1932

Abstract

Born of sociology while absorbing ideas and scholarship from other specialties, criminology can legitimately tout its interdisciplinary bona fides. Yet within the field, integration and cross-pollination across subject areas is, far too often, absent. Concentrating on corporate crime and summarizing the literature across a variety of different domains, I demonstrate that criminology, as a discipline, benefits from knowledge generated by corporate crime scholarship and vice versa. I discuss why it is essential to build a multidisciplinary knowledge base that informs and draws from corporate crime scholarship while also addressing critical epistemological challenges and knowledge gaps that confound integrative efforts. I conclude with potential areas of synergy ranging from the theoretical (organizational life cycle/life course and decision-making in different contexts) to new/old forms of crime and crime control associated with the emergence of artificial intelligence and machine learning.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-criminol-022422-121435
2025-01-29
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/criminol/8/1/annurev-criminol-022422-121435.html?itemId=/content/journals/10.1146/annurev-criminol-022422-121435&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson RC, Martin GS, Reeb D. 2017.. Financial misconduct and family firms. Work. Pap. , Temple Univ., Philadelphia:
    [Google Scholar]
  2. Angwin J, Larson J, Mattu S, Kirchner L. 2016.. Machine bias. There's software used across the country to predict future criminals. And it's biased against blacks. . Pro Publica, May 23. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
    [Google Scholar]
  3. Ayres I, Braithwaite J. 1992.. Responsive Regulation: Transcending the Deregulation Debate. New York:: Oxford Univ. Press
    [Google Scholar]
  4. Baer MH. 2023.. Myths and Misunderstandings in White-Collar Crime. New York:: Cambridge Univ. Press
    [Google Scholar]
  5. Barak G. 2012.. Theft of a Nation: Wall Street Looting and Federal Regulatory Colluding. Lanham, MD:: Rowman & Littlefield
    [Google Scholar]
  6. Barak G. 2017.. Unchecked Corporate Power: Why the Crimes of Multinational Corporations Are Routinized Away and What We Can Do About It. New York:: Routledge
    [Google Scholar]
  7. Barak G. 2022.. Criminology on Trump. New York:: Routledge
    [Google Scholar]
  8. Barlow HD. 1993.. From fiddle factors to networks of collusion: charting the waters of small business crime. . Crime Law Soc. Change 20::31937
    [Crossref] [Google Scholar]
  9. Bartlett D, Ransley J, Forrester L, Middendorp K. 2020.. Corporate crime in Australia: the extent of the problem. . Trends Issues Crime Crim. Justice 613:. https://doi.org/10.52922/ti04817
    [Google Scholar]
  10. Baucus MS, Near JP. 1991.. Can illegal corporate behavior be predicted? An event history analysis. . Acad. Manag. J. 34:(1):936
    [Crossref] [Google Scholar]
  11. Benson M, Simpson SS, Rorie M, Kennedy JP. 2024.. White-Collar Crime: An Opportunity Perspective. New York:: Routledge. , 4th ed..
    [Google Scholar]
  12. Bisschop L. 2015.. Facilitators of environmental crime: corporations and governments in the port of Antwerp. In The Routledge Handbook of White-Collar and Corporate Crime in Europe, ed. J van Erp, W Huisman, G Vande Walle , pp. 24659. New York:: Routledge
    [Google Scholar]
  13. Blokland A, Kluin M, Huisman W. 2021.. Life course theory and corporate offending. . In The Cambridge Handbook of Compliance, ed. B van Rooij, D Sokol , pp. 684704. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  14. Braithwaite J. 1982.. Enforced self-regulation: a new strategy for corporate crime control. . Mich. Law Rev. 80:(7):1466507
    [Crossref] [Google Scholar]
  15. Braithwaite J. 1984.. Corporate Crime in the Pharmaceutical Industry. London:: Routledge & Kegan Paul
    [Google Scholar]
  16. Braithwaite J. 2021.. Street-level meta-strategies: evidence on restorative justice and responsive regulation. . Annu. Rev. Law Soc. Sci. 17::20525
    [Crossref] [Google Scholar]
  17. Braithwaite J, Makkai T. 1991.. Testing an expected utility model of corporate deterrence. . Law Soc. Rev. 25::740
    [Crossref] [Google Scholar]
  18. Bridge S. 2018.. Facing uncertainty: an entrepreneurial view of the future?. J. Manag. Organ. 27::31223
    [Crossref] [Google Scholar]
  19. Burgess-Proctor A, Ranjan S. 2021.. Bridging divides to advance justice: a “call to conscience” for criminology. . J. Contemp. Crim. Justice 37:(2):15265
    [Crossref] [Google Scholar]
  20. Campedelli GM. 2022.. Machine Learning for Criminology and Crime Research: At the Crossroads. New York:: Routledge. , 1st ed..
    [Google Scholar]
  21. Chan F. 2020.. Enhancing corporate crime enforcement with machine learninga multidisciplinary risk factor approach. PhD Diss. , Mich. State Univ., East Lansing:
    [Google Scholar]
  22. Chan F, Gibbs C. 2020.. Integrated theories of white-collar and corporate crime. . In The Handbook of White-Collar Crime, ed. ML Rorie , pp. 191207. Hoboken, NJ:: Wiley
    [Google Scholar]
  23. Chan F, Gibbs C. 2022.. When guardians become offenders: understanding guardian capability through the lens of corporate crime. . Criminology 60::32141
    [Crossref] [Google Scholar]
  24. Chen H, Soltes E. 2018.. Why compliance programs fail—and how to fix them. . Harv. Bus. Rev. 2018:(March–Apr.):116125
    [Google Scholar]
  25. Clinard MB, Yeager PC. 1980.. Corporate Crime. New York:: Free Press
    [Google Scholar]
  26. Cohen MA. 2016.. The ‘cost of crime’ and benefit-cost analysis of criminal justice policy: understanding and improving upon the state-of-the-art. SSRN Work. Pap. http://dx.doi.org/10.2139/ssrn.2832944
    [Google Scholar]
  27. Crawford K. 2022.. Artificial intelligence, the future of human behavior research. . Nat. Hum. Behav. 6::1524
    [Crossref] [Google Scholar]
  28. Diamantis ME. 2020.. The extended corporate mind: when corporations use AI to break the law. . N. C. Law Rev. 98::893932
    [Google Scholar]
  29. DuBois WEB. 1899 [1967].. The Philadelphia Negro. New York:: Schocken Books
    [Google Scholar]
  30. Edelhertz H. 1970.. The Nature, Impact, and Prosecution of White-Collar Crime. Washington, DC:: Natl. Inst. Law Enforc. Crim. Justice
    [Google Scholar]
  31. Elia S, Larsen MM, Piscitello L. 2022.. Choosing misaligned governance modes when offshoring business functions: a prospect theory perspective. . Glob. Strateg. J. 13:(2):25180
    [Crossref] [Google Scholar]
  32. Garrett BL. 2014.. Too Big to Jail: How Prosecutors Compromise with Corporations. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  33. Hagan J. 2010.. Who Are the Criminals: The Politics of Crime Policy from the Age of Roosevelt to the Age of Reagan. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  34. Hagan J, Parker P. 1985.. White collar crime and punishment: the class structure and legal sanctioning of securities violations. . Am. Sociol. Rev. 50::30216
    [Crossref] [Google Scholar]
  35. Hagan J, Rymond-Richmond W. 2008.. Darfur and the Crime of Genocide. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  36. Haugh R. 2017.. The trouble with corporate compliance programs. . MIT Sloan Manag. Rev. 59:(1):5562
    [Google Scholar]
  37. Hayward KJ, Maas MM. 2020.. Artificial intelligence and crime: a primer for criminologists. . Crime Media Cult. 17:(2):20933
    [Crossref] [Google Scholar]
  38. Heller SB, Jakubowski B, Jelveh Z, Kapustin M. 2023.. Machine learning can predict shooting victimization well enough to help prevent it. NBER Work. Pap. 30170. https://www.nber.org/papers/w30170
    [Google Scholar]
  39. Helmkamp JC, Townsend KJ, Sundra JA. 1997.. How much does white-collar crime cost? Rep., Natl. White-Collar Crime Cent., Morgantown, WV:
    [Google Scholar]
  40. Hollinger OERC, Clark JP. 1983.. Deterrence in the workplace: perceived certainty, perceived severity, and employee theft. . Soc. Forces 62:(2):398418
    [Crossref] [Google Scholar]
  41. Holt T, Kennedy JP. 2020.. Technology's influence of white-collar offending, reporting, and investigation. . In The Handbook of White-Collar Crime, ed. ML Rorie, pp. 45168. Hoboken, NJ:: Wiley
    [Google Scholar]
  42. Huisman W. 2016.. Criminogenic organizational properties and dynamics. . In The Oxford Handbook of White-Collar Crime, ed. SR Slyke, ML Benson, FT Cullen , pp. 43562. New York:: Oxford Univ. Press
    [Google Scholar]
  43. Huisman W, Karstedt S, van Baar A. 2022.. The involvement of corporations in atrocity crimes. . In The Oxford Handbook of Atrocity Crimes, ed. B Holá, H Nyseth Nzitatira, M Weerdesteijn , pp. 393422. New York:: Oxford Academic
    [Google Scholar]
  44. Jofre M, Gerlach RH. 2018.. Fighting accounting fraud through forensic data analytics. SSRN Work. Pap. http://dx.doi.org/10.2139/ssrn.3176288
    [Google Scholar]
  45. Kahneman D. 2011.. Thinking, Fast and Slow. New York:: Farrar Straus Giroux
    [Google Scholar]
  46. Karstedt S, Nyseth Brehm H, Frizzell LC. 2021.. Genocide, mass atrocity, and theories of crime: unlocking criminology's potential. . Annu. Rev. Criminol. 4::7597
    [Crossref] [Google Scholar]
  47. Keane C. 1993.. The impact of financial performance on frequency of corporate crime: a latent variable test of strain theory. . Can. J. Criminol. 35:(3):293308
    [Crossref] [Google Scholar]
  48. Kennedy J. 2014.. A view from the top: managers’ perspectives on the problem of employee theft in small businesses. PhD Diss. , Univ. Cincinnati, Cincinnati, OH:
    [Google Scholar]
  49. Kennedy JP. 2020.. Organizational and macro-level corporate crime theories. . In The Handbook of White-Collar Crime, ed. ML Rorie , pp. 17490, Hoboken, NJ:: Wiley
    [Google Scholar]
  50. Kennedy JP, Benson ML. 2016.. Emotional reactions to employee theft and the managerial dilemmas small business owners face. . Crim. Justice Rev. 41:(3):25777
    [Crossref] [Google Scholar]
  51. King TC, Aggarwal N, Taddeo M, Floridi L. 2020.. Artificial intelligence crime: an interdisciplinary analysis of foreseeable threats and solutions. . Sci. Eng. Ethics 26::89120
    [Crossref] [Google Scholar]
  52. Kluin M, Blokland A, Huisman W, Wouters-Peeters M, Wiering E, Jaspers S. 2018.. Patronen in regelovertreding in de chemische industrie. . Tijdschr. Criminol. 18:(4):42156
    [Crossref] [Google Scholar]
  53. Kuiper ME. 2024.. Parallel Worlds: Assessing the Alignment Between Social Science and Legal Practice About Behavioral Change. PhD Diss. , Univ. Amsterdam, Amsterdam, Neth:.
    [Google Scholar]
  54. Laufer WS. 2018.. A very special regulatory milestone. . Univ. Pa. J. Bus. Law 20::392428
    [Google Scholar]
  55. Laufer WS. 2021.. Interview on the corporate compliance game. . Corporate Crime Reporter, August 2. https://www.corporatecrimereporter.com/news/200/william-laufer-on-the-corporate-compliance-game/
    [Google Scholar]
  56. Lauritsen JL. 2023.. The future of crime data. . Criminology 61::187203
    [Crossref] [Google Scholar]
  57. Levi M. 2023.. Candidates to the ESC board, 2023: Michael Levi—election of ESC president. . ESC Newsletter, August 3. https://escnewsletter.org/archive/candidates-to-the-esc-board-2023-michael-levi-election-of-esc-president
    [Google Scholar]
  58. Lokanan M, Liu S. 2021.. Predicting fraud victimization using classical machine learning. . Entropy 23::300
    [Crossref] [Google Scholar]
  59. Lord N, Levi M. 2015.. Determining the adequate enforcement of white-collar and corporate crimes in Europe. In The Routledge Handbook of White-Collar and Corporate Crime in Europe, ed. J van Erp, W Huisman, G Vande Walle, J Beckers , pp. 3956. New York:: Routledge
    [Google Scholar]
  60. Loughran TA, Paternoster R, Piquero AR, Pogarsky G. 2011.. On ambiguity in perceptions of risk: implications for criminal decision making and deterrence. . Criminol. Interdiscip. J. 49:(4):102961
    [Crossref] [Google Scholar]
  61. Lynch J. 2018.. Not even our own facts: criminology in the era of big data. . Criminology 56:(3):43754
    [Crossref] [Google Scholar]
  62. Lynch MJ, Mora DO. 2023.. Wrong side of the track: crimes in the railroad industry in the US, 2000–2017. . J. White Collar Corp. Crime. https://doi.org/10.1177/2631309X231203707
    [Google Scholar]
  63. Mackenzie Glob. Inst. 2010.. Growth and competitiveness in the United States: The role of its multinational companies. Rep. , Mckenzie Co., New York:. https://www.mckinsey.com/∼/media/mckinsey/featured%20insights/americas/growth%20and%20competitiveness%20in%20us/mgi_growth_and_competitiveness_us%20role_of_multinational_companies_full_report.pdf
    [Google Scholar]
  64. Mascini P, Van Wijk E. 2009.. Responsive regulation at the Dutch Food and Consumer Product Safety Authority: an empirical assessment of assumptions underlying the theory. . Regul. Governance 3:(1):2747
    [Crossref] [Google Scholar]
  65. Mazzei MJ, Gangloff AK, Shook CL. 2015.. Examining multi-level effects on corporate social responsibility and irresponsibility. . Manag. Mark. 10:(3):16384
    [Google Scholar]
  66. Maantay J. 2007.. Asthma and air pollution in the Bronx: methodological and data considerations in using GIS for environmental justice and health research. . Health Place 13:(1):3256
    [Crossref] [Google Scholar]
  67. Meester JJ, Kluin MHA, Blokland AAJ, Huisman W, Schuur MCM, Wassenburg SI. 2024.. Corporate offending in Dutch inland shipping: a trajectory analysis. . Eur. J Criminol. In press. https://doi.org/10.1177/14773708241266463
    [Google Scholar]
  68. Moore E, Mills M. 1990.. The neglected victims and unexamined costs of white-collar crime. . Crime Delinquency 35:(3):40818
    [Crossref] [Google Scholar]
  69. Nagin D. 2022.. Criminology, the future of human behavior research. . Nat. Hum. Behav. 6::1524
    [Crossref] [Google Scholar]
  70. Natl. Acad. Sci. Eng. Med. 2016.. Modernizing crime statistics: Report 1: Defining and classifying crime. Rep. , Natl. Acad. Sci. Eng. Med., Washington, DC:
    [Google Scholar]
  71. Natl. Acad. Sci. Eng. Med. 2018.. Modernizing crime statistics: Report 2: New systems for measuring crime. Rep. , Natl. Acad. Sci. Eng. Med., Washington, DC:
    [Google Scholar]
  72. Neil R, Sampson RJ, Nagin DS. 2021.. Social change and cohort differences in group-based arrest trajectories over the last quarter century. . PNAS 118:(31):e2107020118
    [Crossref] [Google Scholar]
  73. NPR (Natl. Public Radio). 2016.. Can big data help head off police misconduct?. All Things Considered, July 19. https://www.npr.org/sections/alltechconsidered/2016/07/19/486499835/can-big-data-help-head-off-police-misconduct
    [Google Scholar]
  74. Parker C, Nielsen VL. 2009.. Corporate compliance systems: Could they make any difference?. Adm. Soc. 41:(1):337
    [Crossref] [Google Scholar]
  75. Parnell JA, Crandall W. 2020.. The contribution of behavioral economics to crisis management decision-making. . J. Manag. Organ. 26:(4):585600
    [Crossref] [Google Scholar]
  76. Pickett JT, Barnes JC, Wilson T, Roche SP. 2020.. Prospect theory and criminal choice: experiments testing framing, reference dependence, and decision weights. . Justice Q. 37:(6):114068
    [Crossref] [Google Scholar]
  77. Piquero NL, Benson ML. 2004.. White-collar crime and criminal careers: specifying a trajectory of punctuated situational offending. . J. Contemp. Crim. Justice 20::14865
    [Crossref] [Google Scholar]
  78. Piquero NL, Weisburd D. 2009.. Developmental trajectories of white-collar crime. . In The Criminology of White-Collar Crime, ed. SS Simpson, D Weisburd , pp. 15374. New York:: Springer
    [Google Scholar]
  79. Piquero AR, Paternoster R, Pogarsky G, Loughran T. 2011.. Elaborating the individual difference component in deterrence theory. . Annu. Rev. Law Soc. Sci. 7::33560
    [Crossref] [Google Scholar]
  80. Pogarsky G, Roche SP, Pickett JT. 2017.. Heuristics and biases, rational choice, and sanction perceptions. . Criminology 55:(1):85111
    [Crossref] [Google Scholar]
  81. Pontell HN, Tillman R, Ghazi-Tehrani AK. 2021.. In-your-face Watergate: neutralizing government lawbreaking and the war against white-collar crime. . Crime Law Soc. Change 75:(3):20119
    [Crossref] [Google Scholar]
  82. Pusch N, Holtfreter K. 2020.. Individual and organizational predictors of white-collar crime: a meta-analysis. . J. White Collar Corp. Crime 2:(1):523
    [Crossref] [Google Scholar]
  83. Rothe D, Friedrichs D. 2014.. Crimes of Globalization. New York:: Routledge
    [Google Scholar]
  84. Sampson RJ, Smith LA. 2021.. Rethinking criminal propensity and character: cohort inequalities and the power of social change. . Crime Justice 50::1376
    [Crossref] [Google Scholar]
  85. Schell-Busey N, Simpson SS, Rorie M, Alper M. 2016.. What works? A systematic review of corporate crime deterrence. . Criminol. Public Policy 15:(2):387416
    [Crossref] [Google Scholar]
  86. Simpson SS. 1986.. The decomposition of antitrust: testing a multi-level, longitudinal model of profit-squeeze. . Am. Sociol. Rev. 85975
    [Crossref] [Google Scholar]
  87. Simpson SS. 1987.. Cycles of illegality: Antitrust violations in corporate America. . Social Forces 65::94364
    [Crossref] [Google Scholar]
  88. Simpson SS. 2002.. Corporate Crime, Law, and Social Control. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  89. Simpson SS. 2011.. Making sense of white collar crime: theory and research. . Ohio State J. Crim. Law 8::481502
    [Google Scholar]
  90. Simpson SS. 2013.. White collar crime. . Annu. Rev. Sociol. 39::30932
    [Crossref] [Google Scholar]
  91. Simpson SS. 2019.. Reimaging Sutherland 80 years after white-collar crime. . Criminology 57:(2):189207
    [Crossref] [Google Scholar]
  92. Simpson SS, Agarwal R, Gao G. 2022.. Using physician behavioral big data for high precision fraud prediction and detection. Rep. 2019-R2-CX-0016 , Off. Justice Progr., Washington, DC:. https://www.ojp.gov/pdffiles1/nij/grants/306161.pdf
    [Google Scholar]
  93. Simpson SS, Evens J. 2024.. Corporate environmental non-compliance and the effects of internal systems and sanctions. . In Research Handbook on Environmental Crimes and Criminal Enforcement, ed. S Smith, I Sahramäki , pp. 3667. London:: Edgar Elgar Publ.
    [Google Scholar]
  94. Simpson SS, Garner J, Gibbs C. 2007.. Why do corporations obey environmental law? Assessing punitive and cooperative strategies of corporate crime control. Natl. Inst. Justice Tech. Rep., Off. Justice Progr., Washington, DC:. https://www.ojp.gov/pdffiles1/nij/grants/220693.pdf
    [Google Scholar]
  95. Simpson SS, Koper C. 1997.. The changing of the guard: top management characteristics, organizational strain, and antitrust offending. . J. Quant. Criminol. 13::373404
    [Crossref] [Google Scholar]
  96. Simpson SS, Layana MC, Galvin MA. 2024.. Patterns of corporate life-course offending. . In Advances in Criminological Theory, ed. MA Galvin, WS Laufer . New York:: Routledge. In press
    [Google Scholar]
  97. Simpson SS, Rorie M. 2016.. Economic fluctuations and crises. . In The Oxford Handbook of White-Collar Crime, ed. S Van Slyke, ML Benson, FT Cullen , pp. 326345. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  98. Simpson SS, Schell N. 2009.. Persistent heterogeneity or state dependence? An analysis of occupational safety and health act violations. . In The Criminology of White-Collar Crime, ed. SS Simpson, D Weisburd , pp. 6378. New York:: Springer
    [Google Scholar]
  99. Simpson SS, Shapiro DL, Beckman CM, Martin GS. 2019.. Preventing and controlling corporate crime: the dual role of corporate boards and legal sanctions. Natl. Inst. Justice Rep., Off. Justice Progr., Washington, DC:. https://www.ojp.gov/pdffiles1/nij/grants/254622.pdf
    [Google Scholar]
  100. Simpson SS, Weisburd D. 2009.. The Criminology of White-Collar Crime. New York:: Springer
    [Google Scholar]
  101. Simpson SS, Yeager PC. 2014.. Taking the measure of corporate offending. Paper presented at a panel on Measuring Malfeasance at the Center for the Study of Business Ethics, Regulation, and Crime, Univ. Maryland:, Sept. 12
    [Google Scholar]
  102. Simpson SS, Yeager PC. 2015.. Building a comprehensive white-collar violations data system. Tech. Rep., Off. Justice Progr., US Dep. Justice, Washington, DC:. https://www.ojp.gov/pdffiles1/bjs/grants/248667.pdf
    [Google Scholar]
  103. Smith S, Sahramäki L. 2024.. Research Handbook on Environmental Crimes and Criminal Enforcement. Northampton, MA:: Edward Elgar Publ.
    [Google Scholar]
  104. Sohoni T, Rorie M. 2021.. The whiteness of white-collar crime in the United States: examining the role of race in a culture of elite white-collar offending. . Theor. Criminol. 25:(1):6667
    [Crossref] [Google Scholar]
  105. Soltes E. 2020.. Measuring compliance risk and the emergence of analytics. . In The Handbook of White-Collar Crime, ed. ML Rorie , pp. 13752, Hoboken, NJ:: Wiley
    [Google Scholar]
  106. Stretesky PB. 2006.. Corporate self-policing and the environment. . Criminology 44::571708
    [Crossref] [Google Scholar]
  107. Sutherland EH. 1939.. White collar criminality. Presidential Address delivered to the American Sociological and Economic Societies, Philadelphia, PA:
    [Google Scholar]
  108. Sutherland EH. 1941.. Crime and business. . Ann. Am. Acad. Political Soc. Sci. 112::11218
    [Crossref] [Google Scholar]
  109. Sutherland EH. 1949.. White Collar Crime. Hinsdale, IL:: Dryden
    [Google Scholar]
  110. Thaler RH, Sunstein CR, Balz J. 2010.. Choice architecture. SSRN Work. Pap. http://dx.doi.org/10.2139/ssrn.1583509
    [Google Scholar]
  111. Tversky A, Kahneman D. 1992.. Advances in prospect theory: cumulative representation of uncertainty. . J. Risk Uncertain. 5::297323
    [Crossref] [Google Scholar]
  112. Tucker E. 2024.. Justice Department beefs up focus on artificial intelligence enforcement, warns of harsher sentences. . Associated Press, March 7. https://apnews.com/article/justice-department-artificial-intelligence-ai-google-a29ebfbb63411a816af1c40483d1b627
    [Google Scholar]
  113. Trebbi F, Zhang MB, Simkovic M. 2024.. The cost of regulatory compliance in the United States. Res. Brief 367 , CATO Inst., Washington, DC:
    [Google Scholar]
  114. TRAC Rep. 2023.. Corporate and white-collar prosecutions hit new all-time lows in FY 2022. Rep. , Trans. Rec. Access Clgh., Syracuse, NY:. https://trac.syr.edu/reports/708/
    [Google Scholar]
  115. US Dep. Justice. 2024.. Corporate crime case database. US Dep. Justice: Washington, DC:, retrieved Aug. 6, 2024. https://www.justice.gov/corporate-crime/corporate-crime-case-database
    [Google Scholar]
  116. US Dep. Justice Crim. Div. 2023.. Evaluation of corporate compliance programs. Rep. , US Dep. Justice Crim. Div., Washington, DC:. https://www.justice.gov/criminal/criminal-fraud/page/file/937501/dl
    [Google Scholar]
  117. US Sentencing Comm. 2023.. 2022 annual report and sourcebook of federal sentencing statistics. Rep. , US Sentencing Comm., Washington, DC:. https://www.ussc.gov/sites/default/files/pdf/research-and-publications/annual-reports-and-sourcebooks/2022/2022-Annual-Report-and-Sourcebook.pdf
    [Google Scholar]
  118. van Erp J. 2018.. The organization of corporate crime: introduction to special issue of administrative sciences. . Adm. Sci. 8:(3):36
    [Crossref] [Google Scholar]
  119. van Erp J, Huisman W, Vande Walle G, Beckers J. 2015.. The Routledge Handbook of White-Collar and Corporate Crime in Europe. New York:: Routledge
    [Google Scholar]
  120. van Onna J. 2018.. Blurred Lines: A Study of White-Collar Crime Involvement. PhD Diss. , Vrije Univ., Amsterdam, Neth:.
    [Google Scholar]
  121. van Onna JHR, van der Geest VR, Huisman W, Denkers AJM. 2014.. Criminal trajectories in white-collar offenders. . J. Res. Crime Delinquency 51::75984
    [Crossref] [Google Scholar]
  122. van Rooij B, Fine A. 2018.. Toxic corporate culture: assessing organizational processes of deviancy. . Adm. Sci. 8:(3):2361
    [Crossref] [Google Scholar]
  123. Vidal J. 2013.. Toxic e-waste dumped in poor nations, says United Nations. . Our World, Dec. 16, https://ourworld.unu.edu/en/toxic-e-waste-dumped-in-poor-nations-says-united-nations
    [Google Scholar]
  124. Wang X, Holtfreter K. 2012.. The effects of corporation- and industry-level strain and opportunity on corporate crime. . J. Res. Crime Delinquency 49:(2):15185
    [Crossref] [Google Scholar]
  125. Weisburd D, Waring E, Chayet EF. 2001.. White-Collar Crime and Criminal Careers. New York:: Cambridge Univ. Press
    [Google Scholar]
  126. Wu T, van Rooij B, Kluin M. 2023.. Organizational life-cycle analysis of corporate offending: insights into how changes in business cycles interact with regulatory oversight to shape compliance and violations. . Crime Law Soc. Change 81::16383
    [Crossref] [Google Scholar]
  127. Zona F. 2012.. Corporate investing as a response to economic downturn: prospect theory, the behavioural agency model, and the role of financial slack. . Br. J. Manag. 23::S4257
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-criminol-022422-121435
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error