1932

Abstract

It has been 10 years since the Fukushima Daiichi Nuclear Power Station (NPS) accident. This article begins by discussing the robots used during the responses to the Three Mile Island and Chernobyl nuclear accidents. It then reviews the robots used to respond to the Fukushima Daiichi NPS accident, while considering the lessons learned from the previous accidents. Such discussions will hopefully lead to the further development of robots for decommissioning the Fukushima Daiichi NPS.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-071420-100248
2021-05-03
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/control/4/1/annurev-control-071420-100248.html?itemId=/content/journals/10.1146/annurev-control-071420-100248&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Yokokohji Y. 2019. Looking back on disaster response robots for the Fukushima nuclear accident based on lessons learned from past nuclear accidents. Kinzoku (Mater. Sci. Technol.) 89:810–19 in Japanese )
    [Google Scholar]
  2. 2. 
    Jpn. Minist. Econ. Trade Ind 2020. Mid-and-long-term roadmap towards the decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Station units 1–4. Japanese Ministry of Economy, Trade, and Industry. https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/index.html
    [Google Scholar]
  3. 3. 
    Secr. Team Countermeas. Decomm. Contam. Water Manag 2019. Revision of ‘the mid-and-long-term roadmap towards the decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Station’ Rep., Secr. Team Countermeas. Decomm. Contam. Water Manag . https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/pdf/20191227_1.pdf
    [Google Scholar]
  4. 4. 
    Secr. Team Countermeas. Decomm. Contam. Water Manag 2019. The mid-and-long-term roadmap towards the decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Station Rep., Secr. Team Countermeas. Decomm. Contam. Water Manag. 5th rev . https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/pdf/20191227_3.pdf
    [Google Scholar]
  5. 5. 
    Nucl.-Relat. Rec. Mak. Subcomm 2014. Nuclear robot records and recommendations Rep., Nucl.-Relat. Rec. Mak. Subcomm., Great East Jpn. Earthq.-Rel. Comm., Robot. Soc. Jpn Tokyo:. https://www.rsj.or.jp/databox/committees/141001saigaikiroku_fainal_zanntei.pdf (in Japanese )
    [Google Scholar]
  6. 6. 
    Oomichi T. 2014. Lessons of nuclear robot history. J. Robot. Soc. Jpn. 32:2–9 in Japanese )
    [Google Scholar]
  7. 7. 
    Secr. Team Countermeas. Decomm. Contam. Water Treat 2020. Archive of progress reports of the mid-and-long term roadmap. Secretariat of the Team for Countermeasures for Decommissioning and Contaminated Water Treatment. https://www.tepco.co.jp/decommission/information/committee/roadmap_progress/index-j.html (in Japanese; a summary version in English is available at https://www.tepco.co.jp/en/hd/decommission/information/committee/index-e.html )
    [Google Scholar]
  8. 8. 
    Kawatsuma S. 2018. Summary and technical issues on robots for Fukushima Daiichi NPPs. J. Robot. Soc. Jpn. 36:472–77 in Japanese )
    [Google Scholar]
  9. 9. 
    Tsitsimpelis I, Taylor CJ, Lennox B, Joyce MJ 2019. A review of ground-based robotic systems for the characterization of nuclear environments. Prog. Nucl. Energy 111:109–24
    [Google Scholar]
  10. 10. 
    GPU Nucl. Commun 1980. The TMI-2 chronicle: the history and lessons of Three Mile Island Unit Two Rep., GPU Nucl. Commun South Middletown, PA:. https://www.yumpu.com/en/document/read/36816419/the-tmi-2-chronicle-three-mile-island
    [Google Scholar]
  11. 11. 
    Moore T. 1985. Robots for nuclear power plants. IAEA Bull 27:331–38
    [Google Scholar]
  12. 12. 
    Eng Grove 1990. The cleanup of Three Mile Island Unit 2: a technical history: 1979 to 1990 Rep. EPRI NP-6931, Proj. 2558-8, Grove Eng Rockville, MD:. http://svcf.jp/pdf/Three_Mile_Iland2NP-6931.PDF
    [Google Scholar]
  13. 13. 
    Transl. Group Jpn. At. Energy Res. Inst 1993. Results and lessons from the accident study and recovery actions for TMI-2: introduction to TMI special volume of Nuclear Technology Rep. JAERI-M 93-111, Jpn. At. Energy Res. Inst., Tokai, Jpn. (in Japanese)
    [Google Scholar]
  14. 14. 
    Michal R. 2009. Red Whittaker and the robots that helped clean up TMI-2. Nuclear News December 37–40
    [Google Scholar]
  15. 15. 
    Carnegie Mellon Univ. Robot. Inst 2020. Remote Reconnaissance Vehicle. Carnegie Mellon University Robotics Institute. https://www.ri.cmu.edu/robot/remote-reconaissance-vehicle
    [Google Scholar]
  16. 16. 
    Carnegie Mellon Univ. Robot. Inst 2020. CoreSampler. Carnegie Mellon University Robotics Institute. https://www.ri.cmu.edu/robot/coresampler
    [Google Scholar]
  17. 17. 
    Carnegie Mellon Univ. Robot. Inst 2020. Remote Work Vehicle. Carnegie Mellon University Robotics Institute. https://www.ri.cmu.edu/robot/remote-work-vehicle
    [Google Scholar]
  18. 18. 
    Reilly JK, McIntosh TW, Northey LM, GaTanto JJ, Osterhoudt TR, Thompson JD 1985. Processing and removal of the Three Mile Island makeup and purification system resins. Waste Management'85: Waste Isolation in the U.S., Technical Programs and Public Education271–75 Tucson: Ariz. Board Regents
    [Google Scholar]
  19. 19. 
    Lovering D. 2009. Radioactive robot: the machines that cleaned up Three Mile Island. Scientific American Mar. 27 . https://www.scientificamerican.com/article/three-mile-island-robots
    [Google Scholar]
  20. 20. 
    Jpn. At. Energy Agency 2007. Summary of Chernobyl nuclear power plant accident. Japan Atomic Energy Agency. https://atomica.jaea.go.jp/data/detail/dat_detail_02-07-04-11.html (in Japanese )
    [Google Scholar]
  21. 21. 
    Potemkin E, Astafurov P, Osipov A, Malenkov M, Mishkinyuk V, Sologub P 1992. Remote-controlled robots for repair and recovery in the zones of high radiation levels. Proceedings of the 1992 IEEE International Conference on Robotics and Automation80–82 Piscataway, NJ: IEEE
    [Google Scholar]
  22. 22. 
    Paskevich S. 2020. Robot STR-1. Chernobyl, Pripyat, Chernobyl Nuclear Power Plant and Exclusion Zone. http://chornobyl.in.ua/robot-str.html (in Russian )
    [Google Scholar]
  23. 23. 
    FOP Shvachko V.V. 2012. STR-1 specialized transport robot. Fop Shvachko V.V. May 23 . http://shvachko.net/?p=836&lang=en
    [Google Scholar]
  24. 24. 
    Paskevich S. 2020. Robotic complex Klin-1. Chernobyl, Pripyat, Chernobyl Nuclear Power Plant and Exclusion Zone. http://chornobyl.in.ua/robot-klin.html (in Russian )
    [Google Scholar]
  25. 25. 
    Carnegie Mellon Univ. Robot. Inst 2020. Pioneer. Carnegie Mellon University Robotics Institute. https://www.ri.cmu.edu/robot/pioneer
    [Google Scholar]
  26. 26. 
    Abouaf J. 1998. Trial by fire: teleoperated robot targets Chernobyl. IEEE Comput. Graph. Appl. 18:410–14
    [Google Scholar]
  27. 27. 
    Tateishi Y, Ueki C. 2014. Correspondence for the Fukushima Daiichi Nuclear Power Station disaster from the viewpoint of the company: debris removal at Fukushima Daiichi Nuclear Power Station, using remote controlled heavy machine. J. Robot. Soc. Jpn. 32:151–53 in Japanese )
    [Google Scholar]
  28. 28. 
    Yoshino S. 2014. Robot development for the nuclear power accident in TEPCO. J. Robot. Soc. Jpn. 32:19–24 in Japanese )
    [Google Scholar]
  29. 29. 
    Kawatsuma S. 2014. Robot operation vehicle and JAEA-3. J. Jpn. Soc. Mech. Eng. 117:674–75 in Japanese )
    [Google Scholar]
  30. 30. 
    Yoshida T, Nagatani K, Tadokoro S, Nishimura T, Koyanagi E 2014. Improvements to the rescue robot Quince toward future indoor surveillance missions in the Fukushima Daiichi Nuclear Power Plant. Field and Service Robotics K Yoshida, S Tadokoro 19–32 Berlin: Springer
    [Google Scholar]
  31. 31. 
    Asama H. 2014. R&D for practical robot technology and establishment of its operation system for disaster response. J. Robot. Soc. Jpn. 32:37–41 in Japanese )
    [Google Scholar]
  32. 32. 
    Yamanobe N, Kato S, Yokoi K, Matsumoto T 2014. Development of High-Access Survey Robot. J. Robot. Soc. Jpn. 32:145–47 in Japanese )
    [Google Scholar]
  33. 33. 
    Tsukui S. 2014. Development of Survey Runner. J. Robot. Soc. Jpn. 32:141–42 in Japanese )
    [Google Scholar]
  34. 34. 
    Uehara T, Suganuma N. 2014. Change of environment leading to development of the quadruped robot. J. Robot. Soc. Jpn. 32:139–40 in Japanese )
    [Google Scholar]
  35. 35. 
    Ito K. 2018. Development of small survey robot in TEPCO. J. Robot. Soc. Jpn. 36:412–15 in Japanese )
    [Google Scholar]
  36. 36. 
    Nucl. Damage Compens. Decomm. Facil. Corp 2019. Technical strategic plan 2019 for the decommissioning of the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company Holdings, Inc Rep., Nucl. Damage Compens. Decomm. Facil. Corp Tokyo:. http://www.dd.ndf.go.jp/en/strategic-plan/book/20191101_SP2019eFT.pdf
    [Google Scholar]
  37. 37. 
    Tokyo Electr. Power Co. Hold 2020. Application of robot technology. Tokyo Electric Power Company Holdings. https://www.tepco.co.jp/en/decommision/principles/robot/index-e.html
    [Google Scholar]
  38. 38. 
    Int. Res. Inst. Nucl. Decomm 2020. Research development (R&D). International Research Institute for Nuclear Decommissioning. https://irid.or.jp/en/research/
    [Google Scholar]
/content/journals/10.1146/annurev-control-071420-100248
Loading
/content/journals/10.1146/annurev-control-071420-100248
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error