1932

Abstract

An agent-based model is a form of complex systems model that is capable of simulating how the micro-level behavior of individual system entities contributes to macro-level system outcomes. Researchers draw on theory and evidence to identify the key elements of a given system and specify behaviors of agents that simulate the individual entities of that system—be they cells, animals, or people. The model is then used to run simulations in which agents interact with one another and the resulting outcomes are observed. These models enable researchers to explore proposed causal explanations of real-world outcomes, experiment with the impacts that potential interventions might have on system behavior, or generate counterfactual scenarios against which real-world events can be compared. In this review, we discuss the application of agent-based modeling within the field of criminology as well as key challenges and future directions for research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-criminol-022222-033905
2025-01-29
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/criminol/8/1/annurev-criminol-022222-033905.html?itemId=/content/journals/10.1146/annurev-criminol-022222-033905&mimeType=html&fmt=ahah

Literature Cited

  1. An L, Grimm V, Sullivan A, Turner BL II, Malleson N, et al. 2021.. Challenges, tasks, and opportunities in modeling agent-based complex systems. . Ecol. Model. 457::109685
    [Crossref] [Google Scholar]
  2. Antosz P, Birks DJ, Edmonds B, Heppenstall A, Meyer R, et al. 2023.. What do you want theory for? A pragmatic analysis of the roles of “theory” in agent-based modelling. . Environ. Model. Softw. 168::105802
    [Crossref] [Google Scholar]
  3. Augusiak J, van den Brink PJ, Grimm V. 2014.. Merging validation and evaluation of ecological models to ‘evaludation’: a review of terminology and a practical approach. . Ecol. Model. 280::11728
    [Crossref] [Google Scholar]
  4. Badham J, Barbrook-Johnson P, Caiado C, Castellani B. 2021.. Justified stories with agent-based modelling for local COVID-19 planning. . J. Artif. Soc. Soc. Simul. 24:(1):8
    [Crossref] [Google Scholar]
  5. Batty M, Torrens PM. 2005.. Modelling and prediction in a complex world. . Futures 37::74566
    [Crossref] [Google Scholar]
  6. Berk R. 2008.. How you can tell if the simulations in computational criminology are any good. . J. Exp. Criminol. 4:(3):289308
    [Crossref] [Google Scholar]
  7. Birks DJ, Davies T. 2017.. Street network structure and crime risk: an agent-based investigation of the encounter and enclosure hypotheses. . Criminology 55:(4):90037
    [Crossref] [Google Scholar]
  8. Birks DJ, Heppenstall A, Malleson N. 2020.. Towards the development of societal twins. . In Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), pp. 288384. Amsterdam:: IOS
    [Google Scholar]
  9. Birks DJ, Malleson N. 2023.. Agent-based simulation models. . In Understanding Crime and Place: A Methods Handbook, ed. ER Groff, CP Haberman , p. 304. Philadelphia:: Temple Univ. Press
    [Google Scholar]
  10. Birks DJ, Townsley M. 2013.. Making crime simulation richer: 8 steps on the path to criminology's computational enlightenment. . In Wis en Waarachtig: Liber Amicorum voor Henk Elffers, ed. S Ruiter, W Bernasco, W Huisman, G Bruinsma , pp. 47790. Amsterdam:: NSCR/Vrije Univ. Amsterdam
    [Google Scholar]
  11. Birks DJ, Townsley M, Stewart A. 2012.. Generative explanations of crime: using simulation to test criminological theory. . Criminology 50:(1):22154
    [Crossref] [Google Scholar]
  12. Birks DJ, Townsley M, Stewart A. 2014.. Emergent regularities of interpersonal victimization: an agent-based investigation. . J. Res. Crime Delinquency 51:(1):11940
    [Crossref] [Google Scholar]
  13. Blakely T, Thompson J, Bablani L, Andersen P, Ouakrim DA, et al. 2021.. Determining the optimal COVID-19 policy response using agent-based modelling linked to health and cost modelling: case study for Victoria, Australia. . medRxiv 2021.01.11.21249630. https://doi.org/10.1101/2021.01.11.21249630
  14. Braga AA, Turchan BS, Papachristos AV, Hureau DM. 2019.. Hot spots policing and crime reduction: an update of an ongoing systematic review and meta-analysis. . J. Exp. Criminol. 15::289311
    [Crossref] [Google Scholar]
  15. Brantingham PL, Brantingham PJ. 1993.. Nodes, paths and edges: considerations on the complexity of crime and the physical environment. . J. Environ. Psychol. 13::328
    [Crossref] [Google Scholar]
  16. Bonabeau E. 2002.. Agent-based modeling: methods and techniques for simulating human systems. . PNAS 99:(3):728087
    [Crossref] [Google Scholar]
  17. Bookstaber R. 2017.. Agent-based models for financial crises. . Annu. Rev. Financ. Econ. 9::85100
    [Crossref] [Google Scholar]
  18. Calderoni F, Campedelli GM, Szekely A, Paolucci M, Andrighetto G. 2021.. Recruitment into organized crime: an agent-based approach testing the impact of different policies. . J. Quant. Criminol. 38::197237
    [Crossref] [Google Scholar]
  19. Candia J, Gonzalez MC, Wang P, Schoenharl T, Madey G, Barabasi A-L. 2008.. Uncovering individual and collective human dynamics from mobile phone records. . J. Phys. A 41::224015
    [Crossref] [Google Scholar]
  20. Cohen LE, Felson M. 1979.. Social change and crime rate trends: a routine activity approach. . Am. Sociol. Rev. 44::588608
    [Crossref] [Google Scholar]
  21. Cornelius CV, Lynch CJ, Gore R. 2017.. Aging out of crime: exploring the relationship between age and crime with agent based modeling. . In Proceedings of the Agent-Directed Simulation Symposium (ADS ’17), Art. 3 . New York:: ACM
    [Google Scholar]
  22. Crooks A, Malleson N, Manley E, Heppenstall A. 2019.. Agent-Based Modelling and Geographical Information Systems: A Practical Primer. Thousand Oaks, CA:: SAGE
    [Google Scholar]
  23. Deaton A, Cartwright N. 2018.. Understanding and misunderstanding randomized controlled trials. . Soc. Sci. Med. 210::221
    [Crossref] [Google Scholar]
  24. Dray A, Mazerolle L, Perez P, Ritter A. 2008.. Drug law enforcement in an agent-based model: simulating the disruption to street-level drug markets. . In Artificial Crime Analysis Systems: Using Computer Simulations and Geographic Information Systems, ed. JE Eck, L Liu , pp. 35271. Hershey, PA:: IGI Global
    [Google Scholar]
  25. Duxbury SW, Haynie DL. 2019.. Criminal network security: an agent-based approach to evaluating network resilience. . Criminology 57:(2):31442
    [Crossref] [Google Scholar]
  26. Eck J. 2007.. The devil's computer: a theory of crime patterns. Paper presented at the Environmental Criminology and Crime Analysis Annual Meeting, Chilliwack, BC:, July 26–28
    [Google Scholar]
  27. Edmonds B. 2007.. Simplicity is not truth-indicative. . In Worldviews, Science and Us: Philosophy and Complexity, ed. C Gershenson, D Aerts, B Edmonds , pp. 6580. Liverpool, UK:: Univ. Liverpool Press
    [Google Scholar]
  28. Edmonds B, Moss S. 2004.. From KISS to KIDS—an ‘anti-simplistic’ modelling approach. . In International Workshop on Multi-Agent Systems and Agent-Based Simulation, pp. 13044. Berlin:: Springer
    [Google Scholar]
  29. Elsenbroich C, Badham J. 2023.. Negotiating a future that is not like the past. . Int. J. Soc. Res. Methodol. 26:(2):20713
    [Crossref] [Google Scholar]
  30. Epstein J. 2006.. Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  31. Epstein JM. 2008.. Why model?. J. Artif. Soc. Soc. Simul. 11:(4):1217
    [Google Scholar]
  32. Epstein J, Axtell R. 1996.. Growing Artificial Societies: Social Science from the Bottom Up. Cambridge, MA:: MIT Press
    [Google Scholar]
  33. Fagiolo G, Moneta A, Windrum P. 2007.. A critical guide to empirical validation of agent-based models in economics: methodologies, procedures, and open problems. . Comput. Econ. 30::195226
    [Crossref] [Google Scholar]
  34. Gerritsen C. 2015.. Agent-based modelling as a research tool for criminological research. . Crime Sci. 4:(1):2
    [Crossref] [Google Scholar]
  35. Gerritsen C, Elffers H, eds. 2020.. Agent-Based Modelling for Criminological Theory Testing and Development. London:: Routledge
    [Google Scholar]
  36. Gilbert N. 2008.. Agent-Based Models. London:: Sage
    [Google Scholar]
  37. Gong Y, Gu F, Dai M. 2023.. A methodology of face validation with domain experts for agent-based crime risk prediction. . In IEEE 3rd International Conference on Software Engineering and Artificial Intelligence (SEAI), pp. 96103. Piscataway, NJ:: IEEE
    [Google Scholar]
  38. Grimm V, Railsback SF. 2005.. Individual-Based Modeling and Ecology. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  39. Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, et al. 2005.. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. . Science 310:(5750):98791
    [Crossref] [Google Scholar]
  40. Groff ER. 2007a.. Simulation for theory testing and experimentation: an example using routine activity theory and street robbery. . J. Quant. Criminol. 23::75103
    [Crossref] [Google Scholar]
  41. Groff ER. 2007b.. ‘Situating’ simulation to model human spatio-temporal interactions: an example using crime events. . Trans. GIS 11:(4):50730
    [Crossref] [Google Scholar]
  42. Groff ER. 2008.. Adding the temporal and spatial aspects of routine activities: a further test of routine activity theory. . Secur. J. 21::95116
    [Crossref] [Google Scholar]
  43. Groff ER, Badham J. 2020.. Examining guardianship against theft. . See Gerritsen & Elffers 2020 , pp. 71103
  44. Groff ER, Birks DJ. 2008.. Simulating crime prevention strategies: a look at the possibilities. . Policing 2:(2):17584
    [Crossref] [Google Scholar]
  45. Groff ER, Johnson SD, Thornton A. 2019.. State of the art in agent-based modeling of urban crime: an overview. . J. Quant. Criminol. 35::15593
    [Crossref] [Google Scholar]
  46. Groff ER, Mazerolle L. 2008.. Simulated experiments and their potential role in criminology and criminal justice. . J. Exp. Criminol. 4::18793
    [Crossref] [Google Scholar]
  47. Hedström P, Ylikoski P. 2010.. Causal mechanisms in the social sciences. . Annu. Rev. Sociol. 36::4967
    [Crossref] [Google Scholar]
  48. Holland P. 1986.. Statistics and causal inference. . J. Am. Stat. Assoc. 81:(396):94560
    [Crossref] [Google Scholar]
  49. Jacobs J. 1961.. The Death and Life of Great American Cities. New York:: Vintage Books
    [Google Scholar]
  50. Johnson SD. 2009.. Potential uses of computational methods in the evaluation of crime reduction activity. . In Evaluating Crime Prevention: Crime Prevention Studies, ed. J Knuttson, N Tilley , pp. 175217. Monsey, NY:: Crim. Just.
    [Google Scholar]
  51. Laufs J, Bowers K, Birks D, Johnson SD. 2021.. Understanding the concept of ‘demand’ in policing: a scoping review and resulting implications for demand management. . Polic. Soc. 31:(8):895918
    [Crossref] [Google Scholar]
  52. Liu L, Eck J. 2008a.. Varieties of artificial crime analysis: purpose, structure, and evidence in crime simulations. . In Artificial Crime Analysis Systems: Using Computer Simulations and Geographic Information Systems, ed. L Liu, J Eck , pp. 41332. Hershey, PA:: IGI Glob.
    [Google Scholar]
  53. Liu L, Eck J. 2008b.. Contrasting simulated and empirical experiments in crime prevention. . J. Exp. Criminol. 4::195213
    [Crossref] [Google Scholar]
  54. Luke DA, Stamatakis KA. 2012.. Systems science methods in public health: dynamics, networks, and agents. . Annu. Rev. Public Health 33::35776
    [Crossref] [Google Scholar]
  55. Macy WM, Willer R. 2002.. From factors to actors: computational sociology and agent-based modeling. . Annu. Rev. Sociol. 28::14366
    [Crossref] [Google Scholar]
  56. Maguire M. 2007.. Crime data and statistics. . In Oxford Handbook of Criminology, ed. M Maguire, R Morgan, R Reiner , pp. 241301. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  57. Malleson N, Birkin B, Birks DJ, Ge J, Heppenstall A, et al. 2022.. Agent-Based Modelling for Urban Analytics: State of the Art and Challenges, ed. SV Albrecht, M Woolridge . AI Commun. 35:(4):393406
    [Google Scholar]
  58. Malleson N, Heppenstall A, See L. 2010.. Crime reduction through simulation: an agent-based model of burglary. . Comput. Environ. Urban Syst. 34:(3):23650
    [Crossref] [Google Scholar]
  59. Malleson N, Heppenstall A, See L, Evans A. 2013.. Using an agent-based crime simulation to predict the effects of urban regeneration on individual household burglary risk. . Environ. Plan. B 40::40526
    [Crossref] [Google Scholar]
  60. Malleson N, See L, Evans A, Heppenstall A. 2012.. Implementing comprehensive offender behaviour in a realistic agent-based model of burglary. . Simulation 88:(1):5071
    [Crossref] [Google Scholar]
  61. Manson S, An L, Clarke KC, Heppenstall A, Koch J, et al. 2020.. Methodological issues of spatial agent-based models. . J. Artif. Soc. Soc. Simul. 23:(1):3
    [Crossref] [Google Scholar]
  62. Marchi SD, Page SE. 2014.. Agent-based models. . Annu. Rev. Political Sci. 17::120
    [Crossref] [Google Scholar]
  63. Mayer-Schönberger V, Cukier K. 2013.. Big Data: A Revolution That Will Transform How We Live, Work and Think. London:: Murray
    [Google Scholar]
  64. McCulloch J, Ge J, Ward JA, Heppenstall A, Polhill JG, Malleson N. 2022.. Calibrating agent-based models using uncertainty quantification methods. . J. Artif. Soc. Soc. Simul. 25:(2). https://doi.org/10.18564/jasss.4791
    [Crossref] [Google Scholar]
  65. Mowat R, Subramanian SV, Kawachi I. 2018.. Randomized controlled trials and evidence-based policy: a multidisciplinary dialogue. . Soc. Sci. Med. 210::190
    [Crossref] [Google Scholar]
  66. Müller B, Bohn F, Dreßler G, Groeneveld J, Klassert C, et al. 2013.. Describing human decisions in agent-based models—ODD? D, an extension of the ODD protocol. . Environ. Model. Softw. 48::3748
    [Crossref] [Google Scholar]
  67. Nagin DS, Sampson RJ. 2019.. The real gold standard: measuring counterfactual worlds that matter most to social science and policy. . Annu. Rev. Criminol. 2::12345
    [Crossref] [Google Scholar]
  68. Newman O. 1972.. Defensible Space: Crime Prevention Through Environmental Design. New York:: Macmillan
    [Google Scholar]
  69. O'Sullivan D. 2004.. Complexity science and human geography. . Trans. Inst. Br. Geogr. 29:(3):28295
    [Crossref] [Google Scholar]
  70. O'Sullivan D, Evans T, Manson S, Metcalf S, Ligmann-Zielinska A, Bone C. 2016.. Strategic directions for agent-based modeling: avoiding the YAAWN syndrome. . J. Land Use Sci. 11:(2):17787
    [Crossref] [Google Scholar]
  71. O'Sullivan D, Millington J, Perry G, Wainwright J. 2012.. Agent-based models–because they're worth it?. In Agent-Based Models of Geographical Systems, ed. AJ Heppenstall, AT Crooks, LM See, M Batty , pp. 10923. Dordrecht, Neth:.: Springer
    [Google Scholar]
  72. Song C, Konen T, Wang P, Barabási A-L. 2010.. Modelling the scaling properties of human mobility. . Nat. Phys. 6:(10):81823
    [Crossref] [Google Scholar]
  73. Thiele JC, Kurth W, Grimm V. 2014.. Facilitating parameter estimation and sensitivity analysis of agent-based models: a cookbook using NetLogo and “R. .” J. Artif. Soc. Soc. Simul. 17:(3):11
    [Crossref] [Google Scholar]
  74. Thompson J, McClure R, Scott N, Hellard M, Abeysuriya R, et al. 2021.. A framework for communicating the utility of models when facing tough decisions in public health. . Health Res. Policy Syst. 20::107
    [Crossref] [Google Scholar]
  75. Townsley M, Birks DJ. 2008.. Building better crime simulations: systematic replication and the introduction of incremental complexity. . J. Exp. Criminol. 4::30933
    [Crossref] [Google Scholar]
  76. Tracy M, Cerdá M, Keyes KM. 2018.. Agent-based modeling in public health: current applications and future directions. . Annu. Rev. Public Health 39::7794
    [Crossref] [Google Scholar]
  77. Troitzsch KG. 2016.. Extortion rackets: an event-oriented model of interventions. . In Social Dimensions of Organised Crime: Modelling the Dynamics of Extortion Rackets, ed. C Elsenbroich, D Anzola, N Gilbert , pp. 11731. Cham, Switz:.: Springer
    [Google Scholar]
  78. von Bertalanffy L. 1950.. The theory of open systems in physics and biology. . Science 111:(2872):2329
    [Crossref] [Google Scholar]
  79. Wang X, Liu L, Eck JE. 2008.. Crime simulation using GIS and artificial intelligent agents. . In Artificial Crime Analysis Systems: Using Computer Simulations and Geographic Information Systems, ed. JE Eck, L Liu , pp. 20924. Hershey, PA:: IGI Global
    [Google Scholar]
  80. Weisburd D, Braga AA, Groff ER, Wooditch A. 2017.. Can hot spots policing reduce crime in urban areas? An agent-based simulation. . Criminology 55:(1):13773
    [Crossref] [Google Scholar]
  81. Weisburd D, Wolfowicz M, Hassisi B, Paolucci M, Andrighetto G. 2022.. What is the best approach for preventing recruitment to terrorism? Findings from ABM experiments in social and situational prevention. . Criminol. Public Policy 21:(2):46185
    [Crossref] [Google Scholar]
  82. Williams ML, Burnap P, Sloan L. 2017.. Crime sensing with big data: the affordances and limitations of using open-source communications to estimate crime patterns. . Br. J. Criminol. 57:(2):32040
    [Google Scholar]
  83. Wooditch A. 2021.. The benefits of patrol officers using unallocated time for everyday crime prevention. . J. Quant. Criminol. 39::16185
    [Crossref] [Google Scholar]
  84. Zhu H, Wang F. 2021.. An agent-based model for simulating urban crime with improved daily routines. . Comput. Environ. Urban Syst. 89::101680
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-criminol-022222-033905
Loading
/content/journals/10.1146/annurev-criminol-022222-033905
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error