1932

Abstract

For most of Earth's history life was microbial, with archaeal and bacterial cells mediating biogeochemical cycles through their metabolisms and ecologies. This diversity was sufficient to maintain a habitable planet across dramatic environmental transitions during the Archean and Proterozoic Eons. However, our knowledge of the first 3 billion years of the biosphere pales in comparison to the rich narrative of complex life documented through the Phanerozoic geological record. In this review, we attempt to lay out a microbial natural history framework that highlights recent and ongoing research unifying microbiology, geochemistry, and traditional organismal evolutionary biology, and we propose six broadly applicable principles to aid in these endeavors. In this way, the evolutionary history of microbial life—once considered only a prelude to the much more storied history of complex metazoan life in the Phanerozoic—is finally coming into its own.

  • ▪  The outlines of microbial natural history are now starting to appear through the integration of genomic and geological records.
  • ▪  Microorganisms drive Earth's biogeochemical cycles, and their natural history reflects a coevolution with the planet.
  • ▪  Past environmental changes have induced microbial biotic transitions, marked by extinction, taxonomic shifts, and new metabolisms and ecologies.
  • ▪  Microbial evolution can benefit from a historical perspective of processes and successions as established by macropaleontology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-070542
2024-07-23
2025-04-17
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-031621-070542.html?itemId=/content/journals/10.1146/annurev-earth-031621-070542&mimeType=html&fmt=ahah

Literature Cited

  1. Allwood AC, Grotzinger JP, Knoll AH, Burch IW, Anderson MS, et al. 2009.. Controls on development and diversity of Early Archean stromatolites. . PNAS 106:(24):954855
    [Crossref] [Google Scholar]
  2. Andersson I, Backlund A. 2008.. Structure and function of Rubisco. . Plant Physiol. Biochem. 46:(3):27591
    [Crossref] [Google Scholar]
  3. Arning N, Wilson DJ. 2020.. The past, present and future of ancient bacterial DNA. . Microb. Genom. 6:(7):mgen000384
    [Google Scholar]
  4. Arnold BJ, Huang IT, Hanage WP. 2022.. Horizontal gene transfer and adaptive evolution in bacteria. . Nat. Rev. Microbiol. 20:(4):20618
    [Crossref] [Google Scholar]
  5. Arriola LA, Cooper A, Weyrich LS. 2020.. Palaeomicrobiology: application of ancient DNA sequencing to better understand bacterial genome evolution and adaptation. . Front. Ecol. Evol. 8::40
    [Crossref] [Google Scholar]
  6. Baldauf SL, Palmer JD, Doolittle WF. 1996.. The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. . PNAS 93:(15):774954
    [Crossref] [Google Scholar]
  7. Becerra A, Rivas M. 2014.. A phylogenetic approach to the early evolution of autotrophy: the case of the reverse TCA and the reductive acetyl-CoA pathways. . Int. Microbiol. 17:(2):9197
    [Google Scholar]
  8. Bernhard JM, Edgcomb VP, Visscher PT, McIntyre-Wressnig A, Summons RE, et al. 2013.. Insights into foraminiferal influences on microfabrics of microbialites at Highborne Cay, Bahamas. . PNAS 110:(24):983034
    [Crossref] [Google Scholar]
  9. Betts HC, Puttick MN, Clark JW, Williams TA, Donoghue PCJ, Pisani D. 2018.. Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin. . Nat. Ecol. Evol. 2:(10):155662
    [Crossref] [Google Scholar]
  10. Bianchi D, Weber TS, Kiko R, Deutsch C. 2018.. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. . Nat. Geosci. 11:(4):26368
    [Crossref] [Google Scholar]
  11. Bjerrum CJ, Canfield DE. 2004.. New insights into the burial history of organic carbon on the early Earth. . Geochem. Geophys. Geosyst. 5:(8):Q08001
    [Crossref] [Google Scholar]
  12. Bosak T, Knoll AH, Petroff AP. 2013.. The meaning of stromatolites. . Annu. Rev. Earth Planet. Sci. 41::2144
    [Crossref] [Google Scholar]
  13. Bottjer DJ. 2010.. The Cambrian substrate revolution and early evolution of the phyla. . J. Earth Sci. 21:(Suppl. 1):2124
    [Crossref] [Google Scholar]
  14. Bradley AS, Leavitt WD, Schmidt M, Knoll AH, Girguis PR, Johnston DT. 2016.. Patterns of sulfur isotope fractionation during microbial sulfate reduction. . Geobiology 14:(1):91101
    [Crossref] [Google Scholar]
  15. Brasier MD, Antcliffe J, Saunders M, Wacey D. 2015.. Changing the picture of Earth's earliest fossils (3.5–1.9 Ga) with new approaches and new discoveries. . PNAS 112:(16):485964
    [Crossref] [Google Scholar]
  16. Brock TD. 1975.. Milestones in Microbiology. Washington, DC:: Am. Soc. Microbiol.
    [Google Scholar]
  17. Brocklehurst RJ, Schachner ER, Codd JR, Sellers WI. 2020.. Respiratory evolution in archosaurs. . Philos. Trans. R. Soc. B 375:(1793):20190140
    [Crossref] [Google Scholar]
  18. Brocks JJ, Jarrett AJM, Sirantoine E, Hallmann C, Hoshino Y, Liyanage T. 2017.. The rise of algae in Cryogenian oceans and the emergence of animals. . Nature 548:(7669):57881
    [Crossref] [Google Scholar]
  19. Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA. 2005.. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. . Nature 437:(7060):86670
    [Crossref] [Google Scholar]
  20. Brocks JJ, Schaeffer P. 2008.. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation. . Geochim. Cosmochim. Acta 72:(5):1396414
    [Crossref] [Google Scholar]
  21. Broda E. 1977.. Two kinds of lithotrophs missing in nature. . Z. Allg. Mikrobiol. 17:(6):49193
    [Crossref] [Google Scholar]
  22. Bromham L, Duchêne S, Hua X, Ritchie AM, Duchêne DA, Ho SYW. 2018.. Bayesian molecular dating: opening up the black box. . Biol. Rev. 93:(2):116591
    [Crossref] [Google Scholar]
  23. Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, et al. 2015.. Unusual biology across a group comprising more than 15% of domain Bacteria. . Nature 523:(7559):20811
    [Crossref] [Google Scholar]
  24. Buikema WJ, Haselkorn R. 1993.. Molecular genetics of cyanobacterial development. . Annu. Rev. Plant Biol. 44::3352
    [Crossref] [Google Scholar]
  25. Callaway E. 2022.. Oldest-ever DNA shows mastodons roamed Greenland 2 million years ago. . Nature 612:(7940):384
    [Crossref] [Google Scholar]
  26. Canfield DE, Teske A. 1996.. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. . Nature 382:(6587):12732
    [Crossref] [Google Scholar]
  27. Cardona T. 2015.. A fresh look at the evolution and diversification of photochemical reaction centers. . Photosynth. Res. 126:(1):11134
    [Crossref] [Google Scholar]
  28. Cardona T, Sánchez-Baracaldo P, Rutherford AW, Larkum AW. 2019.. Early Archean origin of photosystem II. . Geobiology 17:(2):12750
    [Crossref] [Google Scholar]
  29. Cavin L, Forey PL. 2007.. Using ghost lineages to identify diversification events in the fossil record. . Biol. Lett. 3:(2):2014
    [Crossref] [Google Scholar]
  30. Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, et al. 2008.. Environmental genomics reveals a single-species ecosystem deep within Earth. . Science 322:(5899):27578
    [Crossref] [Google Scholar]
  31. Cui X, Liu X-L, Shen G, Ma J, Husain F, et al. 2020.. Niche expansion for phototrophic sulfur bacteria at the Proterozoic–Phanerozoic transition. . PNAS 117:(30):17599606
    [Crossref] [Google Scholar]
  32. Damsté JSS, Schouten S, Hopmans EC, Van Duin ACT, Geenevasen JAJ. 2002.. Crenarchaeol. . J. Lipid Res. 43:(10):164151
    [Crossref] [Google Scholar]
  33. Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, et al. 1998.. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. . Nature 392:(6674):35358
    [Crossref] [Google Scholar]
  34. Demoulin CF, Lara YJ, Cornet L, François C, Baurain D, et al. 2019.. Cyanobacteria evolution: insight from the fossil record. . Free Radic. Biol. Med. 140::20623
    [Crossref] [Google Scholar]
  35. Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA, et al. 2013.. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. . eLife 2::e01102
    [Crossref] [Google Scholar]
  36. Doolittle WF. 1999.. Phylogenetic classification and the universal tree. . Science 284:(5423):212428
    [Crossref] [Google Scholar]
  37. Doolittle WF, Booth A. 2017.. It's the song, not the singer: an exploration of holobiosis and evolutionary theory. . Biol. Philos. 32:(1):524
    [Crossref] [Google Scholar]
  38. Dos Reis M, Donoghue PCJ, Yang Z. 2016.. Bayesian molecular clock dating of species divergences in the genomics era. . Nat. Rev. Genet. 17:(2):7180
    [Crossref] [Google Scholar]
  39. Dos Reis M, Thawornwattana Y, Angelis K, Telford MJ, Donoghue PCJ, Yang Z. 2015.. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. . Curr. Biol. 25:(22):293950
    [Crossref] [Google Scholar]
  40. Duchêne S, Holt KE, Weill F-X, Le Hello S, Hawkey J, et al. 2016.. Genome-scale rates of evolutionary change in bacteria. . Microb. Genom. 2:(11):e000094
    [Google Scholar]
  41. Enk JM, Yesner DR, Crossen KJ, Veltre DW, O'Rourke DH. 2009.. Phylogeographic analysis of the mid-Holocene mammoth from Qagnax Cave, St. Paul Island, Alaska. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 273:(1–2):18490
    [Crossref] [Google Scholar]
  42. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, et al. 2010.. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. . Nature 464:(7288):54348
    [Crossref] [Google Scholar]
  43. Farquhar J, Bao H, Thiemens M. 2000.. Atmospheric influence of Earth's earliest sulfur cycle. . Science 289:(5480):75658
    [Crossref] [Google Scholar]
  44. Felsenstein J. 2004.. Inferring Phylogenies. Sunderland, MA:: Sinauer Assoc.
    [Google Scholar]
  45. Ferralis N, Matys ED, Knoll AH, Hallmann C, Summons RE. 2016.. Rapid, direct and non-destructive assessment of fossil organic matter via microRaman spectroscopy. . Carbon 108::44049
    [Crossref] [Google Scholar]
  46. Fike DA, Bradley AS, Rose CV. 2015.. Rethinking the ancient sulfur cycle. . Annu. Rev. Earth Planet. Sci. 43::593622
    [Crossref] [Google Scholar]
  47. Fish SA, Shepherd TJ, McGenity TJ, Grant WD. 2002.. Recovery of 16S ribosomal RNA gene fragments from ancient halite. . Nature 417:(6887):43236
    [Crossref] [Google Scholar]
  48. Fournier GP, Moore KR, Rangel LT, Payette JG, Momper L, Bosak T. 2021.. The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. . Proc. R. Soc. B 288:(1959):20210675
    [Crossref] [Google Scholar]
  49. Garcia AK, Cavanaugh CM, Kaçar B. 2021.. The curious consistency of carbon biosignatures over billions of years of Earth-life coevolution. . ISME J. 15:(8):218394
    [Crossref] [Google Scholar]
  50. Garcia AK, Kaçar B. 2019.. How to resurrect ancestral proteins as proxies for ancient biogeochemistry. . Free Radic. Biol. Med. 140::26069
    [Crossref] [Google Scholar]
  51. Gest H. 2004.. The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, fellows of the Royal Society. . Notes Rec. R. Soc. Lond. 58:(2):187201
    [Crossref] [Google Scholar]
  52. Golubic S, Seong-Joo L. 1999.. Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. . Eur. J. Phycol. 34:(4):33948
    [Crossref] [Google Scholar]
  53. Gribaldo S, Philippe H. 2002.. Ancient phylogenetic relationships. . Theor. Popul. Biol. 61:(4):391408
    [Crossref] [Google Scholar]
  54. Gruen DS, Wolfe JM, Fournier GP. 2019.. Paleozoic diversification of terrestrial chitin-degrading bacterial lineages. . BMC Evol. Biol. 19:(1):34
    [Crossref] [Google Scholar]
  55. Gutell RR, Weiser B, Woese CR, Noller HF. 1985.. Comparative anatomy of 16-S-like ribosomal RNA. . Progr. Nucleic Acid Res. Mol. Biol. 32::155216
    [Crossref] [Google Scholar]
  56. Hayes JM, Freeman KH, Popp BN, Hoham CH. 1990.. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. . Org. Geochem. 16:(4–6):111528
    [Crossref] [Google Scholar]
  57. Hebsgaard MB, Phillips MJ, Willerslev E. 2005.. Geologically ancient DNA: fact or artefact?. Trends Microbiol. 13:(5):21220
    [Crossref] [Google Scholar]
  58. Hendy J. 2021.. Ancient protein analysis in archaeology. . Sci. Adv. 7:(3):eabb9314
    [Crossref] [Google Scholar]
  59. Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF. 1999.. Methane-consuming archaebacteria in marine sediments. . Nature 398:(6730):8025
    [Crossref] [Google Scholar]
  60. Holder M, Lewis PO. 2003.. Phylogeny estimation: traditional and Bayesian approaches. . Nat. Rev. Genet. 4:(4):27584
    [Crossref] [Google Scholar]
  61. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, et al. 2016.. A new view of the tree of life. . Nat. Microbiol. 1:(5):16048
    [Crossref] [Google Scholar]
  62. Hull P. 2015.. Life in the aftermath of mass extinctions. . Curr. Biol. 25:(19):R94152
    [Crossref] [Google Scholar]
  63. Javaux EJ. 2019.. Challenges in evidencing the earliest traces of life. . Nature 572:(7770):45160
    [Crossref] [Google Scholar]
  64. Johnston DT. 2011.. Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle. . Earth-Sci. Rev. 106:(1–2):16183
    [Crossref] [Google Scholar]
  65. Johnston DT, Wing BA, Farquhar J, Kaufman AJ, Strauss H, et al. 2005.. Active microbial sulfur disproportionation in the Mesoproterozoic. . Science 310:(5753):147779
    [Crossref] [Google Scholar]
  66. Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, et al. 2017.. Where less may be more: how the rare biosphere pulls ecosystems strings. . ISME J. 11:(4):85362
    [Crossref] [Google Scholar]
  67. Kędzior M, Garcia AK, Li M, Taton A, Adam ZR, et al. 2022.. Resurrected Rubisco suggests uniform carbon isotope signatures over geologic time. . Cell Rep. 39:(4):110726
    [Crossref] [Google Scholar]
  68. Kenrick P, Wellman CH, Schneider H, Edgecombe GD. 2012.. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. . Philos. Trans. R. Soc. B 367:(1588):51936
    [Crossref] [Google Scholar]
  69. Knoll AH. 2015.. Paleobiological perspectives on early microbial evolution. . Cold Spring Harb. Perspect. Biol. 7:(7):a018093
    [Crossref] [Google Scholar]
  70. Knoll AH, Bergmann KD, Strauss JV. 2016.. Life: the first two billion years. . Philos. Trans. R. Soc. B 371:(1707):20150493
    [Crossref] [Google Scholar]
  71. Knoll AH, Golubic S, Green J, Swett K. 1986.. Organically preserved microbial endoliths from the late Proterozoic of East Greenland. . Nature 321:(6073):85657
    [Crossref] [Google Scholar]
  72. Lapierre P, Gogarten JP. 2009.. Estimating the size of the bacterial pan-genome. . Trends Genet. 25:(3):10710
    [Crossref] [Google Scholar]
  73. LaRowe DE, Carlson HK, Amend JP. 2021.. The energetic potential for undiscovered manganese metabolisms in nature. . Front. Microbiol. 12::636145
    [Crossref] [Google Scholar]
  74. Lau MCY, Kieft TL, Kuloyo O, Linage-Alvarez B, Van Heerden E, et al. 2016.. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. . PNAS 113:(49):E792736
    [Crossref] [Google Scholar]
  75. Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, et al. 2018.. Function and functional redundancy in microbial systems. . Nat. Ecol. Evol. 2:(6):93643
    [Crossref] [Google Scholar]
  76. Machel HG, Krouse HR, Sassen R. 1995.. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. . Appl. Geochem. 10:(4):37389
    [Crossref] [Google Scholar]
  77. Magnabosco C, Moore KR, Wolfe JM, Fournier GP. 2018.. Dating phototrophic microbial lineages with reticulate gene histories. . Geobiology 16::17989
    [Crossref] [Google Scholar]
  78. Marshall CR. 2019.. Using the fossil record to evaluate timetree timescales. . Front. Genet. 10::1049
    [Crossref] [Google Scholar]
  79. Müller AL, Kjeldsen KU, Rattei T, Pester M, Loy A. 2015.. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. . ISME J. 9:(5):115265
    [Crossref] [Google Scholar]
  80. Naeher S, Cui X, Summons RE. 2022.. Biomarkers: molecular tools to study life, environment, and climate. . Elements 18:(2):7985
    [Crossref] [Google Scholar]
  81. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, et al. 1999.. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. . Nature 399:(6734):32329
    [Crossref] [Google Scholar]
  82. O'Malley MA. 2009.. What did Darwin say about microbes, and how did microbiology respond?. Trends Microbiol. 17:(8):34147
    [Crossref] [Google Scholar]
  83. Pang K, Tang Q, Chen L, Wan B, Niu C, et al. 2018.. Nitrogen-fixing heterocystous cyanobacteria in the Tonian Period. . Curr. Biol. 28:(4):61622.e1
    [Crossref] [Google Scholar]
  84. Paoletti MM, Fournier GP. 2022.. Chimeric inheritance and crown-group acquisitions of carbon fixation genes within Chlorobiales: origins of autotrophy in Chlorobiales and implication for geological biomarkers. . PLOS ONE 17:(10):e0275539
    [Crossref] [Google Scholar]
  85. Paquete CM, Rusconi G, Silva AV, Soares R, Louro RO. 2019.. A brief survey of the “cytochromome. .” Adv. Microb. Physiol. 75::69135
    [Crossref] [Google Scholar]
  86. Peters KE, Walters CC, Moldowan JM. 2004.. The Biomarker Guide. Cambridge, UK:: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  87. Peterson BJ, Fry B. 1987.. Stable isotopes in ecosystem studies. . Annu. Rev. Ecol. Syst. 18::293320
    [Crossref] [Google Scholar]
  88. Philippe H, Laurent J. 1998.. How good are deep phylogenetic trees?. Curr. Opin. Genet. Dev. 8:(6):61623
    [Crossref] [Google Scholar]
  89. Phillips A, Janies D, Wheeler W. 2000.. Multiple sequence alignment in phylogenetic analysis. . Mol. Phylogenet. Evol. 16:(3):31730
    [Crossref] [Google Scholar]
  90. Post DM. 2002.. Using stable isotopes to estimate trophic position: models, methods, and assumptions. . Ecology 83:(3):70318
    [Crossref] [Google Scholar]
  91. Rappé MS, Giovannoni SJ. 2003.. The uncultured microbial majority. . Annu. Rev. Microbiol. 57::36994
    [Crossref] [Google Scholar]
  92. Rashid DJ, Chapman SC, Larsson HC, Organ CL, Bebin A-G, et al. 2014.. From dinosaurs to birds: a tail of evolution. . EvoDevo 5:(1):25
    [Crossref] [Google Scholar]
  93. Retallack GJ. 2001.. Cenozoic expansion of grasslands and climatic cooling. . J. Geol. 109:(4):40726
    [Crossref] [Google Scholar]
  94. Ribeiro AJM, Holliday GL, Furnham N, Tyzack JD, Ferris K, Thornton JM. 2018.. Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites. . Nucleic Acids Res. 46:(D1):D61823
    [Crossref] [Google Scholar]
  95. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, et al. 2013.. Insights into the phylogeny and coding potential of microbial dark matter. . Nature 499:(7459):43137
    [Crossref] [Google Scholar]
  96. Ruta M, Benton MJ. 2008.. Calibrated diversity, tree topology and the mother of mass extinctions: the lesson of temnospondyls. . Palaeontology 51:(6):126188
    [Crossref] [Google Scholar]
  97. Saitta ET, Liang R, Lau MC, Brown CM, Longrich NR, et al. 2019.. Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities. . eLife 8::e46205
    [Crossref] [Google Scholar]
  98. Sánchez-Baracaldo P. 2015.. Origin of marine planktonic cyanobacteria. . Sci. Rep. 5:(1):17418
    [Crossref] [Google Scholar]
  99. Sánchez-Baracaldo P, Cardona T. 2020.. On the origin of oxygenic photosynthesis and Cyanobacteria. . New Phytol. 225:(4):144046
    [Crossref] [Google Scholar]
  100. Sansom RS, Gabbott SE, Purnell MA. 2010.. Non-random decay of chordate characters causes bias in fossil interpretation. . Nature 463:(7282):797800
    [Crossref] [Google Scholar]
  101. Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, et al. 2021.. Database resources of the National Center for Biotechnology Information. . Nucleic Acids Res. 49:(D1):D1017
    [Crossref] [Google Scholar]
  102. Schirrmeister BE, De Vos JM, Antonelli A, Bagheri HC. 2013.. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. . PNAS 110:(5):179196
    [Crossref] [Google Scholar]
  103. Schirrmeister BE, Gugger M, Donoghue PCJ. 2015.. Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. . Palaeontology 58:(5):76985
    [Crossref] [Google Scholar]
  104. Schirrmeister BE, Sánchez-Baracaldo P, Wacey D. 2016.. Cyanobacterial evolution during the Precambrian. . Int. J. Astrobiol. 15:(3):187204
    [Crossref] [Google Scholar]
  105. Schwartz SL, Garcia AK, Kaçar B, Fournier GP. 2022.. Early nitrogenase ancestors encompassed novel active site diversity. . Mol. Biol. Evol. 39:(11):msac226
    [Crossref] [Google Scholar]
  106. Selberg AGA, Gaucher EA, Liberles DA. 2021.. Ancestral sequence reconstruction: from chemical paleogenetics to maximum likelihood algorithms and beyond. . J. Mol. Evol. 89:(3):15764
    [Crossref] [Google Scholar]
  107. Sephus CD, Fer E, Garcia AK, Adam ZR, Schwieterman EW, Kaçar B. 2022.. Earliest photic zone niches probed by ancestral microbial rhodopsins. . Mol. Biol. Evol. 39:(5):msac100
    [Crossref] [Google Scholar]
  108. Shapira M. 2016.. Gut microbiotas and host evolution: scaling up symbiosis. . Trends Ecol. Evol. 31:(7):53949
    [Crossref] [Google Scholar]
  109. Sharon I, Alperovitch A, Rohwer F, Haynes M, Glaser F, et al. 2009.. Photosystem I gene cassettes are present in marine virus genomes. . Nature 461:(7261):25862
    [Crossref] [Google Scholar]
  110. Shi M, Feng Q, Khan MZ, Zhu S. 2017.. An eukaryote-bearing microbiota from the early mesoproterozoic Gaoyuzhuang Formation, Tianjin, China and its significance. . Precambrian Res. 303::70926
    [Crossref] [Google Scholar]
  111. Soucy SM, Huang J, Gogarten JP. 2015.. Horizontal gene transfer: building the web of life. . Nat. Rev. Genet. 16:(8):47282
    [Crossref] [Google Scholar]
  112. Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, et al. 2015.. Complex archaea that bridge the gap between prokaryotes and eukaryotes. . Nature 521:(7551):17379
    [Crossref] [Google Scholar]
  113. Stewart FJ, Newton ILG, Cavanaugh CM. 2005.. Chemosynthetic endosymbioses: adaptations to oxic–anoxic interfaces. . Trends Microbiol. 13:(9):43948
    [Crossref] [Google Scholar]
  114. Strous M, Fuerst JA, Kramer EH, Logemann S, Muyzer G, et al. 1999.. Missing lithotroph identified as new planctomycete. . Nature 400:(6743):44649
    [Crossref] [Google Scholar]
  115. Summons RE, Powell TG. 1986.. Chlorobiaceae in Palaeozoic seas revealed by biological markers, isotopes and geology. . Nature 319:(6056):76365
    [Crossref] [Google Scholar]
  116. Szöllősi GJ, Tannier E, Lartillot N, Daubin V. 2013.. Lateral gene transfer from the dead. . Syst. Biol. 62:(3):38697
    [Crossref] [Google Scholar]
  117. Takai K. 2019.. Limits of terrestrial life and biosphere. . In Astrobiology, ed. A Yamagishi, T Kakegawa, T Usui , pp. 32344. Singapore:: Springer Singapore
    [Google Scholar]
  118. Telford MJ, Budd GE, Philippe H. 2015.. Phylogenomic insights into animal evolution. . Curr. Biol. 25:(19):R87687
    [Crossref] [Google Scholar]
  119. Thompson KJ, Kenward PA, Bauer KW, Warchola T, Gauger T, et al. 2019.. Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans. . Sci. Adv. 5:(11):eaav2869
    [Crossref] [Google Scholar]
  120. Tomitani A, Knoll AH, Cavanaugh CM, Ohno T. 2006.. The evolutionary diversification of cyanobacteria: molecular–phylogenetic and paleontological perspectives. . PNAS 103:(14):544247
    [Crossref] [Google Scholar]
  121. Tsuji JM, Tran N, Schiff SL, Venkiteswaran JJ, Molot LA, et al. 2020.. Anoxygenic photosynthesis and iron–sulfur metabolic potential of Chlorobia populations from seasonally anoxic Boreal Shield lakes. . ISME J. 14:(11):273247
    [Crossref] [Google Scholar]
  122. Usher KM, Bergman B, Raven JA. 2007.. Exploring cyanobacterial mutualisms. . Annu. Rev. Ecol. Evol. Syst. 38::25573
    [Crossref] [Google Scholar]
  123. Van Zuilen MA, Lepland A, Arrhenius G. 2002.. Reassessing the evidence for the earliest traces of life. . Nature 418:(6898):62730
    [Crossref] [Google Scholar]
  124. Vandevenne FI, Barão AL, Schoelynck J, Smis A, Ryken N, et al. 2013.. Grazers: biocatalysts of terrestrial silica cycling. . Proc. R. Soc. B 280:(1772):20132083
    [Crossref] [Google Scholar]
  125. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, et al. 2004.. Environmental genome shotgun sequencing of the Sargasso Sea. . Science 304:(5667):6674
    [Crossref] [Google Scholar]
  126. Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA. 1998.. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. . J. Bacteriol. 180:(11):297582
    [Crossref] [Google Scholar]
  127. Wainwright M. 2009.. Darwin and microbiology. . Microbiologist 10::3235
    [Google Scholar]
  128. Walker JCG, Brimblecombe P. 1985.. Iron and sulfur in the pre-biologic ocean. . Precambrian Res. 28:(3–4):20522
    [Crossref] [Google Scholar]
  129. Wang S, Luo H. 2023.. Dating the bacterial tree of life based on ancient symbiosis. . bioRxiv 2023.06.18.545440. https://doi.org/10.1101/2023.06.18.545440
  130. Ward LM, Shih PM. 2022.. Phototrophy and carbon fixation in Chlorobi postdate the rise of oxygen. . PLOS ONE 17:(8):e0270187
    [Crossref] [Google Scholar]
  131. Weijers JWH, Schouten S, Hopmans EC, Geenevasen JAJ, David ORP, et al. 2006.. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. . Environ. Microbiol. 8:(4):64857
    [Crossref] [Google Scholar]
  132. Wetmur JG, Wong DM, Ortiz B, Tong J, Reichert F, Gelfand DH. 1994.. Cloning, sequencing, and expression of RecA proteins from three distantly related thermophilic eubacteria. . J. Biol. Chem. 269:(41):2592835
    [Crossref] [Google Scholar]
  133. Whiteside JH, Grice K. 2016.. Biomarker records associated with mass extinction events. . Annu. Rev. Earth Planet. Sci. 44::581612
    [Crossref] [Google Scholar]
  134. Woese CR. 1987.. Bacterial evolution. . Microbiol. Rev. 51:(2):22171
    [Crossref] [Google Scholar]
  135. Woese CR, Fox GE. 1977.. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. . PNAS 74:(11):508890
    [Crossref] [Google Scholar]
  136. Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, et al. 1984.. The phylogeny of purple bacteria: the alpha subdivision. . Syst. Appl. Microbiol. 5:(3):31526
    [Crossref] [Google Scholar]
  137. Wood R. 2011.. General evolution of carbonate reefs. . In Encyclopedia of Modern Coral Reefs, ed. D Hopley , pp. 45269. Dordrecht, Neth.:: Springer Netherlands
    [Google Scholar]
  138. Xu X, Zhou Z, Dudley R, Mackem S, Chuong C-M, et al. 2014.. An integrative approach to understanding bird origins. . Science 346:(6215):1253293
    [Crossref] [Google Scholar]
  139. Yu H, Leadbetter JR. 2020.. Bacterial chemolithoautotrophy via manganese oxidation. . Nature 583:(7816):45358
    [Crossref] [Google Scholar]
  140. Zhang X, Paoletti MM, Izon G, Fournier GP, Summons RE. 2023.. Late acquisition of the rTCA carbon fixation pathway by Chlorobi. . Nat. Ecol. Evol. 7::1398407
    [Crossref] [Google Scholar]
  141. Zuckerkandl E. 1962.. Molecular disease, evolution, and genic heterogeneity. . Horiz. Biochem. 1962::189225
    [Google Scholar]
  142. Zuckerkandl E, Pauling L. 1965.. Evolutionary divergence and convergence in proteins. . In Evolving Genes and Proteins, ed. V Bryson, HJ Vogel , pp. 97166. New York:: Academic
    [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-070542
Loading
/content/journals/10.1146/annurev-earth-031621-070542
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error