: IntechOpen
    [Google Scholar]
  61. 61. 
    Perko L 2013. Differential Equations and Dynamical Systems New York: Springer
  62. 62. 
    Morris B, Grizzle JW 2005. A restricted Poincaré map for determining exponentially stable periodic orbits in systems with impulse effects: application to bipedal robots. Proceedings of the 44th IEEE Conference on Decision and Control4199–206 Piscataway, NJ: IEEE
    [Google Scholar]
  63. 63. 
    Wendel ED, Ames AD 2010. Rank properties of Poincaré maps for hybrid systems with applications to bipedal walking. Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control151–60 New York: ACM
    [Google Scholar]
  64. 64. 
    Hunter IW, Hollerbach JM, Ballantyne J 1991. A comparative analysis of actuator technologies for robotics. Robot. Rev. 2:299–342
    [Google Scholar]
  65. 65. 
    Kormushev P, Ugurlu B, Calinon S, Tsagarakis NG, Caldwell DG 2011. Bipedal walking energy minimization by reinforcement learning with evolving policy parameterization. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems318–24 Piscataway, NJ: IEEE
    [Google Scholar]
  66. 66. 
    Radford NA, Strawser P, Hambuchen K, Mehling JS, Verdeyen WK, et al 2015. Valkyrie: NASA's first bipedal humanoid robot. J. Field Robot. 32:397–419
    [Google Scholar]
  67. 67. 
    Park HW, Sreenath K, Hurst JW, Grizzle JW 2011. Identification of a bipedal robot with a compliant drivetrain. IEEE Control Syst. 31:63–88
    [Google Scholar]
  68. 68. 
    Grimes JA, Hurst JW 2012. The design of ATRIAS 1.0: a unique monopod, hopping robot. Adaptive Mobile Robotics: Proceedings of the 15th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines AKM Azad, NJ Cowan, MO Tokhi, GS Virk, RD Eastman548–54 Singapore: World Sci.
    [Google Scholar]
  69. 69. 
    Rezazadeh S, Hubicki C, Jones M, Peekema A, Van Why J et al. 2015. Spring-mass walking with ATRIAS in 3D: robust gait control spanning zero to 4.3 kph on a heavily underactuated bipedal robot. Proceedings of the ASME 2015 Dynamic Systems and Control Conference pap. DSCC2015-9899 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  70. 70. 
    Abate AM 2018. Mechanical design for robot locomotion PhD Thesis, Ore. State Univ., Corvallis
  71. 71. 
    Ahmadi M, Buehler M 1999. The ARL Monopod II running robot: control and energetics. Proceedings of the 1999 IEEE International Conference on Robotics and AutomationVol 31689–94 Piscataway, NJ: IEEE
    [Google Scholar]
  72. 72. 
    Brown B, Zeglin G 1998. The bow leg hopping robot. Proceedings of the 1998 IEEE International Conference on Robotics and AutomationVol 1781–86 Piscataway, NJ: IEEE
    [Google Scholar]
  73. 73. 
    Hyon SH, Mita T 2002. Development of a biologically inspired hopping robot – “Kenken”. Proceedings of the 2002 IEEE International Conference on Robotics and AutomationVol 43984–91 Piscataway, NJ: IEEE
    [Google Scholar]
  74. 74. 
    McGeer T 1990. Passive walking with knees. Proceedings of the 1990 IEEE International Conference on Robotics and Automation1640–45 Piscataway, NJ: IEEE
    [Google Scholar]
  75. 75. 
    Collins SH, Wisse M, Ruina A 2001. A three-dimensional passive-dynamic walking robot with two legs and knees. Int. J. Robot. Res. 20:607–15
    [Google Scholar]
  76. 76. 
    Collins SH, Ruina A 2005. A bipedal walking robot with efficient and human-like gait. Proceedings of the 2005 IEEE International Conference on Robotics and Automation1983–88 Piscataway, NJ: IEEE
    [Google Scholar]
  77. 77. 
    Bhounsule P, Ruina A 2009. Cornell Ranger: energy-optimal control Paper presented at Dynamic Walking 2009, Vancouver, Can., June 7–11
  78. 78. 
    Tedrake R, Zhang TW, Seung HS 2004. Stochastic policy gradient reinforcement learning on a simple 3D biped. 2004 IEEE/RSJ International Conference on Intelligent Robots and SystemsVol 32849–54 Piscataway, NJ: IEEE
    [Google Scholar]
  79. 79. 
    Tedrake R, Zhang TW, Fong M, Seung HS 2004. Actuating a simple 3D passive dynamic walker. Proceedings of the 2004 IEEE International Conference on Robotics and AutomationVol 54656–61 Piscataway, NJ: IEEE
    [Google Scholar]
  80. 80. 
    Anderson SO, Wisse M, Atkeson CG, Hodgins JK, Zeglin G, Moyer B 2005. Powered bipeds based on passive dynamic principles. 5th IEEE-RAS International Conference on Humanoid Robots110–16 Piscataway, NJ: IEEE
    [Google Scholar]
  81. 81. 
    Wisse M, Van der Linde RQ 2007. Delft Pneumatic Bipeds Berlin: Springer
  82. 82. 
    Spong MW, Bullo F 2005. Controlled symmetries and passive walking. IEEE Trans. Autom. Control 50:1025–31
    [Google Scholar]
  83. 83. 
    Ames AD, Gregg RD, Spong MW 2007. A geometric approach to three-dimensional hipped bipedal robotic walking. 2007 46th IEEE Conference on Decision and Control5123–30 Piscataway, NJ: IEEE
    [Google Scholar]
  84. 84. 
    Reher J, Csomay-Shanklin N, Christensen DL, Bristow B, Ames AD, Smoot L 2020. Passive dynamic balancing and walking in actuated environments. 2020 IEEE International Conference on Robotics and Automation
    [Google Scholar]
  85. 85. 
    Ames AD, Vasudevan R, Bajcsy R 2011. Human-data based cost of bipedal robotic walking. Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control153–62 New York: ACM
    [Google Scholar]
  86. 86. 
    Ames AD 2012. First steps toward automatically generating bipedal robotic walking from human data. Robot Motion and Control 2011 K Kozlowski89–116 London: Springer
    [Google Scholar]
  87. 87. 
    Pfeiffer F, Glocker C 1996. Multibody Dynamics with Unilateral Contacts New York: Wiley & Sons
  88. 88. 
    Hurmuzlu Y, Marghitu DB 1994. Rigid body collisions of planar kinematic chains with multiple contact points. Int. J. Robot. Res. 13:82–92
    [Google Scholar]
  89. 89. 
    Or Y 2014. Painlevé's paradox and dynamic jamming in simple models of passive dynamic walking. Regul. Chaotic Dyn. 19:64–80
    [Google Scholar]
  90. 90. 
    Liu C, Zhao Z, Brogliato B 2008. Frictionless multiple impacts in multibody systems. I. Theoretical framework. Proc. R. Soc. A 464:3193–211
    [Google Scholar]
  91. 91. 
    Or Y, Ames AD 2010. Stability and completion of Zeno equilibria in Lagrangian hybrid systems. IEEE Trans. Autom. Control 56:1322–36
    [Google Scholar]
  92. 92. 
    Lamperski A, Ames AD 2012. Lyapunov theory for Zeno stability. IEEE Trans. Autom. Control 58:100–12
    [Google Scholar]
  93. 93. 
    Ames AD 2011. Characterizing knee-bounce in bipedal robotic walking: a Zeno behavior approach. Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control163–72 New York: ACM
    [Google Scholar]
  94. 94. 
    Marton L, Lantos B 2007. Modeling, identification, and compensation of stick-slip friction. IEEE Trans. Ind. Electron. 54:511–21
    [Google Scholar]
  95. 95. 
    Ma WL, Or Y, Ames AD 2019. Dynamic walking on slippery surfaces: demonstrating stable bipedal gaits with planned ground slippage. 2019 International Conference on Robotics and Automation3705–11 Piscataway, NJ: IEEE
    [Google Scholar]
  96. 96. 
    Goswami A, Thuilot B, Espiau B 1998. A study of the passive gait of a compass-like biped robot: symmetry and chaos. Int. J. Robot. Res. 17:1282–301
    [Google Scholar]
  97. 97. 
    Morris B, Grizzle JW 2009. Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots. IEEE Trans. Autom. Control 54:1751–64
    [Google Scholar]
  98. 98. 
    Grizzle JW, Abba G, Plestan F 2001. Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans. Autom. Control 46:51–64
    [Google Scholar]
  99. 99. 
    Sinnet RW, Ames AD 2009. 2D bipedal walking with knees and feet: a hybrid control approach. Proceedings of the 48th IEEE Conference on Decision and Control Held Jointly with 2009 28th Chinese Control Conference3200–7 Piscataway, NJ: IEEE
    [Google Scholar]
  100. 100. 
    Reher J, Ma WL, Ames AD 2019. Dynamic walking with compliance on a Cassie bipedal robot. 2019 18th European Control Conference2589–95 Piscataway, NJ: IEEE
    [Google Scholar]
  101. 101. 
    Sastry SS 2013. Nonlinear Systems: Analysis, Stability, and Control New York: Springer
  102. 102. 
    Isidori A 1997. Nonlinear Control Systems London: Springer
  103. 103. 
    Ames AD 2014. Human-inspired control of bipedal walking robots. IEEE Trans. Autom. Control 59:1115–30
    [Google Scholar]
  104. 104. 
    Chevallereau C, Abba G, Aoustin Y, Plestan F, Westervelt E, et al 2003. Rabbit: a testbed for advanced control theory. IEEE Control Syst. Mag. 23:557–79
    [Google Scholar]
  105. 105. 
    Grizzle JW, Hurst J, Morris B, Park HW, Sreenath K 2009. MABEL, a new robotic bipedal walker and runner. 2009 American Control Conference2030–36 Piscataway, NJ: IEEE
    [Google Scholar]
  106. 106. 
    Yadukumar SN, Pasupuleti M, Ames AD 2013. From formal methods to algorithmic implementation of human inspired control on bipedal robots. Algorithmic Foundations of Robotics X E Frazzoli, T Lozano-Perez, N Roy, D Rus511–26 Berlin: Springer
    [Google Scholar]
  107. 107. 
    Hamed KA, Grizzle JW 2013. Event-based stabilization of periodic orbits for underactuated 3-D bipedal robots with left-right symmetry. IEEE Trans. Robot. 30:365–81
    [Google Scholar]
  108. 108. 
    Ramezani A, Hurst JW, Akbari Hamed K, Grizzle JW 2014. Performance analysis and feedback control of ATRIAS, a three-dimensional bipedal robot. J. Dyn. Syst. Meas. Control 136:021012
    [Google Scholar]
  109. 109. 
    Zhao HH, Ma WL, Zeagler MB, Ames AD 2014. Human-inspired multi-contact locomotion with AMBER2. 2014 ACM/IEEE International Conference on Cyber-Physical Systems199–210 Piscataway, NJ: IEEE
    [Google Scholar]
  110. 110. 
    Ambrose E, Ma WL, Hubicki C, Ames AD 2017. Toward benchmarking locomotion economy across design configurations on the modular robot: AMBER-3M. 2017 IEEE Conference on Control Technology and Applications1270–76 Piscataway, NJ: IEEE
    [Google Scholar]
  111. 111. 
    Ames AD, Cousineau EA, Powell MJ 2012. Dynamically stable bipedal robotic walking with NAO via human-inspired hybrid zero dynamics. Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control135–44 New York: ACM
    [Google Scholar]
  112. 112. 
    Buss BG, Ramezani A, Hamed KA, Griffin BA, Galloway KS, Grizzle JW 2014. Preliminary walking experiments with underactuated 3D bipedal robot MARLO. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems2529–36 Piscataway, NJ: IEEE
    [Google Scholar]
  113. 113. 
    Zhao H, Horn J, Reher J, Paredes V, Ames AD 2016. Multicontact locomotion on transfemoral prostheses via hybrid system models and optimization-based control. IEEE Trans. Autom. Sci. Eng. 13:502–13
    [Google Scholar]
  114. 114. 
    Zhao H, Horn J, Reher J, Paredes V, Ames AD 2017. First steps toward translating robotic walking to prostheses: a nonlinear optimization based control approach. Auton. Robots 41:725–42
    [Google Scholar]
  115. 115. 
    Zhao H, Ambrose E, Ames AD 2017. Preliminary results on energy efficient 3D prosthetic walking with a powered compliant transfemoral prosthesis. 2017 IEEE International Conference on Robotics and Automation1140–47 Piscataway, NJ: IEEE
    [Google Scholar]
  116. 116. 
    Harib O, Hereid A, Agrawal A, Gurriet T, Finet S, et al 2018. Feedback control of an exoskeleton for paraplegics: toward robustly stable, hands-free dynamic walking. IEEE Control Syst. Mag. 38:661–87
    [Google Scholar]
  117. 117. 
    Gurriet T, Finet S, Boeris G, Duburcq A, Hereid A, et al 2018. Towards restoring locomotion for paraplegics: realizing dynamically stable walking on exoskeletons. 2018 IEEE International Conference on Robotics and Automation2804–11 Piscataway, NJ: IEEE
    [Google Scholar]
  118. 118. 
    Poulakakis I 2009. Stabilizing monopedal robot running: reduction-by-feedback and compliant hybrid zero dynamics PhD Thesis, Univ. Mich., Ann Arbor
  119. 119. 
    Gong Y, Hartley R, Da X, Hereid A, Harib O, et al 2019. Feedback control of a Cassie bipedal robot: walking, standing, and riding a Segway. 2019 American Control Conference4559–66 Piscataway, NJ: IEEE
    [Google Scholar]
  120. 120. 
    Stumpf A, Kohlbrecher S, Conner DC, von Stryk O 2016. Open source integrated 3D footstep planning framework for humanoid robots. 2016 IEEE-RAS 16th International Conference on Humanoid Robots938–45 Piscataway, NJ: IEEE
    [Google Scholar]
  121. 121. 
    Nishiwaki K, Kagami S 2009. Online walking control system for humanoids with short cycle pattern generation. Int. J. Robot. Res. 28:729–42
    [Google Scholar]
  122. 122. 
    Wieber PB 2006. Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. 2006 6th IEEE-RAS International Conference on Humanoid Robots137–42 Piscataway, NJ: IEEE
    [Google Scholar]
  123. 123. 
    Stephens BJ, Atkeson CG 2010. Push recovery by stepping for humanoid robots with force controlled joints. 2010 10th IEEE-RAS International Conference on Humanoid Robots52–59 Piscataway, NJ: IEEE
    [Google Scholar]
  124. 124. 
    Wieber PB 2008. Viability and predictive control for safe locomotion. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems1103–8 Piscataway, NJ: IEEE
    [Google Scholar]
  125. 125. 
    Huang Q, Kajita S, Koyachi N, Kaneko K, Yokoi K, et al 1999. A high stability, smooth walking pattern for a biped robot. Proceedings of the 1999 IEEE International Conference on Robotics and AutomationVol 165–71 Piscataway, NJ: IEEE
    [Google Scholar]
  126. 126. 
    Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, et al 2003. Biped walking pattern generation by using preview control of zero-moment point. 2003 IEEE International Conference on Robotics and AutomationVol 21620–26 Piscataway, NJ: IEEE
    [Google Scholar]
  127. 127. 
    Nagasaka K, Inoue H, Inaba M 1999. Dynamic walking pattern generation for a humanoid robot based on optimal gradient method. IEEE SMC’99 Conference Proceedings: 1999 IEEE International Conference on Systems, Man, and CyberneticsVol 6908–13 Piscataway, NJ: IEEE
    [Google Scholar]
  128. 128. 
    Khatib O 1987. A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3:43–53
    [Google Scholar]
  129. 129. 
    Hebert P, Bajracharya M, Ma J, Hudson N, Aydemir A, et al 2015. Mobile manipulation and mobility as manipulation—design and algorithms of RoboSimian. J. Field Robot. 32:255–74
    [Google Scholar]
  130. 130. 
    Zucker M, Joo S, Grey MX, Rasmussen C, Huang E, et al 2015. A general-purpose system for teleoperation of the DRC-HUBO humanoid robot. J. Field Robot. 32:336–51
    [Google Scholar]
  131. 131. 
    Chow C, Jacobson D 1971. Studies of human locomotion via optimal programming. Math. Biosci. 10:239–306
    [Google Scholar]
  132. 132. 
    Channon P, Hopkins S, Pham D 1992. Derivation of optimal walking motions for a bipedal walking robot. Robotica 10:165–72
    [Google Scholar]
  133. 133. 
    Mombaur K 2009. Using optimization to create self-stable human-like running. Robotica 27:321–30
    [Google Scholar]
  134. 134. 
    Mombaur KD, Bock HG, Schlöder JP, Longman RW 2005. Open-loop stable solutions of periodic optimal control problems in robotics. Z. Angew. Math. Mech. 85:499–515
    [Google Scholar]
  135. 135. 
    Dai H, Valenzuela A, Tedrake R 2014. Whole-body motion planning with centroidal dynamics and full kinematics. 2014 IEEE-RAS International Conference on Humanoid Robots295–302 Piscataway, NJ: IEEE
    [Google Scholar]
  136. 136. 
    Posa M, Kuindersma S, Tedrake R 2016. Optimization and stabilization of trajectories for constrained dynamical systems. 2016 IEEE International Conference on Robotics and Automation1366–73 Piscataway, NJ: IEEE
    [Google Scholar]
  137. 137. 
    Herzog A, Rotella N, Schaal S, Righetti L 2015. Trajectory generation for multi-contact momentum control. 2015 IEEE-RAS 15th International Conference on Humanoid Robots874–80 Piscataway, NJ: IEEE
    [Google Scholar]
  138. 138. 
    Posa M, Cantu C, Tedrake R 2014. A direct method for trajectory optimization of rigid bodies through contact. Int. J. Robot. Res. 33:69–81
    [Google Scholar]
  139. 139. 
    Moreau JJ 1966. Quadratic programming in mechanics: dynamics of one-sided constraints. SIAM J. Control 4:153–58
    [Google Scholar]
  140. 140. 
    Denk J, Schmidt G 2001. Synthesis of a walking primitive database for a humanoid robot using optimal control techniques. Proceedings of the IEEE-RAS International Conference on Humanoid Robots319–26 Piscataway, NJ: IEEE
    [Google Scholar]
  141. 141. 
    Hereid A, Cousineau EA, Hubicki CM, Ames AD 2016. 3D dynamic walking with underactuated humanoid robots: a direct collocation framework for optimizing hybrid zero dynamics. 2016 IEEE International Conference on Robotics and Automation1447–54 Piscataway, NJ: IEEE
    [Google Scholar]
  142. 142. 
    Hereid A, Hubicki CM, Cousineau EA, Hurst JW, Ames AD 2015. Hybrid zero dynamics based multiple shooting optimization with applications to robotic walking. 2015 IEEE International Conference on Robotics and Automation5734–40 Piscataway, NJ: IEEE
    [Google Scholar]
  143. 143. 
    Hereid A, Hubicki CM, Cousineau EA, Ames AD 2018. Dynamic humanoid locomotion: a scalable formulation for HZD gait optimization. IEEE Trans. Robot. 34:370–87
    [Google Scholar]
  144. 144. 
    Da X, Harib O, Hartley R, Griffin B, Grizzle JW 2016. From 2D design of underactuated bipedal gaits to 3D implementation: walking with speed tracking. IEEE Access 4:3469–78
    [Google Scholar]
  145. 145. 
    Da X, Hartley R, Grizzle JW 2017. Supervised learning for stabilizing underactuated bipedal robot locomotion, with outdoor experiments on the wave field. 2017 IEEE International Conference on Robotics and Automation3476–83 Piscataway, NJ: IEEE
    [Google Scholar]
  146. 146. 
    Ziegler JG, Nichols NB 1942. Optimum settings for automatic controllers. Trans. ASME 64:759–68
    [Google Scholar]
  147. 147. 
    Kolathaya S, Hereid A, Ames AD 2016. Time dependent control Lyapunov functions and hybrid zero dynamics for stable robotic locomotion. 2016 American Control Conference3916–21 Piscataway, NJ: IEEE
    [Google Scholar]
  148. 148. 
    Westervelt ER, Buche G, Grizzle JW 2004. Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds. Int. J. Robot. Res. 23:559–82
    [Google Scholar]
  149. 149. 
    Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, et al 2003. Resolved momentum control: humanoid motion planning based on the linear and angular momentum. Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and SystemsVol 21644–50 Piscataway, NJ: IEEE
    [Google Scholar]
  150. 150. 
    Popovic M, Hofmann A, Herr H 2004. Zero spin angular momentum control: definition and applicability. 4th IEEE/RAS International Conference on Humanoid RobotsVol 1478–93 Piscataway, NJ: IEEE
    [Google Scholar]
  151. 151. 
    Lee SH, Goswami A 2010. Ground reaction force control at each foot: a momentum-based humanoid balance controller for non-level and non-stationary ground. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems3157–62 Piscataway, NJ: IEEE
    [Google Scholar]
  152. 152. 
    Koolen T, Bertrand S, Thomas G, De Boer T, Wu T, et al 2016. Design of a momentum-based control framework and application to the humanoid robot Atlas. Int. J. Humanoid Robot. 13:1650007
    [Google Scholar]
  153. 153. 
    Fujimoto Y, Kawamura A 1996. Proposal of biped walking control based on robust hybrid position/force control. Proceedings of the IEEE International Conference on Robotics and AutomationVol 32724–30 Piscataway, NJ: IEEE
    [Google Scholar]
  154. 154. 
    Saab L, Ramos OE, Keith F, Mansard N, Soueres P, Fourquet JY 2013. Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Trans. Robot. 29:346–62
    [Google Scholar]
  155. 155. 
    Tzafestas S, Raibert M, Tzafestas C 1996. Robust sliding-mode control applied to a 5-link biped robot. J. Intell. Robot. Syst. 15:67–133
    [Google Scholar]
  156. 156. 
    Ames AD, Powell M 2013. Towards the unification of locomotion and manipulation through control Lyapunov functions and quadratic programs. Control of Cyber-Physical Systems D Tarrag219–40 Heidelberg, Ger.: Springer
    [Google Scholar]
  157. 157. 
    Sentis L 2007. Synthesis and control of whole-body behaviors in humanoid systems PhD Thesis, Stanford Univ., Stanford, CA
  158. 158. 
    Aghili F 2005. A unified approach for inverse and direct dynamics of constrained multibody systems based on linear projection operator: applications to control and simulation. IEEE Trans. Robot. 21:834–49
    [Google Scholar]
  159. 159. 
    Mistry M, Buchli J, Schaal S 2010. Inverse dynamics control of floating base systems using orthogonal decomposition. 2010 IEEE International Conference on Robotics and Automation3406–12 Piscataway, NJ: IEEE
    [Google Scholar]
  160. 160. 
    Apgar T, Clary P, Green K, Fern A, Hurst JW 2018. Fast online trajectory optimization for the bipedal robot Cassie. Robotics: Science and Systems XIV H Kress-Gazit, S Srinivasa, T Howard, N Atanasov pap. 54 N.p.: Robot. Sci. Syst. Found.
    [Google Scholar]
  161. 161. 
    Feng S, Whitman E, Xinjilefu X, Atkeson CG 2015. Optimization-based full body control for the DARPA robotics challenge. J. Field Robot. 32:293–312
    [Google Scholar]
  162. 162. 
    Herzog A, Rotella N, Mason S, Grimminger F, Schaal S, Righetti L 2016. Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid. Auton. Robots 40:473–91
    [Google Scholar]
  163. 163. 
    Ames AD, Galloway K, Grizzle JW 2012. Control Lyapunov functions and hybrid zero dynamics. 2012 IEEE 51st IEEE Conference on Decision and Control6837–42 Piscataway, NJ: IEEE
    [Google Scholar]
  164. 164. 
    Galloway K, Sreenath K, Ames AD, Grizzle JW 2015. Torque saturation in bipedal robotic walking through control Lyapunov function-based quadratic programs. IEEE Access 3:323–32
    [Google Scholar]
  165. 165. 
    Cousineau E, Ames AD 2015. Realizing underactuated bipedal walking with torque controllers via the ideal model resolved motion method. 2015 IEEE International Conference on Robotics and Automation5747–53 Piscataway, NJ: IEEE
    [Google Scholar]
  166. 166. 
    Nguyen Q, Sreenath K 2020. Optimal robust safety-critical control for dynamic robotics. arXiv:2005.07284 [cs.RO]
    [Google Scholar]
  167. 167. 
    Reher J, Kann C, Ames AD 2020. An inverse dynamics approach to control Lyapunov functions. 2020 American Control Conference2444–51 Piscataway, NJ: IEEE
    [Google Scholar]
  168. 168. 
    Ames AD, Holley J 2014. Quadratic program based nonlinear embedded control of series elastic actuators. 53rd IEEE Conference on Decision and Control6291–98 Piscataway, NJ: IEEE
    [Google Scholar]
  169. 169. 
    Hereid A, Powell MJ, Ames AD 2014. Embedding of SLIP dynamics on underactuated bipedal robots through multi-objective quadratic program based control. 2014 IEEE 53rd Annual Conference on Decision and Control2950–57 Piscataway, NJ: IEEE
    [Google Scholar]
  170. 170. 
    Xiong X, Ames AD 2018. Coupling reduced order models via feedback control for 3D underactuated bipedal robotic walking. 2018 IEEE-RAS 18th International Conference on Humanoid Robots Piscataway, NJ: IEEE https://doi.org/10.1109/HUMANOIDS.2018.8625066
    [Crossref] [Google Scholar]
  171. 171. 
    Xiong X, Ames AD 2018. Bipedal hopping: reduced-order model embedding via optimization-based control. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems3821–28 Piscataway, NJ: IEEE
    [Google Scholar]
  172. 172. 
    Wieber PB, Chevallereau C 2006. Online adaptation of reference trajectories for the control of walking systems. Robot. Auton. Syst. 54:559–66
    [Google Scholar]
  173. 173. 
    Chevallereau C, Westervelt E, Grizzle J 2005. Asymptotically stable running for a five-link, four-actuator, planar bipedal robot. Int. J. Robot. Res. 24:431–64
    [Google Scholar]
  174. 174. 
    Powell MJ, Hereid A, Ames AD 2013. Speed regulation in 3D robotic walking through motion transitions between human-inspired partial hybrid zero dynamics. 2013 IEEE International Conference on Robotics and Automation4803–10 Piscataway, NJ: IEEE
    [Google Scholar]
  175. 175. 
    Rezazadeh S, Hubicki CM, Jones M, Peekema A, Van Why J et al. 2015. Spring-mass walking with ATRIAS in 3D: robust gait control spanning zero to 4.3 kph on a heavily underactuated bipedal robot. Proceedings of the ASME 2015 Dynamic Systems and Control Conference pap. DSCC2015-9899 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  176. 176. 
    Griffin B, Grizzle J 2015. Nonholonomic virtual constraints for dynamic walking. 2015 54th IEEE Conference on Decision and Control4053–60 Piscataway, NJ: IEEE
    [Google Scholar]
  177. 177. 
    Nguyen Q, Hereid A, Grizzle JW, Ames AD, Sreenath K 2016. 3D dynamic walking on stepping stones with control barrier functions. 2016 IEEE 55th Conference on Decision and Control827–34 Piscataway, NJ: IEEE
    [Google Scholar]
  178. 178. 
    Ames AD, Tabuada P, Jones A, Ma WL, Rungger M, et al 2017. First steps toward formal controller synthesis for bipedal robots with experimental implementation. Nonlinear Anal. Hybrid Syst. 25:155–73
    [Google Scholar]
  179. 179. 
    Ames AD, Xu X, Grizzle JW, Tabuada P 2016. Control barrier function based quadratic programs for safety critical systems. IEEE Trans. Autom. Control 62:3861–76
    [Google Scholar]
  180. 180. 
    Hereid A, Kolathaya S, Ames AD 2016. Online optimal gait generation for bipedal walking robots using Legendre pseudospectral optimization. 2016 IEEE 55th Conference on Decision and Control6173–79 Piscataway, NJ: IEEE
    [Google Scholar]
/content/journals/10.1146/annurev-control-071020-045021
Loading
/content/journals/10.1146/annurev-control-071020-045021
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error