1932

Abstract

Determining the composition of Earth's lower mantle, which constitutes almost half of its total volume, has been a central goal in the Earth sciences for more than a century given the constraints it places on Earth's origin and evolution. However, whether the major element chemistry of the lower mantle, in the form of, e.g., Mg/Si ratio, is similar to or different from the upper mantle remains debated. Here we use a multidisciplinary approach to address the question of the composition of Earth's lower mantle and, in turn, that of bulk silicate Earth (crust and mantle) by considering the evidence provided by geochemistry, geophysics, mineral physics, and geodynamics. Geochemical and geodynamical evidence largely agrees, indicating a lower-mantle molar Mg/Si of ≥1.12 (≥1.15 for bulk silicate Earth), consistent with the rock record and accumulating evidence for whole-mantle stirring. However, mineral physics–informed profiles of seismic properties, based on a lower mantle made of bridgmanite and ferropericlase, point to Mg/Si ∼ 0.9–1.0 when compared with radial seismic reference models. This highlights the importance of considering the presence of additional minerals (e.g., calcium-perovskite and stishovite) and possibly suggests a lower mantle varying compositionally with depth. In closing, we discuss how we can improve our understanding of lower-mantle and bulk silicate Earth composition, including its impact on the light element budget of the core.

  • ▪  The chemical composition of Earth's lower mantle is indispensable for understanding its origin and evolution.
  • ▪  Earth's lower-mantle composition is reviewed from an integrated mineral physics, geophysical, geochemical, and geodynamical perspective.
  • ▪  A lower-mantle molar Mg/Si of ≥1.12 is favored but not unique.
  • ▪  New experiments investigating compositional effects of bridgmanite and ferropericlase elasticity are needed to further our insight.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-075657
2024-07-23
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-031621-075657.html?itemId=/content/journals/10.1146/annurev-earth-031621-075657&mimeType=html&fmt=ahah

Literature Cited

  1. Abers GA, Hacker BR. 2016.. A MATLAB toolbox and Excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature. . Geochem. Geophys. Geosyst. 17:(2):61624
    [Crossref] [Google Scholar]
  2. Afonso JC, Fullea J, Griffin WL, Yang Y, Jones AG, et al. 2013.. 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: A priori petrological information and geophysical observables. . J. Geophys. Res. Solid Earth 118:(5):2586617
    [Crossref] [Google Scholar]
  3. Allègre CJ, Poirier JP, Humler E, Hofmann AW. 1995.. The chemical composition of the Earth. . Earth Planet. Sci. Lett. 134:(3):51526
    [Crossref] [Google Scholar]
  4. Anderson OL. 1982.. The Earth's core and the phase-diagram of iron. . Philos. Trans. R. Soc. A 306::2135
    [Google Scholar]
  5. Anzellini S, Dewaele A, Mezouar M, Loubeyre P, Morard G. 2013.. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction. . Science 340:(6131):46466
    [Crossref] [Google Scholar]
  6. Badro J. 2014.. Spin transitions in mantle minerals. . Annu. Rev. Earth Planet. Sci. 42::23148
    [Crossref] [Google Scholar]
  7. Badro J, Côté AS, Brodholt JP. 2014.. A seismologically consistent compositional model of Earth's core. . PNAS 111:(21):754245
    [Crossref] [Google Scholar]
  8. Baker MB, Beckett JR. 1999.. The origin of abyssal peridotites: a reinterpretation of constraints based on primary bulk compositions. . Earth Planet. Sci. Lett. 171:(1):4961
    [Crossref] [Google Scholar]
  9. Baker MB, Stolper EM. 1994.. Determining the composition of high-pressure mantle melts using diamond aggregates. . Geochim. Cosmochim. Acta 58:(13):281127
    [Crossref] [Google Scholar]
  10. Ballmer MD, Houser C, Hernlund JW, Wentzcovitch RM, Hirose K. 2017a.. Persistence of strong silica-enriched domains in the Earth's lower mantle. . Nat. Geosci. 10:(3):23640
    [Crossref] [Google Scholar]
  11. Ballmer MD, Lourenço DL, Hirose K, Caracas R, Nomura R. 2017b.. Reconciling magma-ocean crystallization models with the present-day structure of the Earth's mantle. . Geochem. Geophys. Geosyst. 18:(7):2785806
    [Crossref] [Google Scholar]
  12. Ballmer MD, Schmerr NC, Nakagawa T, Ritsema J. 2015.. Compositional mantle layering revealed by slab stagnation at ∼1000-km depth. . Sci. Adv. 1:(11):e1500815
    [Crossref] [Google Scholar]
  13. Bina CR. 1998.. Free energy minimization by simulated annealing with applications to lithospheric slabs and mantle plumes. . Pure Appl. Geophys. 151:(2–4):60518
    [Crossref] [Google Scholar]
  14. Bina CR, Helffrich G. 2014.. Geophysical constraints on mantle composition. . In Treatise on Geochemistry, ed. HD Holland, KK Turekian , pp. 4165. Oxford, UK:: Elsevier. , 2nd ed..
    [Google Scholar]
  15. Bissig F, Khan A, Giardini D. 2022a.. Evidence for basalt enrichment in the mantle transition zone from inversion of triplicated P- and S-waveforms. . Earth Planet. Sci. Lett. 580::117387
    [Crossref] [Google Scholar]
  16. Bissig F, Khan A, Giardini D. 2022b.. Joint inversion of PP and SS precursor waveforms and Rayleigh wave phase velocities for global mantle transition zone structure. . Geophys. J. Int. 233::31637
    [Crossref] [Google Scholar]
  17. Boukaré CE, Ricard Y, Fiquet G. 2015.. Thermodynamics of the MgO-FeO-SiO2 system up to 140 GPa: application to the crystallization of Earth's magma ocean. . J. Geophys. Res. Solid Earth 120:(9):6085101
    [Crossref] [Google Scholar]
  18. Boyd F. 1989.. Compositional distinction between oceanic and cratonic lithosphere. . Earth Planet. Sci. Lett. 96:(1–2):1526
    [Crossref] [Google Scholar]
  19. Brandenburg J, Van Keken P. 2007.. Deep storage of oceanic crust in a vigorously convecting mantle. . J. Geophys. Res. 112:(B6):B06403
    [Crossref] [Google Scholar]
  20. Cabral RA, Jackson MG, Rose-Koga EF, Koga KT, Whitehouse MJ, et al. 2013.. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. . Nature 496:(7446):49093
    [Crossref] [Google Scholar]
  21. Cammarano F, Goes S, Deuss A, Giardini D. 2005.. Is a pyrolitic adiabatic mantle compatible with seismic data?. Earth Planet. Sci. Lett. 232:(3–4):22743
    [Crossref] [Google Scholar]
  22. Canil D. 2004.. Mildly incompatible elements in peridotites and the origins of mantle lithosphere. . Lithos 77:(1–4):37593
    [Crossref] [Google Scholar]
  23. Caracas R, Hirose K, Nomura R, Ballmer MD. 2019.. Melt–crystal density crossover in a deep magma ocean. . Earth Planet. Sci. Lett. 516::20211
    [Crossref] [Google Scholar]
  24. Chust TC, Steinle-Neumann G, Dolejš D, Schuberth BSA, Bunge HP. 2017.. MMA-EoS: a computational framework for mineralogical thermodynamics. . J. Geophys. Res. Solid Earth 122:(12):9881920
    [Crossref] [Google Scholar]
  25. Cobden L, Goes S, Ravenna M, Styles E, Cammarano F, et al. 2009.. Thermochemical interpretation of 1-D seismic data for the lower mantle: the significance of nonadiabatic thermal gradients and compositional heterogeneity. . J. Geophys. Res. 114:(B11):B11309
    [Crossref] [Google Scholar]
  26. Connolly JAD. 2009.. The geodynamic equation of state: what and how. . Geochem. Geophys. Geosyst. 10:(10):Q10014
    [Crossref] [Google Scholar]
  27. Connolly JAD, Kerrick DM. 2002.. Metamorphic controls on seismic velocity of subducted oceanic crust at 100–250 km depth. . Earth Planet. Sci. Lett. 204:(1–2):6174
    [Crossref] [Google Scholar]
  28. Connolly JAD, Khan A. 2016.. Uncertainty of mantle geophysical properties computed from phase equilibrium models. . Geophys. Res. Lett. 43::502634
    [Crossref] [Google Scholar]
  29. Corgne A, Liebske C, Wood BJ, Rubie DC, Frost DJ. 2005.. Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. . Geochim. Cosmochim. Acta 69:(2):48596
    [Crossref] [Google Scholar]
  30. Costa A, Caricchi L, Bagdassarov N. 2009.. A model for the rheology of particle-bearing suspensions and partially molten rocks. . Geochem. Geophys. Geosyst. 10:(3):Q03010
    [Crossref] [Google Scholar]
  31. Criniti G, Kurnosov A, Boffa Ballaran T, Frost DJ. 2021.. Single-crystal elasticity of MgSiO3 bridgmanite to mid-lower mantle pressure. . J. Geophys. Res. Solid Earth 126::e2020JB020967
    [Crossref] [Google Scholar]
  32. da Silva CRS, Wentzcovitch RM, Patel A, Price GD, Karato SI. 2000.. The composition and geotherm of the lower mantle: constraints from the elasticity of silicate perovskite. . Phys. Earth Planet. Inter. 118:(1–2):1039
    [Crossref] [Google Scholar]
  33. Dauphas N, Poitrasson F, Burkhardt C, Kobayashi H, Kurosawa K. 2015.. Planetary and meteoritic Mg/Si and δ30Si variations inherited from solar nebula chemistry. . Earth Planet. Sci. Lett. 427::23648
    [Crossref] [Google Scholar]
  34. Davaille A. 1999.. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. . Nature 402:(6763):75660
    [Crossref] [Google Scholar]
  35. Deng H, Ballmer MD, Reinhardt C, Meier MM, Mayer L, et al. 2019.. Primordial Earth mantle heterogeneity caused by the Moon-forming giant impact?. Astrophys. J. 887:(2):211
    [Crossref] [Google Scholar]
  36. Dorfman SM, Duffy TS. 2014.. Effect of Fe-enrichment on seismic properties of perovskite and post-perovskite in the deep lower mantle. . Geophys. J. Int. 197::91019
    [Crossref] [Google Scholar]
  37. Dziewonski AM, Anderson DL. 1981.. Preliminary reference Earth model. . Phys. Earth Planet. Inter. 25::297356
    [Crossref] [Google Scholar]
  38. Fabrichnaya O, Saxena K, Richet P, Westrum EF, eds. 2004.. Thermodynamic Data, Models, and Phase Diagrams in Multicomponent Oxide Systems. Heidelberg, Ger:.: Springer
    [Google Scholar]
  39. Fei H, Ballmer MD, Faul U, Walte N, Cao W, Katsura T. 2023.. Variation in bridgmanite grain size accounts for the mid-mantle viscosity jump. . Nature 620:(7975):79499
    [Crossref] [Google Scholar]
  40. Fei Y, Zhang L, Corgne A, Watson H, Ricolleau A, et al. 2007.. Spin transition and equations of state of (Mg,Fe)O solid solutions. . Geophys. Res. Lett. 34::L17307
    [Crossref] [Google Scholar]
  41. Ferrachat S, Ricard Y. 1998.. Regular versus chaotic mantle mixing. . Earth Planet. Sci. Lett. 155:(1–2):7586
    [Crossref] [Google Scholar]
  42. Fitoussi C, Bourdon B, Kleine T, Oberli F, Reynolds BC. 2009.. Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth's core. . Earth Planet. Sci. Lett. 287:(1–2):7785
    [Crossref] [Google Scholar]
  43. French SW, Romanowicz B. 2015.. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. . Nature 525:(7567):9599
    [Crossref] [Google Scholar]
  44. Frossard P, Israel C, Bouvier A, Boyet M. 2022.. Earth's composition was modified by collisional erosion. . Science 377:(6614):152932
    [Crossref] [Google Scholar]
  45. Frost DJ, Myhill R. 2016.. Chemistry of the lower mantle. . In Deep Earth: Physics and Chemistry of the Lower Mantle Core, ed. H Terasaki, RA Fischer , pp. 22540. Hoboken, NJ:: Wiley
    [Google Scholar]
  46. Fu S, Zhang Y, Okuchi T, Lin JF. 2023.. Single-crystal elasticity of (Al,Fe)-bearing bridgmanite up to 82 GPa. . Am. Miner. 108::71930
    [Crossref] [Google Scholar]
  47. Fukao Y, Obayashi M. 2013.. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. . J. Geophys. Res. Solid Earth 118:(11):592038
    [Crossref] [Google Scholar]
  48. Fullea J, Lebedev S, Martinec Z, Celli NL. 2021.. WINTERC-G: mapping the upper mantle thermochemical heterogeneity from coupled geophysical–petrological inversion of seismic waveforms, heat flow, surface elevation and gravity satellite data. . Geophys. J. Int. 226::14691
    [Crossref] [Google Scholar]
  49. Ganguly J, Freed AM, Saxena SK. 2009.. Density profiles of oceanic slabs and surrounding mantle: integrated thermodynamic and thermal modeling, and implications for the fate of slabs at the 660 km discontinuity. . Phys. Earth Planet. Inter. 172:(3–4):25767
    [Crossref] [Google Scholar]
  50. Girard J, Amulele G, Farla R, Mohiuddin A, Karato S. 2016.. Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. . Science 351:(6269):14447
    [Crossref] [Google Scholar]
  51. Goes S, Yu C, Ballmer MD, Yan J, van der Hilst RD. 2022.. Compositional heterogeneity in the mantle transition zone. . Nat. Rev. Earth Environ. 3:(8):53350
    [Crossref] [Google Scholar]
  52. Grayver AV, Munch FD, Kuvshinov AV, Khan A, Sabaka TJ, Tøffner-Clausen L. 2017.. Joint inversion of satellite-detected tidal and magnetospheric signals constrains electrical conductivity and water content of the upper mantle and transition zone. . Geophys. Res. Lett. 44:(12):607481
    [Crossref] [Google Scholar]
  53. Gülcher AJP, Ballmer MD, Tackley PJ. 2021.. Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth's lower mantle. . Solid Earth 12:(9):2087107
    [Crossref] [Google Scholar]
  54. Gülcher AJP, Gebhardt DJ, Ballmer MD, Tackley PJ. 2020.. Variable dynamic styles of primordial heterogeneity preservation in the Earth's lower mantle. . Earth Planet. Sci. Lett. 536::116160
    [Crossref] [Google Scholar]
  55. Hacker BR, Abers GA. 2004.. Subduction Factory 3: an Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. . Geochem. Geophys. Geosyst. 5:(1):Q01005
    [Crossref] [Google Scholar]
  56. Hart SR, Zindler A. 1986.. In search of a bulk Earth composition. . Chem. Geol. 57::24767
    [Crossref] [Google Scholar]
  57. Helffrich G, Ballmer MD, Hirose K. 2018.. Core-exsolved SiO2 dispersal in the Earth's mantle. . J. Geophys. Res. Solid Earth 123:(1):17688
    [Crossref] [Google Scholar]
  58. Herzberg C. 2004.. Geodynamic information in peridotite petrology. . J. Petrol. 45:(12):250730
    [Crossref] [Google Scholar]
  59. Herzberg C, Asimow P. 2015.. PRIMELT 3 MEGA. XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus. . Geochem. Geophys. Geosyst. 16:(2):56378
    [Crossref] [Google Scholar]
  60. Herzberg C, Condie K, Korenaga J. 2010.. Thermal history of the Earth and its petrological expression. . Earth Planet. Sci. Lett. 292:(1–2):7988
    [Crossref] [Google Scholar]
  61. Hier-Majumder S, Hirschmann MM. 2017.. The origin of volatiles in the Earth's mantle. . Geochem. Geophys. Geosyst. 18:(8):307892
    [Crossref] [Google Scholar]
  62. Hirose K, Morard G, Sinmyo R, Umemoto K, Hernlund J, et al. 2017.. Crystallization of silicon dioxide and compositional evolution of the Earth's core. . Nature 543:(7643):99102
    [Crossref] [Google Scholar]
  63. Hirose K, Wood B, Vočadlo L. 2021.. Light elements in the Earth's core. . Nat. Rev. Earth Environ. 2:(9):64558
    [Crossref] [Google Scholar]
  64. Holtzman B, Groebner N, Zimmerman M, Ginsberg S, Kohlstedt D. 2003.. Stress-driven melt segregation in partially molten rocks. . Geochem. Geophys. Geosyst. 4:(5):8607
    [Crossref] [Google Scholar]
  65. Huang D, Badro J, Brodholt J, Li Y. 2019.. Ab initio molecular dynamics investigation of molten Fe–Si–O in Earth's core. . Geophys. Res. Lett. 46:(12):6397405
    [Crossref] [Google Scholar]
  66. Huang R, Ballaran TB, McCammon CA, Miyajima N, Dolejš D, Frost DJ. 2021.. The composition and redox state of bridgmanite in the lower mantle as a function of oxygen fugacity. . Geochim. Cosmochim. Acta 303::11036
    [Crossref] [Google Scholar]
  67. Irifune T. 1994.. Phase transformations in pyrolite and subducted crust compositions down to a depth of 800 km in the lower mantle. . Mineral. Mag. 58A:(1):44445
    [Crossref] [Google Scholar]
  68. Irifune T, Shinmei T, McCammon C, Miyajima N, Rubie D, Frost D. 2010.. Iron partitioning and density changes of pyrolite in Earth's lower mantle. . Science 327::19395
    [Crossref] [Google Scholar]
  69. Irving JCE, Cottaar S, Lekic V. 2018.. Seismically determined elastic parameters for Earth's outer core. . Sci. Adv. 4:(6):eaar2538
    [Crossref] [Google Scholar]
  70. Ita J, Stixrude L. 1992.. Petrology, elasticity, and composition of the mantle transition zone. . J. Geophys. Res. Atmos. 97:(B5):684966
    [Crossref] [Google Scholar]
  71. Jackson CR, Ziegler LB, Zhang H, Jackson MG, Stegman DR. 2014.. A geochemical evaluation of potential magma ocean dynamics using a parameterized model for perovskite crystallization. . Earth Planet. Sci. Lett. 392::15465
    [Crossref] [Google Scholar]
  72. Jackson I. 1998.. Elasticity, composition and temperature of the Earth's lower mantle: a reappraisal. . Geophys. J. Int. 134:(1):291311
    [Crossref] [Google Scholar]
  73. Jackson I, Rigden SM. 1998.. Composition and temperature of the Earth's mantle: seismological models interpreted through experimental studies of Earth materials. . In The Earth's Mantle: Composition, Structure and Evolution, ed. I Jackson , pp. 40560. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  74. Jackson JM, Zhang J, Shu J, Sinogeikin SV, Bass JD. 2005.. High-pressure sound velocities and elasticity of aluminous MgSiO3 perovskite to 45 GPa: implications for lateral heterogeneity in Earth's lower mantle. . Geophys. Res. Lett. 32::L21305
    [Google Scholar]
  75. Jacobsen SD, Reichmann HJ, Spetzler HA, Mackwell SJ, Smyth JR, et al. 2002.. Structure and elasticity of single-crystal (Mg,Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. . J. Geophys. Res. 107:(B2):ECV-4
    [Crossref] [Google Scholar]
  76. Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, et al. 1979.. The abundances of major, minor and trace elements in the Earth's mantle as derived from primitive ultramafic nodules. . In Proceedings of the Tenth Lunar and Planetary Science Conference, Houston, Texas, March 19–23, 1979, ed. RB Merrill , pp. 203150. New York:: Pergamon
    [Google Scholar]
  77. Jenkins J, Deuss A, Cottaar S. 2017.. Converted phases from sharp 1000 km depth mid-mantle heterogeneity beneath Western Europe. . Earth Planet. Sci. Lett. 459::196207
    [Crossref] [Google Scholar]
  78. Jenner FE, O'Neill HSC. 2012.. Analysis of 60 elements in 616 ocean floor basaltic glasses. . Geochem. Geophys. Geosyst. 13:(2):Q02005
    [Crossref] [Google Scholar]
  79. Kaneshima S, Helffrich G. 2010.. Small scale heterogeneity in the mid-lower mantle beneath the circum-Pacific area. . Phys. Earth Planet. Inter. 183:(1–2):91103
    [Crossref] [Google Scholar]
  80. Katsura T. 2022.. A revised adiabatic temperature profile for the mantle. . J. Geophys. Res. Solid Earth 127:(2):e2021JB023562
    [Crossref] [Google Scholar]
  81. Kellogg LH, Hager BH, van der Hilst RD. 1999.. Compositional stratification in the deep mantle. . Science 283:(5409):188184
    [Crossref] [Google Scholar]
  82. Kemper J. 2023.. Modern computational methods applied to classical long-period seismology. PhD Thesis , ETH Zürich, Zürich, Switz.:
    [Google Scholar]
  83. Kennett BLN, Jackson I. 2009.. Optimal equations of state for mantle minerals from simultaneous non-linear inversion of multiple datasets. . Phys. Earth Planet. Inter. 176:(1–2):98108
    [Crossref] [Google Scholar]
  84. Khan A. 2016.. On Earth's mantle constitution and structure from joint analysis of geophysical and laboratory-based data: an example. . Surv. Geophys. 37::14989
    [Crossref] [Google Scholar]
  85. Khan A, Boschi L, Connolly JAD. 2009.. On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface wave data. . J. Geophys. Res. 114:(B9):B09305
    [Crossref] [Google Scholar]
  86. Khan A, Connolly JAD, Olsen N. 2006.. Constraining the composition and thermal state of the mantle beneath Europe from inversion of long-period electromagnetic sounding data. . J. Geophys. Res. 111:(B10):B10102
    [Crossref] [Google Scholar]
  87. Khan A, Connolly JAD, Taylor SR. 2008.. Inversion of seismic and geodetic data for the major element chemistry and temperature of the Earth's mantle. . J. Geophys. Res. 113:(B9):B09308
    [Crossref] [Google Scholar]
  88. Khan A, Sossi PA, Liebske C, Rivoldini A, Giardini D. 2022.. Geophysical and cosmochemical evidence for a volatile-rich Mars. . Earth Planet. Sci. Lett. 578::117330
    [Crossref] [Google Scholar]
  89. Korenaga J. 2013.. Initiation and evolution of plate tectonics on Earth: theories and observations. . Annu. Rev. Earth Planet. Sci. 41::11751
    [Crossref] [Google Scholar]
  90. Koyama T, Khan A, Kuvshinov A. 2014.. Three-dimensional electrical conductivity structure beneath Australia from inversion of geomagnetic observatory data: evidence for lateral variations in transition-zone temperature, water content and melt. . Geophys. J. Int. 196:(3):133050
    [Crossref] [Google Scholar]
  91. Kung J, Li B, Weidner DJ, Zhang J, Liebermann RC. 2002.. Elasticity of (Mg0.83,Fe0.17)O ferropericlase at high pressure: ultrasonic measurements in conjunction with X-radiation techniques. . Earth Planet. Sci. Lett. 203:(1):55766
    [Crossref] [Google Scholar]
  92. Kurnosov A, Marquardt H, Frost DJ, Ballaran TB, Ziberna L. 2017.. Evidence for a Fe3+-rich pyrolitic lower mantle from (Al,Fe)-bearing bridgmanite elasticity data. . Nature 543::54346
    [Crossref] [Google Scholar]
  93. Kuskov OL, Fabrichnaya OB. 1994.. Constitution of the Moon: 2. Composition and seismic properties of the lower mantle. . Phys. Earth Planet. Inter. 83:(3–4):197216
    [Crossref] [Google Scholar]
  94. Labrosse S, Hernlund J, Coltice N. 2007.. A crystallizing dense magma ocean at the base of the Earth's mantle. . Nature 450:(7171):86669
    [Crossref] [Google Scholar]
  95. Larimer JW. 1967.. Chemical fractionations in meteorites—i. Condensation of the elements. . Geochim. Cosmochim. Acta 31:(8):121538
    [Crossref] [Google Scholar]
  96. Lau HC, Mitrovica JX, Austermann J, Crawford O, Al-Attar D, Latychev K. 2016.. Inferences of mantle viscosity based on ice age data sets: radial structure. . J. Geophys. Res. Solid Earth 121:(10):69917012
    [Crossref] [Google Scholar]
  97. Lau HC, Mitrovica JX, Davis JL, Tromp J, Yang HY, Al-Attar D. 2017.. Tidal tomography constrains Earth's deep-mantle buoyancy. . Nature 551:(7680):32126
    [Crossref] [Google Scholar]
  98. Lebrun T, Massol H, Chassefière E, Davaille A, Marcq E, et al. 2013.. Thermal evolution of an early magma ocean in interaction with the atmosphere. . J. Geophys. Res. Planets 118:(6):115576
    [Crossref] [Google Scholar]
  99. Liebske C, Corgne A, Frost DJ, Rubie DC, Wood BJ. 2005.. Compositional effects on element partitioning between Mg-silicate perovskite and silicate melts. . Contrib. Mineral. Petrol. 149::11328
    [Crossref] [Google Scholar]
  100. Lin JF, Mao Z, Yang J, Fu S. 2018.. Elasticity of lower-mantle bridgmanite. . Nature 564::E1826
    [Crossref] [Google Scholar]
  101. Lodders K. 2003.. Solar system abundances and condensation temperatures of the elements. . Astrophys. J. 591:(2):1220
    [Crossref] [Google Scholar]
  102. Lourenço DL, Rozel AB, Ballmer MD, Tackley PJ. 2020.. Plutonic-squishy lid: a new global tectonic regime generated by intrusive magmatism on Earth-like planets. . Geochem. Geophys. Geosyst. 21:(4):e2019GC008756
    [Crossref] [Google Scholar]
  103. Lundin S, Catalli K, Santillàn J, Shim SH, Prakapenka VB, et al. 2008.. Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar. . Phys. Earth Planet. Inter. 168::97102
    [Crossref] [Google Scholar]
  104. Lyubetskaya T, Korenaga J. 2007.. Chemical composition of Earth's primitive mantle and its variance: 1. Method and results. . J. Geophys. Res. 112:(B3):B03211
    [Google Scholar]
  105. Manga M. 1996.. Mixing of heterogeneities in the mantle: effect of viscosity differences. Geophys. Res. Lett. 23:(4):4036
    [Crossref] [Google Scholar]
  106. Marquardt H, Speziale S, Reichmann HJ, Frost DJ, Schilling FR, Garnero EJ. 2009.. Elastic shear anisotropy of ferropericlase in Earth's lower mantle. . Science 324:(5924):22426
    [Crossref] [Google Scholar]
  107. Marton FC, Cohen RE. 2002.. Constraints on lower mantle composition from molecular dynamics simulations of MgSiO3 perovskite. . Phys. Earth Planet. Inter. 134::23952
    [Crossref] [Google Scholar]
  108. Mashino I, Murakami M, Miyajima N, Petitgirard S. 2020.. Experimental evidence for silica-enriched Earth's lower mantle with ferrous iron dominant bridgmanite. . PNAS 117::27899905
    [Crossref] [Google Scholar]
  109. Matas J, Bass J, Ricard Y, Mattern E, Bukowinski MST. 2007.. On the bulk composition of the lower mantle: predictions and limitations from generalized inversion of radial seismic profiles. . Geophys. J. Int. 170:(2):76480
    [Crossref] [Google Scholar]
  110. Mattern E, Matas J, Ricard Y, Bass J. 2005.. Lower mantle composition and temperature from mineral physics and thermodynamic modelling. . Geophys. J. Int. 160:(3):97390
    [Crossref] [Google Scholar]
  111. Matthews KJ, Maloney KT, Zahirovic S, Williams SE, Seton M, Müller RD. 2016.. Global plate boundary evolution and kinematics since the late Paleozoic. . Glob. Planet. Change 146::22650
    [Crossref] [Google Scholar]
  112. McDonough WF, Sun SS. 1995.. The composition of the Earth. . Chem. Geol. 120:(3–4):22353
    [Crossref] [Google Scholar]
  113. Miyazaki Y, Korenaga J. 2019.. On the timescale of magma ocean solidification and its chemical consequences: 1. Thermodynamic database for liquid at high pressures. . J. Geophys. Res. Solid Earth 124:(4):338298
    [Crossref] [Google Scholar]
  114. Moore WB, Webb AAG. 2013.. Heat-pipe Earth. . Nature 501:(7468):5015
    [Crossref] [Google Scholar]
  115. Morgan JP, Morgan WJ. 1999.. Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding. . Earth Planet. Sci. Lett. 170:(3):21539
    [Crossref] [Google Scholar]
  116. Munch FD, Khan A, Tauzin B, van Driel M, Giardini D. 2020.. Seismological evidence for thermo-chemical heterogeneity in Earth's continental mantle. . Earth Planet. Sci. Lett. 539::116240
    [Crossref] [Google Scholar]
  117. Murakami M. 2013.. Chemical composition of the Earth's lower mantle: constraints from elasticity. . Phys. Chem. Deep Earth 3::183212
    [Google Scholar]
  118. Murakami M, Asahara Y, Ohishi Y, Hirao N, Hirose K. 2009.. Development of in situ Brillouin spectroscopy at high pressure and high temperature with synchrotron radiation and infrared laser heating system: application to the Earth's deep interior. . Phys. Earth Planet. Inter. 174::28291
    [Crossref] [Google Scholar]
  119. Murakami M, Hirose K, Sata N, Ohishi Y. 2005.. Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. . Geophys. Res. Lett. 32::L03304
    [Crossref] [Google Scholar]
  120. Murakami M, Ohishi Y, Hirao N, Hirose K. 2012.. A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. . Nature 485::9094
    [Crossref] [Google Scholar]
  121. Murakami M, Sinogeikin SV, Bass JD, Sata N, Ohishi Y, Hirose K. 2007b.. Sound velocity of MgSiO3 post-perovskite phase: a constraint on the D" discontinuity. . Earth Planet. Sci. Lett. 259::1823
    [Crossref] [Google Scholar]
  122. Murakami M, Sinogeikin SV, Hellwig H, Bass JD, Li J. 2007a.. Sound velocity of MgSiO3 perovskite to Mbar pressure. . Earth Planet. Sci. Lett. 256::4754
    [Crossref] [Google Scholar]
  123. Myhill R, Cottaar S, Heister T, Rose I, Unterborn C, et al. 2023.. BurnMan—a Python toolkit for planetary geophysics, geochemistry and thermodynamics. . J. Open Source Softw. 8:(87):5389
    [Crossref] [Google Scholar]
  124. Nabiei F, Badro J, Boukaré , Hébert C, Cantoni M, et al. 2021.. Investigating magma ocean solidification on Earth through laser-heated diamond anvil cell experiments. . Geophys. Res. Lett. 48:(12):e2021GL092446
    [Crossref] [Google Scholar]
  125. Nakagawa T, Buffett BA. 2005.. Mass transport mechanism between the upper and lower mantle in numerical simulations of thermochemical mantle convection with multicomponent phase changes. . Earth Planet. Sci. Lett. 230:(1–2):1127
    [Crossref] [Google Scholar]
  126. Nakajima M, Stevenson DJ. 2015.. Melting and mixing states of the Earth's mantle after the Moon-forming impact. . Earth Planet. Sci. Lett. 427::28695
    [Crossref] [Google Scholar]
  127. Nisbet E, Cheadle M, Arndt N, Bickle M. 1993.. Constraining the potential temperature of the Archaean mantle: a review of the evidence from komatiites. . Lithos 30:(3–4):291307
    [Crossref] [Google Scholar]
  128. Nomura R, Hirose K, Uesugi K, Ohishi Y, Tsuchiyama A, et al. 2014.. Low core-mantle boundary temperature inferred from the solidus of pyrolite. . Science 343:(6170):52225
    [Crossref] [Google Scholar]
  129. O'Neill CJ, Zhang S. 2018.. Lateral mixing processes in the Hadean. . J. Geophys. Res. Solid Earth 123:(8):707489
    [Crossref] [Google Scholar]
  130. O'Neill HSC, Canil D, Rubie DC. 1998.. Oxide-metal equilibria to 2500°C and 25 GPa: implications for core formation and the light component in the Earth's core. . J. Geophys. Res. 103:(B6):1223960
    [Crossref] [Google Scholar]
  131. O'Neill HSC, Palme H. 1998.. Composition of the silicate Earth: implications for accretion and core formation. . In The Earth's Mantle, , 3126. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  132. O'Neill HSC, Palme H. 2008.. Collisional erosion and the non-chondritic composition of the terrestrial planets. . Philos. Trans. R. Soc. A 366:(1883):420538
    [Crossref] [Google Scholar]
  133. Palme H, O'Neill HSC. 2014.. Cosmochemical estimates of mantle composition. . In Treatise on Geochemistry, ed. HD Holland, KK Turekian , pp. 136. Oxford, UK:: Elsevier. , 2nd ed..
    [Google Scholar]
  134. Piazzoni AS, Steinle-Neumann G, Bunge HP, Dolejš D. 2007.. A mineralogical model for density and elasticity of the Earth's mantle. . Geochem. Geophys. Geosyst. 8:(11):Q11010
    [Crossref] [Google Scholar]
  135. Piet H, Badro J, Nabiei F, Dennenwaldt T, Shim SH, et al. 2016.. Spin and valence dependence of iron partitioning in Earth's deep mantle. . PNAS 113:(40):1112730
    [Crossref] [Google Scholar]
  136. Poirier JP. 1994.. Light elements in the Earth's outer core: a critical review. . Phys. Earth Planet. Inter. 85:(3–4):31937
    [Crossref] [Google Scholar]
  137. Puchtel IS, Blichert-Toft J, Horan MF, Touboul M, Walker RJ. 2022.. The komatiite testimony to ancient mantle heterogeneity. . Chem. Geol. 594::120776
    [Crossref] [Google Scholar]
  138. Ricard Y, Mattern E, Matas J. 2005.. Synthetic tomographic images of slabs from mineral physics. . In Changing Views on the Structure, Composition, and Evolution of Earth's Deep, ed. RD van der Hilst, JD Bass, J Matas, J Trampert , pp. 283300. Washington, DC:: Am. Geophys. Union
    [Google Scholar]
  139. Ricolleau A, Fei Y, Corgne A, Siebert J, Badro J. 2011.. Oxygen and silicon contents of Earth's core from high pressure metal–silicate partitioning experiments. . Earth Planet. Sci. Lett. 310:(3–4):40921
    [Crossref] [Google Scholar]
  140. Ringwood AE. 1966.. Chemical evolution of the terrestrial planets. . Geochim. Cosmochim. Acta 30:(1):41104
    [Crossref] [Google Scholar]
  141. Ringwood AE. 1975.. Composition and Petrology of the Earth's Mantle. New York:: McGraw-Hill
    [Google Scholar]
  142. Ringwood AE. 1979.. Origin of the Earth and Moon. New York:: Springer
    [Google Scholar]
  143. Rudolph ML, Lekić V, Lithgow-Bertelloni C. 2015.. Viscosity jump in Earth's mid-mantle. . Science 350:(6266):134952
    [Crossref] [Google Scholar]
  144. Schuberth BSA, Bunge HP, Ritsema J. 2009.. Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone?. Geochem. Geophys. Geosyst. 10:(5):Q05W03
    [Crossref] [Google Scholar]
  145. Shephard GE, Houser C, Hernlund JW, Valencia-Cardona JJ, Trønnes RG, Wentzcovitch RM. 2021.. Seismological expression of the iron spin crossover in ferropericlase in the Earth's lower mantle. . Nat. Commun. 12:(1):5905
    [Crossref] [Google Scholar]
  146. Sinmyo R, Hirose K, Nishio-Hamane D, Seto Y, Fujino K, et al. 2008.. Partitioning of iron between perovskite/postperovskite and ferropericlase in the lower mantle. . J. Geophys. Res. 113:(B11):B11204
    [Crossref] [Google Scholar]
  147. Sinogeikin SV, Bass JD. 2000.. Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell. . Phys. Earth Planet. Inter. 120::4362
    [Crossref] [Google Scholar]
  148. Sizova E, Gerya T, Brown M, Perchuk L. 2010.. Subduction styles in the Precambrian: insight from numerical experiments. . Lithos 116:(3–4):20929
    [Crossref] [Google Scholar]
  149. Solomatov V. 2015.. Magma oceans and primordial mantle differentiation. . In Treatise on Geophysics, ed. G Schubert , pp. 91119. Amsterdam:: Elsevier
    [Google Scholar]
  150. Sossi PA, Eggins SM, Nesbitt RW, Nebel O, Hergt JM, et al. 2016.. Petrogenesis and geochemistry of Archean komatiites. . J. Petrol. 57:(1):14784
    [Crossref] [Google Scholar]
  151. Sossi PA, Nebel O, O'Neill HSC, Moynier F. 2018.. Zinc isotope composition of the Earth and its behaviour during planetary accretion. . Chem. Geol. 477::7384
    [Crossref] [Google Scholar]
  152. Spray JG. 1989.. Upper mantle segregation processes: evidence from alpine-type peridotites. . Geol. Soc. Lond. Spec. Publ. 42:(1):2940
    [Crossref] [Google Scholar]
  153. Stixrude L, Lithgow-Bertelloni C. 2005.. Thermodynamics of mantle minerals—I. Physical properties. . Geophys. J. Int. 162:(2):61032
    [Crossref] [Google Scholar]
  154. Stixrude L, Lithgow-Bertelloni C. 2011.. Thermodynamics of mantle minerals—II. Phase equilibria. . Geophys. J. Int. 184:(3):1180213
    [Crossref] [Google Scholar]
  155. Stixrude L, Lithgow-Bertelloni C. 2021.. Thermal expansivity, heat capacity and bulk modulus of the mantle. . Geophys. J. Int. 228:(2):111949
    [Crossref] [Google Scholar]
  156. Tackley PJ, Xie S, Nakagawa T, Hernlund JW. 2005.. Numerical and laboratory studies of mantle convection: philosophy, accomplishments, and thermochemical structure and evolution. . Geophys. Monogr. 160:(83):2190
    [Google Scholar]
  157. Tauzin B, Waszek L, Ballmer MD, Afonso JC, Bodin T. 2022.. Basaltic reservoirs in the Earth's mantle transition zone. . PNAS 119:(48):e2209399119
    [Crossref] [Google Scholar]
  158. Tolstikhin I, Hofmann AW. 2005.. Early crust on top of the Earth's core. . Phys. Earth Planet. Inter. 148:(2–4):10930
    [Crossref] [Google Scholar]
  159. Trampert J, Deschamps F, Resovsky J, Yuen D. 2004.. Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. . Science 306:(5697):85356
    [Crossref] [Google Scholar]
  160. Tsujino N, Yamazaki D, Nishihara Y, Yoshino T, Higo Y, Tange Y. 2022.. Viscosity of bridgmanite determined by in situ stress and strain measurements in uniaxial deformation experiments. . Sci. Adv. 8:(13):eabm1821
    [Crossref] [Google Scholar]
  161. Umemoto K, Hirose K. 2020.. Chemical compositions of the outer core examined by first principles calculations. . Earth Planet. Sci. Lett. 531::116009
    [Crossref] [Google Scholar]
  162. Van Der Meer DG, Spakman W, Van Hinsbergen DJ, Amaru ML, Torsvik TH. 2010.. Towards absolute plate motions constrained by lower-mantle slab remnants. . Nat. Geosci. 3:(1):3640
    [Crossref] [Google Scholar]
  163. Vilella K, Bodin T, Boukaré CE, Deschamps F, Badro J, et al. 2021.. Constraints on the composition and temperature of LLSVPs from seismic properties of lower mantle minerals. . Earth Planet. Sci. Lett. 554::116685
    [Crossref] [Google Scholar]
  164. Walter MJ. 1998.. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. . J. Petrol. 39:(1):2960
    [Crossref] [Google Scholar]
  165. Walter MJ. 2003.. Melt extraction and compositional variability in mantle lithosphere. . In Treatise on Geochemistry, , 36394. Oxford, UK:: Pergamon
    [Crossref] [Google Scholar]
  166. Walter MJ, Nakamura E, Trønnes R, Frost D. 2004.. Experimental constraints on crystallization differentiation in a deep magma ocean. . Geochim. Cosmochim. Acta 68:(20):426784
    [Crossref] [Google Scholar]
  167. Wasson JT, Kallemeyn GW. 1988.. Compositions of chondrites. . Philos. Trans. R. Soc. A 325:(1587):53544
    [Google Scholar]
  168. Waszek L, Schmerr NC, Ballmer MD. 2018.. Global observations of reflectors in the mid-mantle with implications for mantle structure and dynamics. . Nat. Commun. 9:(1):385
    [Crossref] [Google Scholar]
  169. Waszek L, Tauzin B, Schmerr NC, Ballmer MD, Afonso JC. 2021.. A poorly mixed mantle transition zone and its thermal state inferred from seismic waves. . Nat. Geosci. 14:(12):94955
    [Crossref] [Google Scholar]
  170. Weidner DJ. 1985.. A mineral physics test of a pyrolite mantle. . Geophys. Res. Lett. 12:(7):41720
    [Crossref] [Google Scholar]
  171. Weidner DJ, Swyler K, Carleton HR. 1975.. Elasticity of microcrystals. . Geophys. Res. Lett. 2::18992
    [Crossref] [Google Scholar]
  172. Wilson AH. 2019.. The late-Paleoarchean ultra-depleted Commondale komatiites: Earth's hottest lavas and consequences for eruption. . J. Petrol. 60:(8):1575620
    [Crossref] [Google Scholar]
  173. Witt-Eickschen G, Palme H, O'Neill HSC, Allen CM. 2009.. The geochemistry of the volatile trace elements As, Cd, Ga, In and Sn in the Earth's mantle: new evidence from in situ analyses of mantle xenoliths. . Geochim. Cosmochim. Acta 73:(6):175578
    [Crossref] [Google Scholar]
  174. Workman RK, Hart SR. 2005.. Major and trace element composition of the depleted MORB mantle (DMM). . Earth Planet. Sci. Lett. 231:(1–2):5372
    [Crossref] [Google Scholar]
  175. Xie L, Yoneda A, Yamazaki D, Manthilake G, Higo Y, et al. 2020.. Formation of bridgmanite-enriched layer at the top lower-mantle during magma ocean solidification. . Nat. Commun. 11:(1):548
    [Crossref] [Google Scholar]
  176. Xu F, Yamazaki D, Sakamoto N, Sun W, Fei H, Yurimoto H. 2017.. Silicon and oxygen self-diffusion in stishovite: implications for stability of SiO2-rich seismic reflectors in the mid-mantle. . Earth Planet. Sci. Lett. 459::33239
    [Crossref] [Google Scholar]
  177. Xu W, Lithgow-Bertelloni C, Stixrude L, Ritsema J. 2008.. The effect of bulk composition and temperature on mantle seismic structure. . Earth Planet. Sci. Lett. 275:(1–2):7079
    [Crossref] [Google Scholar]
  178. Xu Y, Shankland TJ, Poe BT. 2000.. Laboratory-based electrical conductivity in the Earth's mantle. . J. Geophys. Res. 105:(B12):2786575
    [Crossref] [Google Scholar]
  179. Yan J, Ballmer MD, Tackley PJ. 2020.. The evolution and distribution of recycled oceanic crust in the Earth's mantle: insight from geodynamic models. . Earth Planet. Sci. Lett. 537::116171
    [Crossref] [Google Scholar]
  180. Yang R, Wu Z. 2014.. Elastic properties of stishovite and the CaCl2-type silica at the mantle temperature and pressure: an ab initio investigation. . Earth Planet. Sci. Lett. 404::1421
    [Crossref] [Google Scholar]
  181. Yoneda S, Grossman L. 1995.. Condensation of CaO–MgO–Al2O3–SiO2 liquids from cosmic gases. . Geochim. Cosmochim. Acta 59:(16):341344
    [Crossref] [Google Scholar]
  182. Yoshizaki T, McDonough WF. 2021.. Earth and Mars—distinct inner solar system products. . Geochemistry 81:(2):125746
    [Crossref] [Google Scholar]
  183. Zunino A, Connolly JAD, Khan A. 2011.. Pre-calculated phase equilibrium models for geophysical properties of the crust and mantle as a function of composition. . Geochem. Geophys. Geosyst. 12::Q04001
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-075657
Loading
/content/journals/10.1146/annurev-earth-031621-075657
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error