1932

Abstract

The depleted mantle reservoir is that part of Earth's mantle from which crust has been extracted, leaving the remaining mantle depleted in incompatible elements. Knowing how and when it formed is essential for understanding the chemical evolution of Earth, including formation of continental crust. The best-constrained Hf isotope data presented here indicate that the mantle does not become significantly depleted until as late as 700 million years after Earth's accretion. This onset of mantle depletion coincides with the first appearance of substantial volumes of continental crust in the geological record. These data compel a revision to the reference depleted mantle parameters used in Hf isotope studies of planetary evolution. This new reference line follows chondritic evolution until 3.8 Ga and then describes a linear trajectory to a present-day depleted mid-ocean ridge basalt source mantle composition (ε = +18). We infer that stabilization of continental crust only occurred in earnest on Earth after 3.8 Ga.

  • ▪  Hf isotopes show that Earth's mantle does not become significantly depleted until 700 million years after planetary accretion.
  • ▪  Most of Earth's oldest rocks formed from mantle sources that had radiogenic isotope compositions similar to those of chondritic meteorites.
  • ▪  Isotope evidence shows that Hadean (>4.0-billion-year-old) crust was not essential for formation of younger crust in Archean terranes.
  • ▪  Growth of Earth's continents only began in earnest after 3.8 Ga.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-112052
2025-05-30
2025-06-20
Loading full text...

Full text loading...

/deliver/fulltext/earth/53/1/annurev-earth-031621-112052.html?itemId=/content/journals/10.1146/annurev-earth-031621-112052&mimeType=html&fmt=ahah

Literature Cited

  1. Allègre CJ, Rousseau D. 1984.. The growth of the continents through geological time studied by Nd isotope analysis of shales. . Earth Planet. Sci. Lett. 67::1934
    [Crossref] [Google Scholar]
  2. Amelin Y, Kamo S, Lee D. 2011.. Evolution of early crust in chondritic or non-chondritic Earth inferred from U-Pb and Lu-Hf data for chemically abraded zircon from the Itsaq Gneiss Complex, West Greenland. . Can. J. Earth Sci. 48:(2):14160
    [Crossref] [Google Scholar]
  3. Amelin Y, Lee D-C, Halliday AN. 2000.. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. . Geochim. Cosmochim. Acta 64::420525
    [Crossref] [Google Scholar]
  4. Armstrong JC, Wells LE, Gonzalez G. 2002.. Rummaging through Earth's attic for remains of ancient life. . Icarus 160:(1):18396
    [Crossref] [Google Scholar]
  5. Armstrong RL. 1968.. A model for the evolution of strontium and lead isotopes in a dynamic Earth. . Rev. Geophys. 6:(2):17599
    [Crossref] [Google Scholar]
  6. Armstrong RL. 1981.. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. . Philos. Trans. R. Soc. A 301::44372
    [Google Scholar]
  7. Armstrong RL. 1991.. The persistent myth of crustal growth. . Aust. J. Earth Sci. 38::61330
    [Crossref] [Google Scholar]
  8. Arndt NT, Goldstein SJ. 1987.. Use and abuse of crust-formation ages. . Geology 15::89395
    [Crossref] [Google Scholar]
  9. Barker F, Arth JG. 1976.. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. . Geology 4::596600
    [Crossref] [Google Scholar]
  10. Bauer AM, Fisher CM, Vervoort JD, Bowring SA. 2017.. Coupled zircon Lu-Hf and U-Pb isotopic analyses of the oldest terrestrial crust, the >4.03 Ga Acasta Gneiss Complex. . Earth Planet. Sci. Lett. 458::3748
    [Crossref] [Google Scholar]
  11. Bell EA, Harrison TM, Kohl IE, Young ED. 2014.. Eoarchean crustal evolution of the Jack Hills zircon source and loss of Hadean crust. . Geochim. Cosmochim. Acta 146::2742
    [Crossref] [Google Scholar]
  12. Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O'Reilly SY, Pearson NJ. 2010.. The growth of the continental crust: constraints from zircon Hf-isotope data. . Lithos 119::45766
    [Crossref] [Google Scholar]
  13. Bennett VC, Brandon AD, Nutman AP. 2007.. Coupled 142Nd-143Nd isotopic evidence for Hadean mantle dynamics. . Science 318::190710
    [Crossref] [Google Scholar]
  14. Bennett VC, Nutman AP, McCulloch MT. 1993.. Nd isotopic evidence for transient, highly depleted mantle reservoirs in the early history of the Earth. . Earth Planet. Sci. Lett. 119::299317
    [Crossref] [Google Scholar]
  15. Blichert-Toft J, Albarède F. 1997.. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. . Earth Planet. Sci. Lett. 148:(1–2):24358
    [Crossref] [Google Scholar]
  16. Blichert-Toft J, Albarède F. 2008.. Hafnium isotopes in Jack Hills zircons and formation of the Hadean crust. . Earth Planet. Sci. Lett. 265::686702
    [Crossref] [Google Scholar]
  17. Blichert-Toft J, Arndt NT. 1999.. Hf isotope compositions of komatiites. . Earth Planet. Sci. Lett. 171:(3):43951
    [Crossref] [Google Scholar]
  18. Blichert-Toft J, Arndt NT, Gruau G. 2004.. Hf isotopic measurements on Barberton komatiites: effects of incomplete sample dissolution and importance for primary and secondary magmatic signatures. . Chem. Geol. 207:(3–4):26175
    [Crossref] [Google Scholar]
  19. Blichert-Toft J, Arndt NT, Wilson A, Coetzee G. 2015.. Hf and Nd isotope systematics of early Archean komatiites from surface sampling and ICDP drilling in the Barberton Greenstone Belt, South Africa. . Am. Mineral. 100:(11–12):2396411
    [Crossref] [Google Scholar]
  20. Blichert-Toft J, Chauvel C, Albarède F. 1997.. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. . Contrib. Mineral. Petrol. 127:(3):24860
    [Crossref] [Google Scholar]
  21. Blichert-Toft J, Puchtel IS. 2010.. Depleted mantle sources through time: evidence from Lu–Hf and Sm–Nd isotope systematics of Archean komatiites. . Earth Planet. Sci. Lett. 297:(3–4):598606
    [Crossref] [Google Scholar]
  22. Botero M, Vervoort JD, Corfu F. 2023.. Archean to Paleoproterozoic magmatic and metamorphic evolution of the Lofoten–Vesterålen area in northern Norway through zircon U-Pb and Hf isotopic analysis. . Precambrian Res. 397::107168
    [Crossref] [Google Scholar]
  23. Bouvier A, Vervoort JD, Patchett PJ. 2008.. The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. . Earth Planet. Sci. Lett. 273::4857
    [Crossref] [Google Scholar]
  24. Bowring SA, Housh T. 1995.. The Earth's early evolution. . Science 269::153540
    [Crossref] [Google Scholar]
  25. Bowring SA, Williams IS. 1999.. Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. . Contrib. Mineral. Petrol. 134::316
    [Crossref] [Google Scholar]
  26. Boyet M, Carlson RW. 2005.. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. . Science 309::57681
    [Crossref] [Google Scholar]
  27. Caro G, Bourdon B. 2010.. Non-chondritic Sm/Nd ratio in the terrestrial planets: consequences for the geochemical evolution of the mantle crust system. . Geochim. Cosmochim. Acta 74::333349
    [Crossref] [Google Scholar]
  28. Caro G, Bourdon B, Birck JL. 2003.. 146Sm-142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth's mantle. . Nature 423::42831
    [Crossref] [Google Scholar]
  29. Caro G, Bourdon B, Halliday AN, Quitte G. 2008.. Super-chondritic Sm/Nd ratios in Mars, the Earth, and the Moon. . Nature 452::33639
    [Crossref] [Google Scholar]
  30. Caro G, Bourdon B, Wood BJ, Corgne A. 2005.. Trace-element fractionation in Hadean mantle generated by melt segregation from a magma ocean. . Nature 436::24649
    [Crossref] [Google Scholar]
  31. Chapman CR. 2002.. Earth's lunar attic. . Nature 419:(6909):79193
    [Crossref] [Google Scholar]
  32. Chase CG, Patchett PJ. 1988.. Stored mafic/ultramafic crust and early Archean mantle depletion. . Earth Planet. Sci. Lett. 91::6673
    [Crossref] [Google Scholar]
  33. Chauvel C, Blichert-Toft J. 2001.. A hafnium isotope and trace element perspective on melting of the depleted mantle. . Earth Planet. Sci. Lett. 190:(3–4):13751
    [Crossref] [Google Scholar]
  34. Chen T-W, Vervoort JD, Baldwin JA. 2023.. Growth and evolution of Neoarchean–Paleoproterozoic crust in the NW Wyoming Province: evidence from zircon U-Pb age and Lu-Hf isotopes of the Montana metasedimentary terrane. . GSA Bull. 136::246082
    [Google Scholar]
  35. Choi SH, Mukasa SB, Andronikov AV, Osanai Y, Harley SL, Kelly NM. 2006.. Lu–Hf systematics of the ultra-high temperature Napier Metamorphic Complex in Antarctica: evidence for the early Archean differentiation of Earth's mantle. . Earth Planet. Sci. Lett. 246:(3–4):30516
    [Crossref] [Google Scholar]
  36. Compston W, Pidgeon RT. 1986.. Jack Hills, evidence of more very old detrital zircons in Western Australia. . Nature 321:(6072):76669
    [Crossref] [Google Scholar]
  37. Corgne A, Liebske C, Wood BJ, Rubie DC, Frost DJ. 2005.. Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. . Geochim. Cosmochim. Acta 69::48596
    [Crossref] [Google Scholar]
  38. Davis DW, Amelin Y, Nowell GM, Parrish RR. 2005.. Hf isotopes in zircon from the western Superior province, Canada: implications for Archaean crustal development and evolution of the depleted mantle reservoir. . Precambrian Res. 140::13256
    [Crossref] [Google Scholar]
  39. de Assis Barros R, de Andrade Caxito F, Egydio-Silva M, Dantas EL, Pinheiro MAP, et al. 2020.. Archean and Paleoproterozoic crustal evolution and evidence for cryptic Paleoarchean-Hadean sources of the NW São Francisco Craton, Brazil: lithochemistry, geochronology, and isotope systematics of the Cristalândia do Piauí Block. . Gondwana Res. 88::26895
    [Crossref] [Google Scholar]
  40. de Camargo Moreira I, Oliveira EP, Martins de Sousa DF. 2022.. Evolution of the 3.65–2.58 Ga Mairi Gneiss Complex, Brazil: implications for growth of the continental crust in the São Francisco Craton. . Geosci. Front. 13::101366
    [Crossref] [Google Scholar]
  41. DePaolo DJ. 1980.. Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. . Geochim. Cosmochim. Acta 44:(8):118596
    [Crossref] [Google Scholar]
  42. DePaolo DJ. 1981.. Neodymium isotopes in the Colorado Front Range and crust–mantle evolution in the Proterozoic. . Nature 291:(5812):19396
    [Crossref] [Google Scholar]
  43. DePaolo DJ, Wasserburg GJ. 1976.. Nd isotopic variations and petrogenetic models. . Geophys. Res. Lett. 3:(5):24952
    [Crossref] [Google Scholar]
  44. de Sousa DM, Oliveira EP, Amaral WS, Baldim MR. 2020.. The Itabuna-Salvador-Curaçá Orogen revisited, São Francisco Craton, Brazil: New zircon U–Pb ages and Hf data support evolution from Archean continental arc to Paleoproterozoic crustal reworking during block collision. . J. S. Am. Earth Sci. 104::102826
    [Crossref] [Google Scholar]
  45. Dhuime B, Hawkesworth C, Cawood P, Storey C. 2012.. A change in the geodynamics of continental growth 3 billion years ago. . Science 335::133436
    [Crossref] [Google Scholar]
  46. dos Santos C, Zincone SA, Queiroga GN, Bersan SM, Lana CC, Oliveira EP. 2022.. Evidence for change in crust formation process during the Paleoarchean in the São Francisco Craton (Gavião Block): Coupled zircon Lu-Hf and U-Pb isotopic analyses and tectonic implications. . Precambrian Res. 368::106472
    [Crossref] [Google Scholar]
  47. Fisher CM, Bauer AM, Vervoort JD. 2020.. Disturbances in the Sm–Nd isotope system of the Acasta Gneiss Complex—implications for the Nd isotope record of the early Earth. . Earth Planet. Sci. Lett. 530::115900
    [Crossref] [Google Scholar]
  48. Fisher CM, Vervoort JD. 2018.. Using the magmatic record to constrain the growth of continental crust—the Eoarchean zircon Hf record of Greenland. . Earth Planet. Sci. Lett. 488::7991
    [Crossref] [Google Scholar]
  49. Frossard P, Israel C, Bouvier A, Boyet M. 2022.. Earth's composition was modified by collisional erosion. . Science 377::152932
    [Crossref] [Google Scholar]
  50. Gerdes A, Zeh A. 2009.. Zircon formation versus zircon alteration—new insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archaean zircon from the Central Zone of the Limpopo Belt. . Chem. Geol. 261::23043
    [Crossref] [Google Scholar]
  51. Gifford JN, Mueller PA, Foster DA, Mogk DW. 2014.. Precambrian crustal evolution in the Great Falls tectonic zone: insights from xenoliths from the Montana Alkali Province. . J. Geol. 122:(5):53148
    [Crossref] [Google Scholar]
  52. Gifford JN, Mueller PA, Foster DA, Mogk DW. 2018.. Extending the realm of Archean crust in the Great Falls tectonic zone: evidence from the Little Rocky Mountains, Montana. . Precambrian Res. 315::26481
    [Crossref] [Google Scholar]
  53. Goldstein SL, O'Nions RK, Hamilton PJ. 1984.. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. . Earth Planet. Sci. Lett. 70:(2):22136
    [Crossref] [Google Scholar]
  54. Green TH, Brunfelt AO, Heier KS. 1969.. Rare earth element distribution in anorthosites and associated high grade metamorphic rocks. , Lofoten-Vesteraalen, Norway:. Earth Planet. Sci. Lett. 7:(2):9398
    [Crossref] [Google Scholar]
  55. Griffin WL, Pearson NJ, Belousova E, Jackson SE, O'Reilly SY, et al. 2000.. The Hf-isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. . Geochim. Cosmochim. Acta 64::13347
    [Crossref] [Google Scholar]
  56. Guitreau M, Blichert-Toft J, Martin H, Mojzsis SJ, Albarède F. 2012.. Hafnium isotope evidence from Archean granitic rocks for deep mantle origin of continental crust. . Earth Planet. Sci. Lett. 337–338::21123
    [Crossref] [Google Scholar]
  57. Guitreau M, Boyet M, Paquette JL, Gannoun A, Konc Z, et al. 2019.. Hadean protocrust reworking at the origin of the Archean Napier Complex (Antarctica). . Geochem. Perspect. Lett. 12::711
    [Crossref] [Google Scholar]
  58. Guo JL, Wu YB, Gao S, Jin ZM, Zong KQ, et al. 2015.. Episodic Paleoarchean-Paleoproterozoic (3.3–2.0 Ga) granitoid magmatism in Yangtze craton, South China: implications for late Archean tectonics. . Precambrian Res. 270::24666
    [Crossref] [Google Scholar]
  59. Guo M, Korenaga J. 2023.. The combined Hf and Nd isotope evolution of the depleted mantle requires Hadean continental formation. . Sci. Adv. 9::eade2711
    [Crossref] [Google Scholar]
  60. Hammerli J, Kemp AIS. 2021.. Combined Hf and Nd isotope microanalysis of co-existing zircon and REE-rich accessory minerals: high resolution insights into crustal processes. . Chem. Geol. 581::120393
    [Crossref] [Google Scholar]
  61. Hammerli J, Kemp AIS, Whitehouse MJ. 2019.. In situ trace element and Sm-Nd isotope analysis of accessory minerals in an Eoarchean tonalitic gneiss from Greenland: implications for Hf and Nd isotope decoupling in Earth's ancient rocks. . Chem. Geol. 524::394405
    [Crossref] [Google Scholar]
  62. Harrison TM, Blichert-Toft J, Muller W, Albarede F, Holden P, Mojzsis SJ. 2005.. Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. . Science 310::194750
    [Crossref] [Google Scholar]
  63. Hartmann WK. 2019.. History of the terminal cataclysm paradigm: epistemology of a planetary bombardment that never (?) happened. . Geosciences 9:(7):285
    [Crossref] [Google Scholar]
  64. Hasenstab E, Tusch J, Schnabel C, Marien CS, Van Kranendonk MJ, et al. 2021.. Evolution of the early to late Archean mantle from Hf-Nd-Ce isotope systematics in basalts and komatiites from the Pilbara Craton. . Earth Planet. Sci. Lett. 553::116627
    [Crossref] [Google Scholar]
  65. Hiess J, Bennett VC. 2016.. Chondritic Lu/Hf in the early crust-mantle system as recorded by zircon populations from the oldest Eoarchean rocks of the Yilgarn Craton, West Australia and Enderby Land, Antarctica. . Chem. Geol. 427::12543
    [Crossref] [Google Scholar]
  66. Hiess J, Bennett VC, Nutman AP, Williams IS. 2009.. In situ U-Pb, O and Hf isotopic compositions of zircon and olivine from Eoarchaean rocks, West Greenland: new insights into making old crust. . Geochim. Cosmochim. Acta 73::4489516
    [Crossref] [Google Scholar]
  67. Hoffmann JE, Kröner A, Hegner E, Viehmann S, Xie H, et al. 2016.. Source composition, fractional crystallization and magma mixing processes in the 3.48–3.43 Ga Tsawela tonalite suite (Ancient Gneiss Complex, Swaziland)—implications for Palaeoarchaean geodynamics. . Precambrian Res. 276::4366
    [Crossref] [Google Scholar]
  68. Hoffmann JE, Münker C, Polat A, König S, Mezger K, Rosing M. 2010.. Highly depleted Hadean mantle reservoirs in the sources of early Archean arc-like rocks, Isua supracrustal belt, southern West Greenland. . Geochim. Comsochim. Acta 74::723660
    [Crossref] [Google Scholar]
  69. Hofmann AW. 1988.. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. . Earth Planet. Sci. Lett. 90::297314
    [Crossref] [Google Scholar]
  70. Hofmann AW, Class C, Goldstein SJ. 2022a.. Size and composition of the MORB+OIB mantle reservoir. . Geochem. Geophys. Geosyst. 23::e2022GC010339
    [Crossref] [Google Scholar]
  71. Hofmann A, Kröner A, Iaccheri LM, Wong J, Geng H, Xie H. 2022b.. 3.63 Ga grey gneisses reveal the Eoarchaean history of the Zimbabwe craton. . S. Afr. J. Geol. 125:(1):112
    [Crossref] [Google Scholar]
  72. Huang X-L, Niu Y, Xu Y-G, Yang Q-J, Zhong J-W. 2010.. Geochemistry of TTG and TTG-like gneisses from Lushan-Taihua complex in the southern North China Craton: implications for late Archean crustal accretion. . Precambrian Res. 182::4356
    [Crossref] [Google Scholar]
  73. Iizuka T, Komiya T, Johnson SP, Kon Y, Maruyama S, Hirata T. 2009.. Reworking of Hadean crust in the Acasta gneisses, northwestern Canada: evidence from in situ Lu–Hf isotope analysis of zircon. . Chem. Geol. 259::23039
    [Crossref] [Google Scholar]
  74. Jacobsen SB, Wasserburg GJ. 1980.. Sm-Nd isotopic evolution of chondrites. . Earth Planet. Sci. Lett. 50:(1):13955
    [Crossref] [Google Scholar]
  75. Johnston S, Brandon AD, McLeod C, Rankenburg K, Becker H, Copeland P. 2022.. Nd isotope variation between the Earth-Moon system and enstatite chondrites. . Nature 611::5016
    [Crossref] [Google Scholar]
  76. Kaur P, Zeh A, Chaudhri N. 2014.. Characterisation and U–Pb–Hf isotope record of the 3.55 Ga felsic crust from the Bundelkhand Craton, northern India. . Precambrian Res. 255::23644
    [Crossref] [Google Scholar]
  77. Kemp AIS, Foster GL, Schersten A, Whitehouse MJ, Darling J, Storey C. 2009.. Concurrent Pb-Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas. . Chem. Geol. 261::24460
    [Crossref] [Google Scholar]
  78. Kemp AIS, Hawkesworth CJ. 2014.. Growth and differentiation of the continental crust from isotope studies of accessory minerals. . In Treatise on Geochemistry, ed. HD Holland, KK Turekian , pp. 379421. Amsterdam:: Elsevier. , 2nd ed..
    [Google Scholar]
  79. Kemp AIS, Vervoort JD, Petersson A, Smithies RH, Lu Y. 2023.. A linked evolution for granite-greenstone terranes of the Pilbara Craton from Nd and Hf isotopes, with implications for Archean continental growth. . Earth Planet. Sci. Lett. 601::117895
    [Crossref] [Google Scholar]
  80. Kemp AIS, Whitehouse MJ, Vervoort JD. 2019.. Deciphering the zircon Hf isotope systematics of Eoarchean gneisses from Greenland: implications for ancient crust-mantle differentiation and Pb isotope controversies. . Geochim. Cosmochim. Acta 250::7697
    [Crossref] [Google Scholar]
  81. Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A, et al. 2010.. Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. . Earth Planet. Sci. Lett. 296::4556
    [Crossref] [Google Scholar]
  82. Kröner A, Hoffmann JE, Xie H, Münker C, Hegner E, et al. 2014.. Generation of early Archaean grey gneisses through melting of older crust in the eastern Kaapvaal craton, southern Africa. . Precambrian Res. 255::82346
    [Crossref] [Google Scholar]
  83. Kröner A, Hoffmann JE, Xie H, Wu F, Münker C, et al. 2013.. Generation of early Archaean felsic greenstone volcanic rocks through crustal melting in the Kaapvaal craton, southern Africa. . Earth Planet. Sci. Lett. 381::18897
    [Crossref] [Google Scholar]
  84. Kröner A, Nagel TJ, Hoffmann JE, Liu X, Wong J, et al. 2018.. High-temperature metamorphism and crustal melting at ca. 3.2 Ga in the eastern Kaapvaal craton, southern Africa. . Precambrian Res. 317::10116
    [Crossref] [Google Scholar]
  85. Kusiak MA, Dunkley DJ, Wilde SA, Whitehouse MJ, Kemp AIS. 2021.. Eoarchean crust in East Antarctica: extension from Enderby Land into Kemp Land. . Gondwana Res. 93::22741
    [Crossref] [Google Scholar]
  86. Laurent O, Vander Auwera J, Bingen B, Bolle O, Gerdes A. 2019.. Building up the first continents: Mesoarchean to Paleoproterozoic crustal evolution in West Troms, Norway, inferred from granitoid petrology, geochemistry and zircon U-Pb/Lu-Hf isotopes. . Precambrian Res. 321::30327
    [Crossref] [Google Scholar]
  87. Laurent O, Zeh A. 2015.. A linear Hf isotope-age array despite different granitoid sources and complex Archean geodynamics: example from the Pietersburg block (South Africa). . Earth Planet. Sci. Lett. 430::32638
    [Crossref] [Google Scholar]
  88. Li C-F, Wang X-C, Wilde SA, Li X-H, Wang Y-F, Li Z. 2017.. Differentiation of the early silicate Earth as recorded by 142Nd-143Nd in 3.8–3.0 Ga rocks from the Anshan Complex, North China Craton. . Precambrian Res. 301::86101
    [Crossref] [Google Scholar]
  89. Lugmair GW. 1974.. Sm-Nd ages: a new dating method. . Meteoritics 9::369 ( Abstr. )
    [Google Scholar]
  90. Maltese A, Caro G, Pandey OP, Upadhyay D, Mezger K. 2022.. Direct evidence for crust-mantle differentiation in the late Hadean. . Nat. Commun. 3::12
    [Google Scholar]
  91. Marangoanha B, de Oliveira DC, Galarza MA, Marques GT. 2020.. Crustal anatexis and mantle-derived magmas forming Neoarchean A-type granitoids in Carajás Province, northern Brazil: petrological evidence and tectonic control. . Precambrian Res. 338::105585
    [Crossref] [Google Scholar]
  92. Martin H. 1987.. Evolution in composition of granitic rocks controlled by time-dependent changes in petrogenetic processes: examples from the Archaean of eastern Finland. . Precambrian Res. 35::25776
    [Crossref] [Google Scholar]
  93. McCulloch MT, Bennett VC. 1994.. Progressive growth of the Earth's continental crust and depleted mantle: geochemical constraints. . Geochim. Cosmochim. Acta 58::471738
    [Crossref] [Google Scholar]
  94. McCulloch MT, Wasserburg GJ. 1978.. Sm-Nd and Rb-Sr chronology of continental crust formation. . Science 200::100311
    [Crossref] [Google Scholar]
  95. McLennan SM, Taylor SR. 1982.. Geochemical constraints on the growth of continental crust. . J. Geol. 9::34254
    [Google Scholar]
  96. Moyen JF, Paquette JL, Ionov DA, Gannoun A, Korsakov AV, et al. 2017.. Paleoproterozoic rejuvenation and replacement of Archaean lithosphere: evidence from zircon U–Pb dating and Hf isotopes in crustal xenoliths at Udachnaya, Siberian craton. . Earth Planet. Sci. Lett. 457::14959
    [Crossref] [Google Scholar]
  97. Murphy D, Rizo H, O'Neil J, Hepple R, Wiemer D, et al. 2021.. Combined Sm-Nd, Lu-Hf, and 142Nd study of Paleoarchean basalts from the East Pilbara Terrane, Western Australia. . Chem. Geol. 578::120301
    [Crossref] [Google Scholar]
  98. Naeraa T, Schersten A, Rosing MT, Kemp AIS, Hoffmann JE, et al. 2012.. Hf isotope evidence for a transition in the geodynamics of continental growth after 3.2 Ga. . Nature 485::62730
    [Crossref] [Google Scholar]
  99. Nägler TF, Kramers JD. 1998.. Nd isotopic evolution of the upper mantle during the Precambrian: models, data and the uncertainty of both. . Precambrian Res. 91:(3–4):23352
    [Crossref] [Google Scholar]
  100. Nebel O, Campbell IH, Sossi PA, Van Kranendonk MJ. 2014.. Hafnium and iron isotopes in early Archean komatiites record a plume-driven convection cycle in the Hadean Earth. . Earth Planet. Sci. Lett. 397::11120
    [Crossref] [Google Scholar]
  101. Nelson BK, DePaolo DJ. 1984.. 1,700-Myr greenstone volcanic successions in southwestern North America and isotopic evolution of Proterozoic mantle. . Nature 312:(5990):14346
    [Crossref] [Google Scholar]
  102. Nowell GM, Kempton PD, Noble SR, Fitton JG, Saunders AD, et al. 1998.. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. . Chem. Geol. 149:(3–4):21133
    [Crossref] [Google Scholar]
  103. Nutman AP. 2001.. On the scarcity of >3900 Ma detrital zircons in ≥3500 Ma metasediments. . Precambrian Res. 105:(2–4):93114
    [Crossref] [Google Scholar]
  104. Oliveira EP, McNaughton NJ, Zincone SA, Talavera C. 2020.. Birthplace of the São Francisco craton, Brazil: evidence from 3.60 to 3.64 Ga gneisses of the Mairi gneiss complex. . Terra Nova 32:(4):28189
    [Crossref] [Google Scholar]
  105. O'Neil J, Boyet M, Carlson RW, Paquette JL. 2013.. Half a billion years of reworking of Hadean mafic crust to produce the Nuvvuagittuq Eoarchean felsic crust. . Earth Planet. Sci. Lett. 379::1225
    [Google Scholar]
  106. O'Neill HSC, Palme H. 2008.. Collisional erosion and the non-chondritic composition of the terrestrial planets. . Philos. Trans. R. Soc. A 366::420538
    [Crossref] [Google Scholar]
  107. Ozawa K, Sakamoto N, Tsutsumi Y, Hirose K, Iizuka T, Yurimoto H. 2024.. Trace element partitioning in a deep magma ocean and the origin of the Hf-Nd mantle array. . Sci. Adv. 10::eadp0021
    [Crossref] [Google Scholar]
  108. Patchett PJ. 1983.. Importance of the Lu-Hf isotope system in studies of planetary chronology and chemical evolution. . Geochim. Cosmochim. Acta 47::8191
    [Crossref] [Google Scholar]
  109. Patchett PJ, Arndt NT. 1986.. Nd isotopes and tectonics of 1.9–1.7 Ga crustal genesis. . Earth Planet. Sci. Lett. 78::32938
    [Crossref] [Google Scholar]
  110. Patchett PJ, Kouvo O, Hedge CE, Tatsumoto M. 1981.. Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. . Contrib. Mineral. Petrol. 78::27997
    [Crossref] [Google Scholar]
  111. Patchett PJ, Tatsumoto M. 1980.. A routine high-precision method for Lu-Hf isotope geochemistry and chronology. . Contrib. Mineral. Petrol. 75::26367
    [Crossref] [Google Scholar]
  112. Petersson A, Kemp AIS, Gray CM, Whitehouse MJ. 2020.. Formation of early Archean Granite-Greenstone Terranes from a globally chondritic mantle: insights from igneous rocks of the Pilbara Craton, Western Australia. . Chem. Geol. 551::119757
    [Crossref] [Google Scholar]
  113. Petersson A, Waight T, Kemp AIS, Whitehouse MJ. 2024.. Refining Hf crust formation ages in Precambrian terranes. . Geochem. Perspect. Lett. 32::713
    [Crossref] [Google Scholar]
  114. Puchtel IS, Blichert-Toft J, Touboul M, Walker RJ, Byerly GR, et al. 2013.. Insights into early Earth from Barberton komatiites: evidence from lithophile isotope and trace element systematics. . Geochim. Cosmochim. Acta 108::6390
    [Crossref] [Google Scholar]
  115. Puetz SJ, Spencer CJ, Condie KC, Roberts NM. 2024.. Enhanced U-Pb detrital zircon, Lu-Hf zircon, δ18O zircon, and Sm-Nd whole rock global databases. . Sci. Data 11:(1):56
    [Crossref] [Google Scholar]
  116. Reimink JR, Chacko T, Stern RA, Heaman LM. 2014.. Earth's earliest evolved crust generated in an Iceland-like setting. . Nat. Geosci. 7:(7):52933
    [Crossref] [Google Scholar]
  117. Reimink JR, Davies JHFL, Chacko T, Stern RA, Heaman LM, et al. 2016.. No evidence for Hadean continental crust within Earth's oldest evolved rock unit. . Nat. Geosci. 9::77780
    [Crossref] [Google Scholar]
  118. Rizo H, Boyet M, Blichert-Toft J, Rosing M. 2011.. Combined Nd and Hf isotope evidence for deep-seated source of Isua lavas. . Earth Planet. Sci. Lett. 312::26779
    [Crossref] [Google Scholar]
  119. Roberts NMW, Spencer CJ. 2014.. The zircon archive of continent formation through time. . Geol. Soc. Lond. Spec. Publ. 389::197225
    [Crossref] [Google Scholar]
  120. Salerno R, Vervoort J, Fisher C, Kemp A, Roberts N. 2021.. The coupled Hf-Nd isotope record of the early Earth in the Pilbara Craton. . Earth Planet. Sci. Lett. 572::117139
    [Crossref] [Google Scholar]
  121. Salters VJ, White WM. 1998.. Hf isotope constraints on mantle evolution. . Chem. Geol. 145:(3–4):44760
    [Crossref] [Google Scholar]
  122. Satkoski AM, Bickford ME, Samson SD, Bauer RL, Mueller PA, Kamenov GD. 2013.. Geochemical and Hf–Nd isotopic constraints on the crustal evolution of Archean rocks from the Minnesota River Valley, USA. . Precambrian Res. 224::3650
    [Crossref] [Google Scholar]
  123. Scherer E, Münker C, Mezger K. 2001.. Calibration of the lutetium–hafnium clock. . Science 293::68386
    [Crossref] [Google Scholar]
  124. Schreefel R, Fisher CM, Kemp AIS, Hagemann SG, Masurel Q, et al. 2024.. Crustal growth in the Archean: insights from zircon petrochronology of the far-east Yilgarn Craton, Western Australia. . Precambrian Res. 401::107253
    [Crossref] [Google Scholar]
  125. Sguigna AP, Larabee AJ, Waddington JC. 1982.. The half-life of 176Lu by a γ–γ coincidence measurement. . Can. J. Phys. 60:(3):36164
    [Crossref] [Google Scholar]
  126. Shirey SB. 1991.. The Rb-Sr, Sm-Nd and Re-Os isotopic systems: a summary and comparison of their applications to the cosmochronology and geochronology of igneous rocks. . In MAC Short Course on Radiogenic Isotope Systems, Vol. 19, ed. L Heaman, JN Ludden , pp. 10366. Toronto:: Mineral. Assoc. Can.
    [Google Scholar]
  127. Shirey SB, Hanson GN. 1984.. Mantle-derived Archaean monozodiorites and trachyandesites. . Nature 310:(5974):22224
    [Crossref] [Google Scholar]
  128. Smith AD, Ludden JN. 1989.. Nd isotopic evolution of the Precambrian mantle. . Earth Planet. Sci. Lett. 93:(1):1422
    [Crossref] [Google Scholar]
  129. Smithies RH, Champion DC, Van Kranendonk MJ. 2009.. Formation of Paleoarchaean continental crust through infracrustal melting of enriched basalt. . Earth Planet. Sci. Lett. 281::298306
    [Crossref] [Google Scholar]
  130. Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE. 2004.. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. . Earth Planet. Sci. Lett. 219::31124
    [Crossref] [Google Scholar]
  131. Stevenson RK, Patchett PJ. 1990.. Implications for the evolution of continental crust from Hf isotope systematics of Archaean detrital zircons. . Geochim. Cosmochim. Acta 54::168397
    [Crossref] [Google Scholar]
  132. Tatsumoto M, Unruh DM, Patchett PJ. 1981.. U-Pb and Lu-Hf systematics of Antarctic meteorites. . Mem. Natl. Inst. Polar Res. 20::23749
    [Google Scholar]
  133. Thirlwall MF, Walder AJ. 1995.. In situ Hf isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry. . Chem. Geol. 122::24147
    [Crossref] [Google Scholar]
  134. Veizer J, Jansen S. 1979.. Basement and sedimentary recycling and continental evolution. . J. Geol. 87::34170
    [Crossref] [Google Scholar]
  135. Vervoort JD, Blichert-Toft J. 1999.. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. . Geochim. Cosmochim. Acta 63::53356
    [Crossref] [Google Scholar]
  136. Vervoort JD, Blichert-Toft J, Patchett PJ, Albarède F. 1999.. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. . Earth Planet. Sci. Lett. 168::7999
    [Crossref] [Google Scholar]
  137. Vervoort JD, Kemp AIS. 2016.. Clarifying the zircon Hf isotope record of crust-mantle evolution. . Chem. Geol. 425::6575
    [Crossref] [Google Scholar]
  138. Vervoort JD, Plank T, Prytulak J. 2011.. The Hf–Nd isotopic composition of marine sediments. . Geochim. Cosmochim. Acta 75:(20):590326
    [Crossref] [Google Scholar]
  139. Voice PJ, Kowalewski M, Eriksson KA. 2011.. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains. . J. Geol. 119:(2):10926
    [Crossref] [Google Scholar]
  140. Wang D, Qiu X-F, Carlson RW. 2023.. The Eoarchean Muzidian gneiss complex: long-lived Hadean crustal components in the building of Archean continents. . Earth Planet. Sci. Lett. 605::118037
    [Crossref] [Google Scholar]
  141. Wang D, Shirey SB, Carlson RW, Fisher CM, Kemp AIS, Bickford M. 2022.. Comparative Sm-Nd isotope behavior of accessory minerals: reconstructing the Sm-Nd isotope evolution of early Archean rocks. . Geochim. Cosmochim. Acta 318::190212
    [Crossref] [Google Scholar]
  142. Wang D, Vervoort JD, Fisher CM, Lewis RS, Buddington A. 2022.. The Neoarchean and Paleoproterozoic crustal evolution of the Clearwater block, northwestern Laurentia: implications for the assembly of supercontinents. . Precambrian Res. 379::106780
    [Crossref] [Google Scholar]
  143. Wang K, Liu S, Wang M, Yan M. 2017.. Geochemistry and zircon U-Pb-Hf isotopes of the late Neoarchean granodiorite-monzogranite-quartz syenite intrusions in the Northern Liaoning Block, North China Craton: petrogenesis and implications for geodynamic processes. . Precambrian Res. 295::15171
    [Crossref] [Google Scholar]
  144. Wang W, Lu Y, Gao L, Sun G, Zhou X, . 2024.. Late Archean K-rich intermediate magmatism driven by deep supracrustal recycling. . Chem. Geol. 662::122215
    [Crossref] [Google Scholar]
  145. Whitehouse MJ, Kemp AIS, Petersson A. 2022.. Persistent mildly supra-chondritic initial Hf in the Lewisian Complex, NW Scotland: implications for Neoarchean crust-mantle differentiation. . Chem. Geol. 606::121001
    [Crossref] [Google Scholar]
  146. Wilde SA, Valley JW, Peck WH, Graham CM. 2001.. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. . Nature 409::17578
    [Crossref] [Google Scholar]
  147. Williams IS, Collins WJ. 1990.. Granite-greenstone terranes in the Pilbara Block, Australia, as coeval volcano-plutonic complexes; evidence from U-Pb zircon dating of the Mount Edgar Batholith. . Earth Planet. Sci. Lett. 97::4153
    [Crossref] [Google Scholar]
  148. Woodhead JD, Hergt JM, Shelley M, Eggins S, Kemp R. 2004.. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. . Chem. Geol. 209::12135
    [Crossref] [Google Scholar]
  149. Yang J-H, Wu F-Y, Wilde SA, Zhao G. 2008.. Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: geochronological, geochemical and Nd–Hf isotopic evidence. . Precambrian Res. 167::12549
    [Crossref] [Google Scholar]
  150. Zeh A, Gerdes A, Barton JM Jr. 2009.. Archean accretion and crustal evolution of the Kalahari Craton—the zircon age and Hf isotope record of granitic rocks from Barberton/Swaziland to the Francistown Arc. . J. Petrol. 50::93366
    [Crossref] [Google Scholar]
  151. Zeh A, Gerdes A, Barton J Jr., Klemd R. 2010.. U-Th-Pb and Lu-Hf systematics of zircon from TTG's, leucosomes, meta-anorthosites and quartzites of the Limpopo Belt (South Africa): constraints for the formation, recycling and metamorphism of Palaeoarchaean crust. . Precambrian Res. 179:(1–4):5068
    [Crossref] [Google Scholar]
  152. Zeh A, Gerdes A, Klemd R, Barton JM Jr. 2007.. Archaean to Proterozoic crustal evolution in the central zone of the Limpopo Belt (South Africa–Botswana): constraints from combined U–Pb and Lu–Hf isotope analyses of zircon. . J. Petrol. 48:(8):160539
    [Crossref] [Google Scholar]
  153. Zeh A, Gerdes A, Millonig L. 2011.. Hafnium isotope record of the Ancient Gneiss Complex, Swaziland, southern Africa: evidence for Archean crust–mantle formation and crust reworking between 3.66 and 2.73 Ga. . J. Geol. Soc. 168::95364
    [Crossref] [Google Scholar]
  154. Zincone SA, Oliveira EP, Laurent O, Zhang H, Zhai M. 2016.. 3.30 Ga high-silica intraplate volcanic–plutonic system of the Gavião Block, São Francisco Craton, Brazil: evidence of an intracontinental rift following the creation of insulating continental crust. . Lithos 266::41434
    [Crossref] [Google Scholar]
  155. Zoleikhaei Y, Mazumder R, Cawood PA, De S. 2023.. Paleo-Mesoarchean magmatism and sedimentation in the northern part of the Singhbhum Craton: evidence from zircon U-Pb-Hf, apatite U-Pb, and trace elements. . Precambrian Res. 397::107174
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-112052
Loading
/content/journals/10.1146/annurev-earth-031621-112052
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error