1932

Abstract

Adaptability is a distinguishing feature of the human species: We thrive as hunter-gatherers, farmers, and urbanites. What properties of our brains make us highly adaptable? Here we review neuroscience studies of sensory loss, language acquisition, and cultural skills (reading, mathematics, programming). The evidence supports a flexible specialization account. On the one hand, adaptation is enabled by evolutionarily prepared flexible learning systems, both domain-specific social learning systems (e.g., language) and domain-general systems (frontoparietal reasoning). On the other hand, the functional flexibility of our neural wetware enables us to acquire cognitive capacities not selected for by evolution. Heightened plasticity during a protracted period of development enhances cognitive flexibility. Early in life, local cortical circuits are capable of acquiring a wide range of cognitive capacities. Exuberant cross-network connectivity makes it possible to combine old neural parts in new ways, enabling cognitive flexibility such as language acquisition across modalities (spoken, signed, braille) and cultural skills (math, programming). Together, these features of the human brain make it uniquely adaptable.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-devpsych-120621-042108
2024-12-09
2025-04-23
Loading full text...

Full text loading...

/deliver/fulltext/devpsych/6/1/annurev-devpsych-120621-042108.html?itemId=/content/journals/10.1146/annurev-devpsych-120621-042108&mimeType=html&fmt=ahah

Literature Cited

  1. Abboud S, Cohen L. 2019.. Distinctive interaction between cognitive networks and the visual cortex in early blind individuals. . Cereb. Cortex 29:(11):472542
    [Crossref] [Google Scholar]
  2. Abdou M, Kulmizev A, Hershcovich D, Frank S, Pavlick E, Søgaard A. 2021.. Can language models encode perceptual structure without grounding? A case study in color. . arXiv:2109.06129 [cx.CV]
  3. Almeida D, Poeppel D, Corina D. 2016.. The processing of biologically plausible and implausible forms in American Sign Language: evidence for perceptual tuning. . Lang. Cogn. Neurosci. 31:(3):36174
    [Crossref] [Google Scholar]
  4. Amalric M, Dehaene S. 2018.. Cortical circuits for mathematical knowledge: evidence for a major subdivision within the brain's semantic networks. . Philos. Trans. R. Soc. B Biol. Sci. 373:(1740):20160515
    [Crossref] [Google Scholar]
  5. Amalric M, Dehaene S. 2019.. A distinct cortical network for mathematical knowledge in the human brain. . NeuroImage 189::1931
    [Crossref] [Google Scholar]
  6. Amalric M, Denghien I, Dehaene S. 2018.. On the role of visual experience in mathematical development: evidence from blind mathematicians. . Dev. Cogn. Neurosci. 30::31423
    [Crossref] [Google Scholar]
  7. Amedi A, Floel A, Knecht S, Zohary E, Cohen LG. 2004.. Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. . Nat. Neurosci. 7:(11):126670
    [Crossref] [Google Scholar]
  8. Amedi A, Raz N, Pianka P, Malach R, Zohary E. 2003.. Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind. . Nat. Neurosci. 6:(7):75866
    [Crossref] [Google Scholar]
  9. Amunts K, Zilles K. 2015.. Architectonic mapping of the human brain beyond Brodmann. . Neuron 88:(6):1086107
    [Crossref] [Google Scholar]
  10. Anderson JR, Lee HS, Fincham JM. 2014.. Discovering the structure of mathematical problem solving. . NeuroImage 97::16377
    [Crossref] [Google Scholar]
  11. Anderson ML. 2010.. Neural reuse: a fundamental organizational principle of the brain. . Behav. Brain Sci. 33:(4):24566
    [Crossref] [Google Scholar]
  12. Ansari D. 2008.. Effects of development and enculturation on number representation in the brain. . Nat. Rev. Neurosci. 9:(4):27891
    [Crossref] [Google Scholar]
  13. Arbib MA, Liebal K, Pika S. 2008.. Primate vocalization, gesture, and the evolution of human language. . Curr. Anthropol. 49:(6):105376
    [Crossref] [Google Scholar]
  14. Badre D, Kayser AS, D'Esposito M. 2010.. Frontal cortex and the discovery of abstract action rules. . Neuron 66:(2):31526
    [Crossref] [Google Scholar]
  15. Badre D, Nee DE. 2018.. Frontal cortex and the hierarchical control of behavior. . Trends Cogn. Sci. 22:(2):17088
    [Crossref] [Google Scholar]
  16. Baluch F, Itti L. 2011.. Mechanisms of top-down attention. . Trends Neurosci. 34:(4):21024
    [Crossref] [Google Scholar]
  17. Barnes E. 2016.. The Minority Body: A Theory of Disability. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  18. Barsalou LW. 1999.. Perceptual symbol systems. . Behav. Brain Sci. 22:(4):577660
    [Crossref] [Google Scholar]
  19. Bates E, Wulfeck B, MacWhinney B. 1991.. Cross-linguistic research in aphasia: an overview. . Brain Lang. 41:(2):12348
    [Crossref] [Google Scholar]
  20. Bavelier D, Neville HJ. 2002.. Cross-modal plasticity: where and how?. Nat. Rev. Neurosci. 3:(6):44352
    [Crossref] [Google Scholar]
  21. Bedny M. 2017.. Evidence from blindness for a cognitively pluripotent cortex. . Trends Cogn. Sci. 21:(9):63748
    [Crossref] [Google Scholar]
  22. Bedny M, Caramazza A, Pascual-Leone A, Saxe R. 2012.. Typical neural representations of action verbs develop without vision. . Cereb. Cortex 22:(2):28693
    [Crossref] [Google Scholar]
  23. Bedny M, Konkle T, Pelphrey K, Saxe R, Pascual-Leone A. 2010.. Sensitive period for a multimodal response in human visual motion area MT/MST. . Curr. Biol. 20:(21):19006
    [Crossref] [Google Scholar]
  24. Bedny M, Koster-Hale J, Elli G, Yazzolino L, Saxe R. 2019.. There's more to ‘sparkle’ than meets the eye: knowledge of vision and light verbs among congenitally blind and sighted individuals. . Cognition 189::10515
    [Crossref] [Google Scholar]
  25. Bedny M, Pascual-Leone A, Dodell-Feder D, Fedorenko E, Saxe R. 2011.. Language processing in the occipital cortex of congenitally blind adults. . PNAS 108:(11):442934
    [Crossref] [Google Scholar]
  26. Bedny M, Pascual-Leone A, Saxe RR. 2009.. Growing up blind does not change the neural bases of Theory of Mind. . PNAS 106:(27):1131217
    [Crossref] [Google Scholar]
  27. Bellugi U, Poizner H, Klima ES. 1989.. Language, modality and the brain. . Trends Neurosci. 12:(10):38088
    [Crossref] [Google Scholar]
  28. Benedict R. 1935.. Patterns of Culture. London:: Routledge
    [Google Scholar]
  29. Bengtsson SL, Haynes J-D, Sakai K, Buckley MJ, Passingham RE. 2009.. The representation of abstract task rules in the human prefrontal cortex. . Cereb. Cortex 19:(8):192936
    [Crossref] [Google Scholar]
  30. Ben-Shachar M, Dougherty RF, Deutsch GK, Wandell BA. 2011.. The development of cortical sensitivity to visual word forms. . J. Cogn. Neurosci. 23:(9):238799
    [Crossref] [Google Scholar]
  31. Bigelow A. 1987.. Early words of blind children. . J. Child Lang. 14:(1):4756
    [Crossref] [Google Scholar]
  32. Boas F. 1896.. The limitations of the comparative method of anthropology. . Science 4:(103):9018
    [Crossref] [Google Scholar]
  33. Bongard S, Nieder A. 2010.. Basic mathematical rules are encoded by primate prefrontal cortex neurons. . PNAS 107:(5):227782
    [Crossref] [Google Scholar]
  34. Boni I, Jara-Ettinger J, Sackstein S, Piantadosi ST. 2022.. Verbal counting and the timing of number acquisition in an indigenous Amazonian group. . PLOS ONE 17:(8):e0270739
    [Crossref] [Google Scholar]
  35. Bouhali F, Thiebaut de Schotten M, Pinel P, Poupon C, Mangin J-F, et al. 2014.. Anatomical connections of the visual word form area. . J. Neurosci. 34:(46):1540214
    [Crossref] [Google Scholar]
  36. Boyd R, Richerson PJ, Henrich J. 2011.. The cultural niche: why social learning is essential for human adaptation. . PNAS 108:(Suppl. 2):1091825
    [Crossref] [Google Scholar]
  37. Brannon EM, Merritt DJ. 2011.. Evolutionary foundations of the approximate number system. . In Space, Time and Number in the Brain, ed. S Dehaena, EM Brannon , pp. 20724. London:: Academic
    [Google Scholar]
  38. Bressler SL, Tang W, Sylvester CM, Shulman GL, Corbetta M. 2008.. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. . J. Neurosci. 28:(40):1005661
    [Crossref] [Google Scholar]
  39. Broca P. 1861.. Remarques sur le siége de la faculté du langage articulé, suivis d'une observation d'aphémie (perte de la parole). . Bull. Soc. Anat. 6::33057
    [Google Scholar]
  40. Brookshire G, Lu J, Nusbaum HC, Goldin-Meadow S, Casasanto D. 2017.. Visual cortex entrains to sign language. . PNAS 114:(24):635257
    [Crossref] [Google Scholar]
  41. Bullmore E, Sporns O. 2012.. The economy of brain network organization. . Nat. Rev. Neurosci. 13:(5):33649
    [Crossref] [Google Scholar]
  42. Bunge SA, Kahn I, Wallis JD, Miller EK, Wagner AD. 2003.. Neural circuits subserving the retrieval and maintenance of abstract rules. . J. Neurophysiol. 90:(5):341928
    [Crossref] [Google Scholar]
  43. Burton H. 2003.. Visual cortex activity in early and late blind people. . J. Neurosci. 23:(10):400511
    [Crossref] [Google Scholar]
  44. Burton H, Diamond JB, McDermott KB. 2003.. Dissociating cortical regions activated by semantic and phonological tasks: a fMRI study in blind and sighted people. . J. Neurophysiol. 90:(3):196582
    [Crossref] [Google Scholar]
  45. Burton H, Snyder AZ, Raichle ME. 2014.. Resting state functional connectivity in early blind humans. . Front. Syst. Neurosci. 8::51
    [Crossref] [Google Scholar]
  46. Campbell EE, Bergelson E. 2022.. Making sense of sensory language: acquisition of sensory knowledge by individuals with congenital sensory impairments. . Neuropsychologia 174::108320
    [Crossref] [Google Scholar]
  47. Campbell EE, Casillas R, Bergelson E. 2024.. The role of vision in the acquisition of words: vocabulary development in blind toddlers. . Dev. Sci. 27:(4):e13475
    [Crossref] [Google Scholar]
  48. Campbell R, MacSweeney M, Waters D. 2007.. Sign language and the brain: a review. . J. Deaf Stud. Deaf Educ. 13:(1):320
    [Crossref] [Google Scholar]
  49. Cantlon JF, Brannon EM. 2007.. Basic math in monkeys and college students. . PLOS Biol. 5:(12):e328
    [Crossref] [Google Scholar]
  50. Cantlon JF, Brannon EM. 2010.. Animal arithmetic. . In Encyclopedia of Animal Behavior, ed. N Clayton , pp. 5562. Oxford, UK:: Elsevier
    [Google Scholar]
  51. Cantlon JF, Brannon EM, Carter EJ, Pelphrey KA. 2006.. Functional imaging of numerical processing in adults and 4-y-old children. . PLOS Biol. 4:(5):e125
    [Crossref] [Google Scholar]
  52. Cantlon JF, Libertus ME, Pinel P, Dehaene S, Brannon EM, Pelphrey KA. 2009.. The neural development of an abstract concept of number. . J. Cogn. Neurosci. 21:(11):221729
    [Crossref] [Google Scholar]
  53. Carey S. 2009.. The Origin of Concepts. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  54. Carey S, Barner D. 2019.. Ontogenetic origins of human integer representations. . Trends Cogn. Sci. 23:(10):82335
    [Crossref] [Google Scholar]
  55. Carrigan EM, Coppola M. 2017.. Successful communication does not drive language development: evidence from adult homesign. . Cognition 158::1027
    [Crossref] [Google Scholar]
  56. Cavdaroglu S, Katz C, Knops A. 2015.. Dissociating estimation from comparison and response eliminates parietal involvement in sequential numerosity perception. . NeuroImage 116::13548
    [Crossref] [Google Scholar]
  57. Cesana-Arlotti N, Kovács ÁM, Téglás E. 2020.. Infants recruit logic to learn about the social world. . Nat. Commun. 11:(1):5999
    [Crossref] [Google Scholar]
  58. Cesana-Arlotti N, Martín A, Téglás E, Vorobyova L, Cetnarski R, Bonatti LL. 2018.. Precursors of logical reasoning in preverbal human infants. . Science 359:(6381):126366
    [Crossref] [Google Scholar]
  59. Cetron JS, Connolly AC, Diamond SG, May VV, Haxby JV, Kraemer DJM. 2020.. Using the force: STEM knowledge and experience construct shared neural representations of engineering concepts. . NPJ Sci. Learn. 5:(1):6
    [Crossref] [Google Scholar]
  60. Chandrasekaran B, Krishnan A, Gandour JT. 2007.. Mismatch negativity to pitch contours is influenced by language experience. . Brain Res. 1128::14856
    [Crossref] [Google Scholar]
  61. Cheng Q, Roth A, Halgren E, Mayberry RI. 2019.. Effects of early language deprivation on brain connectivity: language pathways in deaf native and late first-language learners of American Sign Language. . Front. Hum. Neurosci. 13::320
    [Crossref] [Google Scholar]
  62. Chomsky N. 1965.. Aspects of the Theory of Syntax. Cambridge, MA:: MIT Press
    [Google Scholar]
  63. Clark CA, Pritchard VE, Woodward LJ. 2010.. Preschool executive functioning abilities predict early mathematics achievement. . Dev. Psychol. 46:(5):117691
    [Crossref] [Google Scholar]
  64. Clark EV, Casillas M. 2015.. First language acquisition. . In The Routledge Handbook of Linguistics, ed. K Allan , pp. 31128. London:: Routledge
    [Google Scholar]
  65. Clark JL. 2014.. Where I Stand: On the Signing Community and My DeafBlind Experience. Minneapolis, MN:: Handtype Press
    [Google Scholar]
  66. Coetzee J, Monti M. 2018.. At the core of reasoning: dissociating deductive and non-deductive load. . Hum. Brain Mapp. 39:(4):185061
    [Crossref] [Google Scholar]
  67. Cohen LG, Celnik P, Pascual-Leone A, Corwell B, Faiz L, et al. 1997.. Functional relevance of cross-modal plasticity in blind humans. . Nature 389:(6647):18083
    [Crossref] [Google Scholar]
  68. Cohen LG, Weeks RA, Sadato N, Celnik P, Ishii K, Hallett M. 1999.. Period of susceptibility for cross-modal plasticity in the blind. . Ann. Neurol. 45:(4):45160
    [Crossref] [Google Scholar]
  69. Collignon O, Voss P, Lassonde M, Lepore F. 2009.. Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. . Exp. Brain Res. 192::34358
    [Crossref] [Google Scholar]
  70. Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH. 2010.. Neuron densities vary across and within cortical areas in primates. . PNAS 107:(36):1592732
    [Crossref] [Google Scholar]
  71. Comrie B. 1999.. Grammatical gender systems: a linguist's assessment. . J. Psycholinguist. Res. 28::45766
    [Crossref] [Google Scholar]
  72. Corballis MC. 1999.. The gestural origins of language: human language may have evolved from manual gestures, which survive today as a “behavioral fossil” coupled to speech. . Am. Sci. 87:(2):13845
    [Crossref] [Google Scholar]
  73. Cragg L, Gilmore C. 2014.. Skills underlying mathematics: the role of executive function in the development of mathematics proficiency. . Trends Neurosci. Educ. 3:(2):6368
    [Crossref] [Google Scholar]
  74. Crair MC, Gillespie DC, Stryker MP. 1998.. The role of visual experience in the development of columns in cat visual cortex. . Science 279:(5350):56670
    [Crossref] [Google Scholar]
  75. Crollen V, Lazzouni L, Rezk M, Bellemare A, Lepore F, et al. 2019.. Recruitment of the occipital cortex by arithmetic processing follows computational bias in the congenitally blind. . NeuroImage 186::54956
    [Crossref] [Google Scholar]
  76. Crone EA, Wendelken C, Van Leijenhorst L, Honomichl RD, Christoff K, Bunge SA. 2009.. Neurocognitive development of relational reasoning. . Dev. Sci. 12:(1):5566
    [Crossref] [Google Scholar]
  77. Damarla SR, Just MA. 2013.. Decoding the representation of numerical values from brain activation patterns. . Hum. Brain Mapp. 34:(10):262434
    [Crossref] [Google Scholar]
  78. Danker JF, Anderson JR. 2007.. The roles of prefrontal and posterior parietal cortex in algebra problem solving: a case of using cognitive modeling to inform neuroimaging data. . NeuroImage 35:(3):136577
    [Crossref] [Google Scholar]
  79. De Voogt A. 2021.. The evolution of writing systems: an introduction. . In Oxford Handbook of Human Symbolic Evolution, ed. N Gontier, A Lock, C Sinha , pp. 893914. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  80. Deen B, Saxe R, Bedny M. 2015.. Occipital cortex of blind individuals is functionally coupled with executive control areas of frontal cortex. . J. Cogn. Neurosci. 27:(8):163347
    [Crossref] [Google Scholar]
  81. Dehaene S, Cohen L. 2007.. Cultural recycling of cortical maps. . Neuron 56:(2):38498
    [Crossref] [Google Scholar]
  82. Dehaene S, Cohen L. 2011.. The unique role of the visual word form area in reading. . Trends Cogn. Sci. 15:(6):25462
    [Crossref] [Google Scholar]
  83. Dehaene S, Le Clec'H G, Poline J-B, Le Bihan D, Cohen L. 2002.. The visual word form area: a prelexical representation of visual words in the fusiform gyrus. . Neuroreport 13:(3):32125
    [Crossref] [Google Scholar]
  84. Dehaene-Lambertz G, Monzalvo K, Dehaene S. 2018.. The emergence of the visual word form: longitudinal evolution of category-specific ventral visual areas during reading acquisition. . PLOS Biol. 16:(3):e2004103
    [Crossref] [Google Scholar]
  85. Dryer MS. 2007.. Word order. . In Language Typology and Syntactic Description, Vol. 1 Clause Structure, ed. T Shopen , pp. 61131. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  86. Duncan J. 2010.. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. . Trends Cogn. Sci. 14:(4):17279
    [Crossref] [Google Scholar]
  87. Dunlea A. 1989.. Vision and the Emergence of Meaning: Blind and Sighted Children's Early Language. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  88. Durkheim E. 1947.. The Division of Labor in Society, transl. George Simpson . New York:: Free Press
    [Google Scholar]
  89. Eger E, Michel V, Thirion B, Amadon A, Dehaene S, Kleinschmidt A. 2009.. Deciphering cortical number coding from human brain activity patterns. . Curr. Biol. 19:(19):160815
    [Crossref] [Google Scholar]
  90. Eiselt A-K, Nieder A. 2013.. Representation of abstract quantitative rules applied to spatial and numerical magnitudes in primate prefrontal cortex. . J. Neurosci. 33:(17):752634
    [Crossref] [Google Scholar]
  91. Emmorey K. 2001.. Space on hand: the exploitation of signing space to illustrate abstract thought. . In Spatial Schemas and Abstract Thought, ed. M Gattis , pp. 14774. Cambridge, MA:: MIT Press
    [Google Scholar]
  92. Emmorey K. 2021.. New perspectives on the neurobiology of sign languages. . Front. Commun. 6::748430
    [Crossref] [Google Scholar]
  93. Emmorey K, Corina D. 1990.. Lexical recognition in sign language: effects of phonetic structure and morphology. . Percept. Mot. Skills 71:(Suppl. 3):122752
    [Crossref] [Google Scholar]
  94. Emmorey K, Mehta S, McCullough S, Grabowski TJ. 2016.. The neural circuits recruited for the production of signs and fingerspelled words. . Brain Lang. 160::3041
    [Crossref] [Google Scholar]
  95. Enard W, Przeworski M, Fisher SE, Lai CSL, Wiebe V, et al. 2002.. Molecular evolution of FOXP2, a gene involved in speech and language. . Nature 418:(6900):86972
    [Crossref] [Google Scholar]
  96. Epstein RA, Parker WE, Feiler AM. 2007.. Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. . J. Neurosci. 27:(23):614149
    [Crossref] [Google Scholar]
  97. Espinosa JS, Stryker MP. 2012.. Development and plasticity of the primary visual cortex. . Neuron 75:(2):23049
    [Crossref] [Google Scholar]
  98. Evans N, Levinson SC. 2009.. The myth of language universals: language diversity and its importance for cognitive science. . Behav. Brain Sci. 32:(5):42948
    [Crossref] [Google Scholar]
  99. Farghaly AA, El-Kafrawy PM. 2021.. Exploring the use of cognitive tests to predict programming performance: a systematic literature review. . In 2021 31st International Conference on Computer Theory and Applications (ICCTA), pp. 4048. Piscataway, NJ:: IEEE. https://doi.org/10.1109/ICCTA54562.2021.9916610
    [Google Scholar]
  100. Fedorenko E, Behr MK, Kanwisher N. 2011.. Functional specificity for high-level linguistic processing in the human brain. . PNAS 108:(39):1642833
    [Crossref] [Google Scholar]
  101. Fedorenko E, Duncan J, Kanwisher N. 2013.. Broad domain generality in focal regions of frontal and parietal cortex. . PNAS 110:(41):1661621
    [Crossref] [Google Scholar]
  102. Fedorenko E, Ivanova A, Dhamala R, Bers MU. 2019.. The language of programming: a cognitive perspective. . Trends Cogn. Sci. 23:(7):52528
    [Crossref] [Google Scholar]
  103. Fedorenko E, Varley R. 2016.. Language and thought are not the same thing: evidence from neuroimaging and neurological patients. . Ann. N. Y. Acad. Sci. 1369:(1):13253
    [Crossref] [Google Scholar]
  104. Feigenson L, Dehaene S, Spelke E. 2004.. Core systems of number. . Trends Cogn. Sci. 8:(7):30714
    [Crossref] [Google Scholar]
  105. Feiman R, Mody S, Carey S. 2022.. The development of reasoning by exclusion in infancy. . Cogn. Psychol. 135::101473
    [Crossref] [Google Scholar]
  106. Ferjan-Ramirez N, Leonard MK, Torres C, Hatrak M, Halgren E, Mayberry RI. 2014.. Neural language processing in adolescent first-language learners. . Cereb. Cortex 24:(10):277283
    [Crossref] [Google Scholar]
  107. Finney EM, Fine I, Dobkins KR. 2001.. Visual stimuli activate auditory cortex in the deaf. . Nat. Neurosci. 4:(12):117173
    [Crossref] [Google Scholar]
  108. Fischer J, Price T. 2017.. Meaning, intention, and inference in primate vocal communication. . Neurosci. Biobehav. Rev. 82::2231
    [Crossref] [Google Scholar]
  109. Fitch WT, Hauser MD, Chomsky N. 2005.. The evolution of the language faculty: clarifications and implications. . Cognition 97:(2):179210
    [Crossref] [Google Scholar]
  110. Floyd B, Santander T, Weimer W. 2017.. Decoding the representation of code in the brain: an fMRI study of code review and expertise. Paper presented at the 39th International Conference on Software Engineering, Buenos Aires, Argent.:, May 20–28
    [Google Scholar]
  111. Forkel SJ, de Schotten MT, Kawadler JM, Dell'Acqua F, Danek A, Catani M. 2014.. The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. . Cortex 56::7384
    [Crossref] [Google Scholar]
  112. Frank MC, Everett DL, Fedorenko E, Gibson E. 2008.. Number as a cognitive technology: evidence from Pirahã language and cognition. . Cognition 108:(3):81924
    [Crossref] [Google Scholar]
  113. Friederici AD. 2009.. Pathways to language: fiber tracts in the human brain. . Trends Cogn. Sci. 13:(4):17581
    [Crossref] [Google Scholar]
  114. Friedrich RM, Friederici AD. 2009.. Mathematical logic in the human brain: syntax. . PLOS ONE 4:(5):e5599
    [Crossref] [Google Scholar]
  115. Friedrich RM, Friederici AD. 2013.. Mathematical logic in the human brain: semantics. . PLOS ONE 8:(1):e53699
    [Crossref] [Google Scholar]
  116. Gallese V, Lakoff G. 2005.. The brain's concepts: the role of the sensory-motor system in conceptual knowledge. . Cogn. Neuropsychol. 22:(3–4):45579
    [Crossref] [Google Scholar]
  117. Gelman SA. 2009.. Learning from others: children's construction of concepts. . Annu. Rev. Psychol. 60::11540
    [Crossref] [Google Scholar]
  118. Gilbert CD, Li W. 2013.. Top-down influences on visual processing. . Nat. Rev. Neurosci. 14:(5):35063
    [Crossref] [Google Scholar]
  119. Gleitman L, Newport E. 1995.. The invention of language by children: environmental and biological influences on the acquisition of language. . In An Invitation to Cognitive Science, Vol. 1: Language, ed. L Gleitman, M Liberman , pp. 124. Cambridge, MA:: MIT Press. , 2nd ed..
    [Google Scholar]
  120. Goel V. 2007.. Anatomy of deductive reasoning. . Trends Cogn. Sci. 11:(10):43541
    [Crossref] [Google Scholar]
  121. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, et al. 2004.. Dynamic mapping of human cortical development during childhood through early adulthood. . PNAS 101:(21):817479
    [Crossref] [Google Scholar]
  122. Goldin-Meadow S. 2005.. The Resilience of Language: What Gesture Creation in Deaf Children Can Tell Us About How All Children Learn Language. New York:: Psychology Press
    [Google Scholar]
  123. Gopnik A, Wellman HM. 1992.. Why the child's theory of mind really is a theory. . Mind Lang. 7:(1–2):14571
    [Crossref] [Google Scholar]
  124. Gordon P. 2004.. Numerical cognition without words: evidence from Amazonia. . Science 306:(5695):49699
    [Crossref] [Google Scholar]
  125. Granda A, Nuccio J. 2018.. Protactile Principles. Monmouth, OR:: Tactile Commun.
    [Google Scholar]
  126. Greenough WT, Black JE, Wallace CS. 1987.. Experience and brain development. . Child Dev. 58:(3):53959
    [Crossref] [Google Scholar]
  127. Grill-Spector K, Malach R. 2004.. The human visual cortex. . Annu. Rev. Neurosci. 27::64977
    [Crossref] [Google Scholar]
  128. Gurnee W, Tegmark M. 2024.. Language models represent space and time. arXiv:2310.02207 [cs.LG ]
    [Google Scholar]
  129. Gweon H. 2021.. Inferential social learning: cognitive foundations of human social learning and teaching. . Trends Cogn. Sci. 25:(10):896910
    [Crossref] [Google Scholar]
  130. Hall WC. 2017.. What you don't know can hurt you: the risk of language deprivation by impairing sign language development in deaf children. . Matern. Child Health J. 21:(5):96165
    [Crossref] [Google Scholar]
  131. Harris PL, Koenig MA. 2006.. Trust in testimony: how children learn about science and religion. . Child Dev. 77:(3):50524
    [Crossref] [Google Scholar]
  132. Hartley CA. 2022.. How do natural environments shape adaptive cognition across the lifespan?. Trends Cogn. Sci. 26:(12):102930
    [Crossref] [Google Scholar]
  133. Hartley CA, Nussenbaum K, Cohen AO. 2021.. Interactive development of adaptive learning and memory. . Annu. Rev. Dev. Psychol. 3::5985
    [Crossref] [Google Scholar]
  134. Hartshorne JK, Tenenbaum JB, Pinker S. 2018.. A critical period for second language acquisition: evidence from 2/3 million English speakers. . Cognition 177::26377
    [Crossref] [Google Scholar]
  135. Hauptman M, Elli G, Pant R, Bedny M. 2023.. Neural specialization for ‘visual’ concepts emerges in the absence of vision. . bioRxiv 2023.08.23.552701. https://doi.org/10.1101/2023.08.23.552701
  136. Henrich J, McElreath R. 2003.. The evolution of cultural evolution. . Evol. Anthropol. 12:(3):12335
    [Crossref] [Google Scholar]
  137. Hensch TK. 2004.. Critical period regulation. . Annu. Rev. Neurosci. 27::54979
    [Crossref] [Google Scholar]
  138. Hensch TK. 2005.. Critical period plasticity in local cortical circuits. . Nat. Rev. Neurosci. 6:(11):87788
    [Crossref] [Google Scholar]
  139. Hensch TK. 2018.. Critical periods in cortical development. . In The Neurobiology of Brain and Behavioral Development, ed. R Gibb, B Kolb , pp. 13351. London:: Academic
    [Google Scholar]
  140. Heyes C. 2018.. Cognitive Gadgets: The Cultural Evolution of Thinking. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  141. Hickok G, Bellugi U, Klima ES. 1996.. The neurobiology of sign language and its implications for the neural basis of language. . Nature 381:(6584):699702
    [Crossref] [Google Scholar]
  142. Hickok G, Poeppel D, Clark K, Buxton RB, Rowley HA, Roberts TPL. 1997.. Sensory mapping in a congenitally deaf subject: MEG and fRMI studies of cross-modal non-plasticity. . Hum. Brain Mapp. 5:(6):43744
    [Crossref] [Google Scholar]
  143. Hirshorn EA, Li Y, Ward MJ, Richardson RM, Fiez JA, Ghuman AS. 2016.. Decoding and disrupting left midfusiform gyrus activity during word reading. . PNAS 113:(29):816267
    [Crossref] [Google Scholar]
  144. Holloway ID, Battista C, Vogel SE, Ansari D. 2013.. Semantic and perceptual processing of number symbols: evidence from a cross-linguistic fMRI adaptation study. . J. Cogn. Neurosci. 25:(3):388400
    [Crossref] [Google Scholar]
  145. Hoshi E, Shima K, Tanji J. 2000.. Neuronal activity in the primate prefrontal cortex in the process of motor selection based on two behavioral rules. . J. Neurophysiol. 83:(4):235573
    [Crossref] [Google Scholar]
  146. Hubel DH, Wiesel TN. 1970.. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. . J. Physiol. 206:(2):41936
    [Crossref] [Google Scholar]
  147. Hume D. 1740.. An Abstract of a Treatise of Human Nature. Hamden, CT:: Archon Books
    [Google Scholar]
  148. Huttenlocher PR. 2009.. Neural Plasticity: The Effects of Environment on the Development of the Cerebral Cortex. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  149. Huttenlocher PR, Dabholkar AS. 1997.. Regional differences in synaptogenesis in human cerebral cortex. . J. Comp. Neurol. 387:(2):16778
    [Crossref] [Google Scholar]
  150. Ikutani Y, Kubo T, Nishida S, Hata H, Matsumoto K, et al. 2021.. Expert programmers have fine-tuned cortical representations of source code. . eNeuro 8:(1):ENEURO.0405-20.2020
    [Crossref] [Google Scholar]
  151. Isik L, Koldewyn K, Beeler D, Kanwisher N. 2017.. Perceiving social interactions in the posterior superior temporal sulcus. . PNAS 114:(43):E914552
    [Crossref] [Google Scholar]
  152. Ivanova AA, Srikant S, Sueoka Y, Kean HH, Dhamala R, et al. 2020.. Comprehension of computer code relies primarily on domain-general executive brain regions. . eLife 9::e58906
    [Crossref] [Google Scholar]
  153. Johnson JS, Newport EL. 1989.. Critical period effects in second language learning: the influence of maturational state on the acquisition of English as a second language. . Cogn. Psychol. 21:(1):6099
    [Crossref] [Google Scholar]
  154. Jorstad NL, Close J, Johansen N, Yanny AM, Barkan ER, et al. 2023.. Transcriptomic cytoarchitecture reveals principles of human neocortex organization. . Science 382:(6667):eadf6812
    [Crossref] [Google Scholar]
  155. Kadosh RC, Kadosh KC, Kaas A, Henik A, Goebel R. 2007.. Notation-dependent and-independent representations of numbers in the parietal lobes. . Neuron 53:(2):30714
    [Crossref] [Google Scholar]
  156. Kahn DM, Krubitzer L. 2002.. Massive cross-modal cortical plasticity and the emergence of a new cortical area in developmentally blind mammals. . PNAS 99:(17):1142934
    [Crossref] [Google Scholar]
  157. Kanjlia S, Feigenson L, Bedny M. 2021.. Neural basis of approximate number in congenital blindness. . Cortex 142::34256
    [Crossref] [Google Scholar]
  158. Kanjlia S, Lane C, Feigenson L, Bedny M. 2016.. Absence of visual experience modifies the neural basis of numerical thinking. . PNAS 113:(40):1117277
    [Crossref] [Google Scholar]
  159. Kanwisher N, McDermott J, Chun MM. 1997.. The fusiform face area: a module in human extrastriate cortex specialized for face perception. . J. Neurosci. 17::430211
    [Crossref] [Google Scholar]
  160. Kanwisher N, Yovel G. 2006.. The fusiform face area: a cortical region specialized for the perception of faces. . Philos. Trans. R. Soc. B 361:(1476):210928
    [Crossref] [Google Scholar]
  161. Kim JS, Aheimer B, Montané Manrara V, Bedny M. 2021.. Shared understanding of color among sighted and blind adults. . PNAS 118:(33):e2020192118
    [Crossref] [Google Scholar]
  162. Kim JS, Elli GV, Bedny M. 2019.. Knowledge of animal appearance among sighted and blind adults. . PNAS 116:(23):1121322
    [Crossref] [Google Scholar]
  163. Kitayama S, Park J. 2010.. Cultural neuroscience of the self: understanding the social grounding of the brain. . Soc. Cogn. Affect. Neurosci. 5:(2–3):11129
    [Crossref] [Google Scholar]
  164. Klima ES, Bellugi U. 1979.. The Signs of Language. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  165. Kocab A, Senghas A, Snedeker J. 2016.. The emergence of temporal language in Nicaraguan Sign Language. . Cognition 156::14763
    [Crossref] [Google Scholar]
  166. Koster-Hale J, Bedny M, Saxe R. 2014.. Thinking about seeing: Perceptual sources of knowledge are encoded in the theory of mind brain regions of sighted and blind adults. . Cognition 133:(1):6578
    [Crossref] [Google Scholar]
  167. Krubitzer L. 1995.. The organization of neocortex in mammals: Are species differences really so different?. Trends Neurosci. 18:(9):40817
    [Crossref] [Google Scholar]
  168. Krueger R, Huang Y, Liu X, Santander T, Weimer W, Leach K. 2020.. Neurological Divide: An fMRI Study of Prose and Code Writing. Paper presented at the 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE), Seoul, Korea:, June 27–July 19
    [Google Scholar]
  169. Kupers R, Pappens M, de Noordhout AM, Schoenen J, Ptito M, Fumal A. 2007.. rTMS of the occipital cortex abolishes Braille reading and repetition priming in blind subjects. . Neurology 68:(9):69193
    [Crossref] [Google Scholar]
  170. Kyttälä M, Lehto JE. 2008.. Some factors underlying mathematical performance: the role of visuospatial working memory and non-verbal intelligence. . Eur. J. Psychol. Educ. 23::7794
    [Crossref] [Google Scholar]
  171. Lai CSL, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. 2001.. A forkhead-domain gene is mutated in a severe speech and language disorder. . Nature 413:(6855):51923
    [Crossref] [Google Scholar]
  172. Landau B, Gleitman LR. 1985.. Language and Experience: Evidence from the Blind Child. Cambridge, MA:: Harvard University Press
    [Google Scholar]
  173. Lane C, Kanjlia S, Omaki A, Bedny M. 2015.. “ Visual” cortex of congenitally blind adults responds to syntactic movement. . J. Neurosci. 35:(37):1285968
    [Crossref] [Google Scholar]
  174. Larsen B, Luna B. 2018.. Adolescence as a neurobiological critical period for the development of higher-order cognition. . Neurosci. Biobehav. Rev. 94::17995
    [Crossref] [Google Scholar]
  175. Legare CH. 2017.. Cumulative cultural learning: development and diversity. . PNAS 114:(30):787783
    [Crossref] [Google Scholar]
  176. Legare CH, Gelman SA. 2008.. Bewitchment, biology, or both: the co-existence of natural and supernatural explanatory frameworks across development. . Cogn. Sci. 32:(4):60742
    [Crossref] [Google Scholar]
  177. Lenneberg EH. 1967.. The biological foundations of language. . Hosp. Pract. 2:(12):5967
    [Crossref] [Google Scholar]
  178. Leslie AM, Gelman R, Gallistel CR. 2008.. The generative basis of natural number concepts. . Trends Cogn. Sci. 12:(6):21318
    [Crossref] [Google Scholar]
  179. Lewis LB, Saenz M, Fine I. 2010.. Mechanisms of cross-modal plasticity in early-blind subjects. . J. Neurophysiol. 104:(6):29953008
    [Crossref] [Google Scholar]
  180. Lewis TL, Maurer D. 2005.. Multiple sensitive periods in human visual development: evidence from visually deprived children. . Dev. Psychobiol. 46:(3):16383
    [Crossref] [Google Scholar]
  181. Libertus ME, Feigenson L, Halberda J. 2011.. Preschool acuity of the approximate number system correlates with school math ability. . Dev. Sci. 14:(6):1292300
    [Crossref] [Google Scholar]
  182. Lillo-Martin D, Henner J. 2021.. Acquisition of sign languages. . Annu. Rev. Linguist. 7::395419
    [Crossref] [Google Scholar]
  183. Liu Y-F, Kim J, Wilson C, Bedny M. 2020.. Computer code comprehension shares neural resources with formal logical inference in the fronto-parietal network. . eLife 9::e59340
    [Crossref] [Google Scholar]
  184. Liu Y-F, Wilson C, Bedny M. 2024.. Contribution of the language network to the comprehension of Python programming code. . Brain Lang. 251::105392
    [Crossref] [Google Scholar]
  185. Locke J. 1690.. An Essay Concerning Human Understanding. London:: Ward, Lock & Co. New ed .
    [Google Scholar]
  186. Lupyan G, Rakison DH, McClelland JL. 2007.. Language is not just for talking: Redundant labels facilitate learning of novel categories. . Psychol. Sci. 18:(12):107783
    [Crossref] [Google Scholar]
  187. Lutz DJ, Keil FC. 2002.. Early understanding of the division of cognitive labor. . Child Dev. 73:(4):107384
    [Crossref] [Google Scholar]
  188. Mackey A, Miller Singley A, Bunge S. 2013.. Intensive reasoning training alters patterns of brain connectivity at rest. . J. Neurosci. 33:(11):4796803
    [Crossref] [Google Scholar]
  189. MacSweeney M, Capek CM, Campbell R, Woll B. 2008a.. The signing brain: the neurobiology of sign language. . Trends Cogn. Sci. 12:(11):43240
    [Crossref] [Google Scholar]
  190. MacSweeney M, Waters D, Brammer MJ, Woll B, Goswami U. 2008b.. Phonological processing in deaf signers and the impact of age of first language acquisition. . NeuroImage 40:(3):136979
    [Crossref] [Google Scholar]
  191. Majid A, Roberts SG, Cilissen L, Emmorey K, Nicodemus B, et al. 2018.. Differential coding of perception in the world's languages. . PNAS 115:(45):1136976
    [Crossref] [Google Scholar]
  192. Makin TR, Krakauer JW. 2023.. Against cortical reorganisation. . eLife 12::e84716
    [Crossref] [Google Scholar]
  193. Malik-Moraleda S, Ayyash D, Gallée J, Affourtit J, Hoffmann M, et al. 2022.. An investigation across 45 languages and 12 language families reveals a universal language network. . Nat. Neurosci. 25:(8):101419
    [Crossref] [Google Scholar]
  194. Marjieh R, Sucholutsky I, van Rijn P, Jacoby N, Griffiths T. 2023.. What language reveals about perception: distilling psychophysical knowledge from large language models. . Proc. Annu. Meet. Cogn. Sci. Society 45:. https://escholarship.org/uc/item/6dk5q565
    [Google Scholar]
  195. Marmor GS. 1978.. Age at onset of blindness and the development of the semantics of color names. . J. Exp. Child Psychol. 25:(2):26778
    [Crossref] [Google Scholar]
  196. Marr D. 1982.. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco:: W.H. Freeman
    [Google Scholar]
  197. Maruyama M, Pallier C, Jobert A, Sigman M, Dehaene S. 2012.. The cortical representation of simple mathematical expressions. . NeuroImage 61:(4):144460
    [Crossref] [Google Scholar]
  198. Maurer D, Werker JF. 2014.. Perceptual narrowing during infancy: a comparison of language and faces. . Dev. Psychobiol. 56:(2):15478
    [Crossref] [Google Scholar]
  199. Mayberry RI, Kluender R. 2018.. Rethinking the critical period for language: new insights into an old question from American Sign Language. . Biling. Lang. Cogn. 21:(5):886905
    [Crossref] [Google Scholar]
  200. McNeill D. 2012.. How Language Began: Gesture and Speech in Human Evolution. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  201. Mead M. 1928.. The role of the individual in Samoan culture. . J. R. Anthropol. Inst. G. B. Ireland 58::48195
    [Google Scholar]
  202. Mellor CM. 2006.. Louis Braille: A Touch of Genius. Boston, MA:: Natl. Braille Press
    [Google Scholar]
  203. Millar S. 1984.. Is there a “best hand” for Braille?. Cortex 20:(1):7587
    [Crossref] [Google Scholar]
  204. Millar S. 2003.. Reading by Touch. London:: Routledge
    [Google Scholar]
  205. Mock J, Huber S, Bloechle J, Bahnmueller J, Moeller K, Klein E. 2019.. Processing symbolic and non-symbolic proportions: domain-specific numerical and domain-general processes in intraparietal cortex. . Brain Res. 1714::13346
    [Crossref] [Google Scholar]
  206. Monti M, Parsons L, Osherson D. 2009.. The boundaries of language and thought in deductive inference. . PNAS 106:(30):1255459
    [Crossref] [Google Scholar]
  207. Morishita H, Hensch TK. 2008.. Critical period revisited: impact on vision. . Curr. Opin. Neurobiol. 18:(1):1017
    [Crossref] [Google Scholar]
  208. Musz E, Loiotile R, Chen J, Bedny M. 2023.. Naturalistic audio-movies reveal common spatial organization across “visual” cortices of different blind individuals. . Cereb. Cortex 33:(1):110
    [Crossref] [Google Scholar]
  209. Musz E, Loiotile R, Chen J, Cusack R, Bedny M. 2022.. Naturalistic stimuli reveal a sensitive period in cross modal responses of visual cortex: evidence from adult-onset blindness. . Neuropsychologia 172::108277
    [Crossref] [Google Scholar]
  210. Nakai T, Sakai KL. 2014.. Neural mechanisms underlying the computation of hierarchical tree structures in mathematics. . PLOS ONE 9:(11):e111439
    [Crossref] [Google Scholar]
  211. Neville HJ, Coffey SA, Lawson DS, Fischer A, Emmorey K, Bellugi U. 1997.. Neural systems mediating American Sign Language: effects of sensory experience and age of acquisition. . Brain Lang. 57:(3):285308
    [Crossref] [Google Scholar]
  212. Newport EL. 1990.. Maturational constraints on language learning. . Cogn. Sci. 14:(1):1128
    [Crossref] [Google Scholar]
  213. Nieder A. 2021a.. Neuroethology of number sense across the animal kingdom. . J. Exp. Biol. 224:(6):jeb218289
    [Crossref] [Google Scholar]
  214. Nieder A. 2021b.. The evolutionary history of brains for numbers. . Trends Cogn. Sci. 25:(7):60821
    [Crossref] [Google Scholar]
  215. Nieder A, Dehaene S. 2009.. Representation of number in the brain. . Annu. Rev. Neurosci. 32::185208
    [Crossref] [Google Scholar]
  216. Noppeney U, Friston KJ, Price CJ. 2003.. Effects of visual deprivation on the organization of the semantic system. . Brain 126:(7):162027
    [Crossref] [Google Scholar]
  217. Obretenova S, Halko MA, Plow EB, Pascual-Leone A, Merabet LB. 2010.. Neuroplasticity associated with tactile language communication in a deaf-blind subject. . Front. Hum. Neurosci. 3::953
    [Crossref] [Google Scholar]
  218. Oomen M, Kimmelman V. 2019.. Body-anchored verbs and argument omission in two sign languages. . Glossa 4:(1):42
    [Google Scholar]
  219. Padden CA, Humphries TL. 2006.. Inside Deaf Culture. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  220. Park H-J, Friston K. 2013.. Structural and functional brain networks: from connections to cognition. . Science 342:(6158):1238411
    [Crossref] [Google Scholar]
  221. Pascual-Leone A, Amedi A, Fregni F, Merabet LB. 2005.. The plastic human brain cortex. . Annu. Rev. Neurosci. 28::377401
    [Crossref] [Google Scholar]
  222. Passingham RE, Stephan KE, Kötter R. 2002.. The anatomical basis of functional localization in the cortex. . Nat. Rev. Neurosci. 3:(8):60616
    [Crossref] [Google Scholar]
  223. Perniss P, Pfau R, Steinbach M. 2007.. Can't you see the difference? Sources of variation in sign language structure. . Trends Linguist. Stud. Monogr. 188::134
    [Google Scholar]
  224. Petersen SE, Sporns O. 2015.. Brain networks and cognitive architectures. . Neuron 88:(1):20719
    [Crossref] [Google Scholar]
  225. Petroni F, Rocktäschel T, Lewis P, Bakhtin A, Wu Y, et al. 2019.. Language models as knowledge bases?. arXiv:1909.01066 [cs.CL ]
  226. Piazza M, Eger E. 2016.. Neural foundations and functional specificity of number representations. . Neuropsychologia 83::25773
    [Crossref] [Google Scholar]
  227. Piazza M, Pinel P, Le Bihan D, Dehaene S. 2007.. A magnitude code common to numerosities and number symbols in human intraparietal cortex. . Neuron 53:(2):293305
    [Crossref] [Google Scholar]
  228. Pinker S. 2010.. The cognitive niche: coevolution of intelligence, sociality, and language. . PNAS 107::899399
    [Crossref] [Google Scholar]
  229. Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. 2002.. Reactivation of ocular dominance plasticity in the adult visual cortex. . Science 298:(5596):124851
    [Crossref] [Google Scholar]
  230. Poirier C, Collignon O, Scheiber C, Renier L, Vanlierde A, et al. 2006.. Auditory motion perception activates visual motion areas in early blind subjects. . NeuroImage 31:(1):27985
    [Crossref] [Google Scholar]
  231. Pollick AS, de Waal FBM. 2007.. Ape gestures and language evolution. . PNAS 104:(19):818489
    [Crossref] [Google Scholar]
  232. Potts R. 1998.. Variability selection in hominid evolution. . Evol. Anthropol. 7:(3):8196
    [Crossref] [Google Scholar]
  233. Prabhakaran V, Smith JA, Desmond JE, Glover GH, Gabrieli JD. 1997.. Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. . Cogn. Psychol. 33:(1):4363
    [Crossref] [Google Scholar]
  234. Prat CS, Madhyastha TM, Mottarella MJ, Kuo C-H. 2020.. Relating natural language aptitude to individual differences in learning programming languages. . Sci. Rep. 10:(1):3817
    [Crossref] [Google Scholar]
  235. Price C, Wise R, Frackowiak R. 1996.. Demonstrating the implicit processing of visually presented words and pseudowords. . Cereb. Cortex 6:(1):6270
    [Crossref] [Google Scholar]
  236. Purcell JJ, Napoliello EM, Eden GF. 2011.. A combined fMRI study of typed spelling and reading. . NeuroImage 55:(2):75062
    [Crossref] [Google Scholar]
  237. Qin W, Yu C. 2013.. Neural pathways conveying novisual information to the visual cortex. . Neural Plast. 2013::864920
    [Crossref] [Google Scholar]
  238. Quartz SR, Sejnowski TJ. 1997.. The neural basis of cognitive development: a constructivist manifesto. . Behav. Brain Sci. 20:(4):53756
    [Crossref] [Google Scholar]
  239. Raven J. 1965.. Advanced Progressive Matrices. Sets I and II. London:: HK Lewis
    [Google Scholar]
  240. Raz G, Saxe R. 2020.. Learning in infancy is active, endogenously motivated, and depends on the prefrontal cortices. . Annu. Rev. Dev. Psychol. 2::24768
    [Crossref] [Google Scholar]
  241. Reich L, Szwed M, Cohen L, Amedi A. 2011.. A ventral visual stream reading center independent of visual experience. . Curr. Biol. 21:(5):36368
    [Crossref] [Google Scholar]
  242. Reilly J. 2006.. How faces come to serve grammar: the development of nonmanual morphology in American Sign Language. . In Advances in the Sign Language Development of Deaf Children, ed. B Schick, M Marschark, PE Spencer , pp. 26290. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  243. Richardson H, Koster-Hale J, Caselli N, Magid R, Benedict R, et al. 2020.. Reduced neural selectivity for mental states in deaf children with delayed exposure to sign language. . Nat. Commun. 11:(1):3246
    [Crossref] [Google Scholar]
  244. Roberts P, Stewart BA. 2018.. Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens. . Nat. Hum. Behav. 2:(8):54250
    [Crossref] [Google Scholar]
  245. Röder B, Rösler F, Hennighausen E, Näcker F. 1996.. Event-related potentials during auditory and somatosensory discrimination in sighted and blind human subjects. . Cogn. Brain Res. 4:(2):7793
    [Crossref] [Google Scholar]
  246. Röder B, Stock O, Bien S, Neville H, Rösler F. 2002.. Speech processing activates visual cortex in congenitally blind humans. . Eur. J. Neurosci. 16:(5):93036
    [Crossref] [Google Scholar]
  247. Saccone EJ, Tian M, Bedny M. 2024.. Developing cortex is functionally pluripotent: evidence from blindness. . Dev. Cogn. Neurosci. 66::101360
    [Crossref] [Google Scholar]
  248. Sadato N, Okada T, Honda M, Yonekura Y. 2002.. Critical period for cross-modal plasticity in blind humans: a functional MRI study. . NeuroImage 16:(2):389400
    [Crossref] [Google Scholar]
  249. Sadato N, Pascual-Leone A, Grafman J, Deiber MP, Ibañez V, Hallett M. 1998.. Neural networks for Braille reading by the blind. . Brain 121:(7):121329
    [Crossref] [Google Scholar]
  250. Sadato N, Pascual-Leone A, Grafman J, Ibañez V, Deiber M-P, et al. 1996.. Activation of the primary visual cortex by Braille reading in blind subjects. . Nature 380:(6574):52628
    [Crossref] [Google Scholar]
  251. Saxe R. 2006.. Uniquely human social cognition. . Curr. Opin. Neurobiol. 16:(2):23539
    [Crossref] [Google Scholar]
  252. Saxe R, Kanwisher N. 2003.. People thinking about thinking people: the role of the temporo-parietal junction in “theory of mind. .” NeuroImage 19:(4):183542
    [Crossref] [Google Scholar]
  253. Saygin ZM, Osher DE, Norton ES, Youssoufian DA, Beach SD, et al. 2016.. Connectivity precedes function in the development of the visual word form area. . Nat. Neurosci. 19:(9):125055
    [Crossref] [Google Scholar]
  254. Saysani A, Corballis MC, Corballis PM. 2018.. Colour envisioned: concepts of colour in the blind and sighted. . Vis. Cogn. 26:(5):38292
    [Crossref] [Google Scholar]
  255. Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, et al. 2018.. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. . Cereb. Cortex 28:(9):3095114
    [Crossref] [Google Scholar]
  256. Schmandt-Besserat D, Erard M. 2008.. Origins and forms of writing. . In Handbook of Research on Writing, ed. C Bazerman , pp. 726. New York:: Routledge
    [Google Scholar]
  257. Senju A, Csibra G. 2008.. Gaze following in human infants depends on communicative signals. . Curr. Biol. 18:(9):66871
    [Crossref] [Google Scholar]
  258. Shepard RN, Cooper LA. 1992.. Representation of colors in the blind, color-blind, and normally sighted. . Psychol. Sci. 3:(2):97104
    [Crossref] [Google Scholar]
  259. Sherwood CC, Gómez-Robles A. 2017.. Brain plasticity and human evolution. . Annu. Rev. Anthropol. 46::399419
    [Crossref] [Google Scholar]
  260. Shum J, Fanda L, Dugan P, Doyle WK, Devinsky O, Flinker A. 2020.. Neural correlates of sign language production revealed by electrocorticography. . Neurology 95:(21):e288089
    [Crossref] [Google Scholar]
  261. Shuman M, Kanwisher N. 2004.. Numerical magnitude in the human parietal lobe: tests of representational generality and domain specificity. . Neuron 44:(3):55769
    [Crossref] [Google Scholar]
  262. Siegmund J, Kästner C, Apel S, Parnin C, Bethmann A, et al. 2014.. Understanding understanding source code with functional magnetic resonance imaging. Paper presented at the 36th International Conference on Software Engineering, Hyderabad, India:, May 31–June 7
    [Google Scholar]
  263. Spaepen E, Coppola M, Spelke ES, Carey SE, Goldin-Meadow S. 2011.. Number without a language model. . PNAS 108:(8):316368
    [Crossref] [Google Scholar]
  264. Spelke ES. 2017.. Core knowledge, language, and number. . Lang. Learn. Dev. 13:(2):14770
    [Crossref] [Google Scholar]
  265. Spelke ES. 2022.. What Babies Know: Core Knowledge and Composition Vol. 1. New York:: Oxford Univ. Press
    [Google Scholar]
  266. Sporns O. 2022.. The complex brain: connectivity, dynamics, information. . Trends Cogn. Sci. 26:(12):106667
    [Crossref] [Google Scholar]
  267. Srikant S, Lipkin B, Ivanova AA, Fedorenko E, O'Reilly U-M. 2022.. Convergent representations of computer programs in human and artificial neural networks. Paper presented at the 36th Annual Conference on Neural Information Processing Systems, New Orleans, LA:, Nov 28–Dec 9
    [Google Scholar]
  268. Striem-Amit E, Ovadia-Caro S, Caramazza A, Margulies DS, Villringer A, Amedi A. 2015.. Functional connectivity of visual cortex in the blind follows retinotopic organization principles. . Brain 138:(6):167995
    [Crossref] [Google Scholar]
  269. Striem-Amit E, Wang X, Bi Y, Caramazza A. 2018.. Neural representation of visual concepts in people born blind. . Nat. Commun. 9:(1):5250
    [Crossref] [Google Scholar]
  270. Szwed M, Dehaene S, Kleinschmidt A, Eger E, Valabrègue R, et al. 2011.. Specialization for written words over objects in the visual cortex. . NeuroImage 56:(1):33044
    [Crossref] [Google Scholar]
  271. Tennie C, Call J, Tomasello M. 2009.. Ratcheting up the ratchet: on the evolution of cumulative culture. . Philos. Trans. R. Soc. B 364:(1528):240515
    [Crossref] [Google Scholar]
  272. Terrace HS, Petitto LA, Sanders RJ, Bever TG. 1979.. Can an ape create a sentence?. Science 206:(4421):891902
    [Crossref] [Google Scholar]
  273. Thompson-Schill SL, D'Esposito M, Aguirre GK, Farah MJ. 1997.. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. . PNAS 94:(26):1479297
    [Crossref] [Google Scholar]
  274. Thompson-Schill SL, Ramscar M, Chrysikou EG. 2009.. Cognition without control: when a little frontal lobe goes a long way. . Curr. Dir. Psychol. Sci. 18:(5):25963
    [Crossref] [Google Scholar]
  275. Tian M, Saccone EJ, Kim JS, Kanjlia S, Bedny M. 2023.. Sensory modality and spoken language shape reading network in blind readers of Braille. . Cereb. Cortex 33:(6):242640
    [Crossref] [Google Scholar]
  276. Tian M, Xiao X, Hu H, Cusack R, Bedny M. 2024.. Visual experience shapes functional connectivity between occipital and non-visual networks. . eLife 13::RP93067. Preprint. https://doi.org/10.7554/eLife.93067.1
    [Crossref] [Google Scholar]
  277. Tomasello M. 1999.. The human adaptation for culture. . Annu. Rev. Anthropol. 28::50929
    [Crossref] [Google Scholar]
  278. Tomasello M. 2010.. Origins of Human Communication. Cambridge, MA:: MIT Press
    [Google Scholar]
  279. Tooby J, Cosmides L. 1992.. The psychological foundations of culture. . In The Adapted Mind: Evolutionary Psychology and the Generation of Culture, ed. JH Barkow, L Cosmides, J Trooby , pp. 19136. New York:: Oxford Univ. Press
    [Google Scholar]
  280. Tooby J, DeVore I. 1987.. The reconstruction of hominid behavioral evolution through strategic modeling. . In The Evolution of Human Behavior: Primate Models, ed. WG Kinzey , pp. 183237. Albany, NY:: SUNY Press
    [Google Scholar]
  281. Tsapkini K, Rapp B. 2010.. The orthography-specific functions of the left fusiform gyrus: evidence of modality and category specificity. . Cortex 46:(2):185205
    [Crossref] [Google Scholar]
  282. Tudusciuc O, Nieder A. 2009.. Contributions of primate prefrontal and posterior parietal cortices to length and numerosity representation. . J. Neurophysiol. 101:(6):298494
    [Crossref] [Google Scholar]
  283. Van Den Heuvel MP, Sporns O. 2011.. Rich-club organization of the human connectome. . J. Neurosci. 31:(44):1577586
    [Crossref] [Google Scholar]
  284. Vendrell P, Junqué C, Pujol J, Jurado MA, Molet J, Grafman J. 1995.. The role of prefrontal regions in the Stroop task. . Neuropsychologia 33:(3):34152
    [Crossref] [Google Scholar]
  285. Vinckier F, Dehaene S, Jobert A, Dubus JP, Sigman M, Cohen L. 2007.. Hierarchical coding of letter strings in the ventral stream: dissecting the inner organization of the visual word-form system. . Neuron 55:(1):14356
    [Crossref] [Google Scholar]
  286. Von Melchner L, Pallas SL, Sur M. 2000.. Visual behaviour mediated by retinal projections directed to the auditory pathway. . Nature 404:(6780):87176
    [Crossref] [Google Scholar]
  287. Wallis JD, Anderson KC, Miller EK. 2001.. Single neurons in prefrontal cortex encode abstract rules. . Nature 411:(6840):95356
    [Crossref] [Google Scholar]
  288. Wanet-Defalque M-C, Veraart C, De Volder A, Metz R, Michel C, et al. 1988.. High metabolic activity in the visual cortex of early blind human subjects. . Brain Res. 446:(2):36973
    [Crossref] [Google Scholar]
  289. Wang J, Halberda J, Feigenson L. 2017.. Approximate number sense correlates with math performance in gifted adolescents. . Acta Psychol. 176::7884
    [Crossref] [Google Scholar]
  290. Wang X, Men W, Gao J, Caramazza A, Bi Y. 2020.. Two forms of knowledge representations in the human brain. . Neuron 107:(2):38393.e5
    [Crossref] [Google Scholar]
  291. Weiner KS, Barnett MA, Lorenz S, Caspers J, Stigliani A, et al. 2017.. The cytoarchitecture of domain-specific regions in human high-level visual cortex. . Cereb. Cortex 27:(1):14661
    [Crossref] [Google Scholar]
  292. Wellman HM, Carey S, Gleitman L, Newport EL, Spelke ES. 1990.. The Child's Theory of Mind. Cambridge, MA:: MIT Press
    [Google Scholar]
  293. Werchan DM, Collins AG, Frank MJ, Amso D. 2016.. Role of prefrontal cortex in learning and generalizing hierarchical rules in 8-month-old infants. . J. Neurosci. 36:(40):1031422
    [Crossref] [Google Scholar]
  294. Werker JF, Hensch TK. 2015.. Critical periods in speech perception: new directions. . Annu. Rev. Psychol. 66::17396
    [Crossref] [Google Scholar]
  295. Wolbers T, Zahorik P, Giudice NA. 2011.. Decoding the direction of auditory motion in blind humans. . NeuroImage 56:(2):68187
    [Crossref] [Google Scholar]
  296. Woll B. 2018.. The consequences of very late exposure to BSL as an L1. . Biling. Lang. Cogn. 21:(5):93637
    [Crossref] [Google Scholar]
  297. Woll B, Sutton-Spence R, Elton F. 2001.. Multilingualism: the global approach to sign languages. . In The Sociolinguistics of Sign Language, ed. C Lucas , pp. 832. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  298. Woodward AL. 1998.. Infants selectively encode the goal object of an actor's reach. . Cognition 69:(1):134
    [Crossref] [Google Scholar]
  299. Woodward JC. 1972.. Implications for sociolinguistic research among the deaf. . Sign Lang. Stud. 1::17
    [Crossref] [Google Scholar]
  300. Woolgar A, Jackson J, Duncan J. 2016.. Coding of visual, auditory, rule, and response information in the brain: 10 years of multivoxel pattern analysis. . J. Cogn. Neurosci. 28:(10):143354
    [Crossref] [Google Scholar]
  301. Wright S, Matlen B, Baym C, Ferrer E, Bunge S. 2008.. Neural correlates of fluid reasoning in children and adults. . Front. Hum. Neurosci. 1::8
    [Google Scholar]
  302. Xu F, Spelke ES, Goddard S. 2005.. Number sense in human infants. . Dev. Sci. 8:(1):88101
    [Crossref] [Google Scholar]
  303. Xu M, Baldauf D, Chang CQ, Desimone R, Tan LH. 2017.. Distinct distributed patterns of neural activity are associated with two languages in the bilingual brain. . Sci. Adv. 3:(7):e1603309
    [Crossref] [Google Scholar]
  304. Xu S, Li Y, Liu J. 2021.. The neural correlates of computational thinking: collaboration of distinct cognitive components revealed by fMRI. . Cereb. Cortex 31:(12):557997
    [Crossref] [Google Scholar]
  305. Yang C. 2013.. Ontogeny and phylogeny of language. . PNAS 110:(16):632427
    [Crossref] [Google Scholar]
  306. Yaple ZA, Stevens WD, Arsalidou M. 2019.. Meta-analyses of the n-back working memory task: fMRI evidence of age-related changes in prefrontal cortex involvement across the adult lifespan. . NeuroImage 196::1631
    [Crossref] [Google Scholar]
  307. Yeung MSY, Zdunek S, Bergmann O, Bernard S, Salehpour M, et al. 2014.. Dynamics of oligodendrocyte generation and myelination in the human brain. . Cell 159:(4):76674
    [Crossref] [Google Scholar]
  308. Zeller E, Timmermann A, Yun KS, Raia P, Stein K, Ruan J. 2023.. Human adaptation to diverse biomes over the past 3 million years. . Science 380:(6645):6048
    [Crossref] [Google Scholar]
  309. Zimmermann M, Cusack R, Bedny M, Szwed M. 2024.. Auditory areas are recruited for naturalistic visual meaning in early deaf people. . Nat. Commun. 15::8035
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-devpsych-120621-042108
Loading
/content/journals/10.1146/annurev-devpsych-120621-042108
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error