1932

Abstract

Melt extraction from the partially molten mantle is among the fundamental processes shaping the solid Earth today and over geological time. A diversity of properties and mechanisms contribute to the physics of melt extraction. We review progress of the past ∼25 years of research in this area, with a focus on understanding the speed and style of buoyancy-driven melt extraction. Observations of U-series disequilibria in young lavas and the surge of deglacial volcanism in Iceland suggest this speed is rapid compared to that predicted by the null hypothesis of diffuse porous flow. The discrepancy indicates that the style of extraction is channelized. We discuss how channelization is sensitive to mechanical and thermochemical properties and feedbacks, and to asthenospheric heterogeneity. We review the grain-scale physics that underpins these properties and hence determines the physical behavior at much larger scales. We then discuss how the speed of melt extraction is crucial to predicting the magmatic response to glacial and sea-level variations. Finally, we assess the frontier of current research and identify areas where significant advances are expected over the next 25 years. In particular, we highlight the coupling of melt extraction with more realistic models of mantle thermochemistry and rheological properties. This coupling will be crucial in understanding complex settings such as subduction zones.

  • ▪  Mantle melt extraction shapes Earth today and over geological time.
  • ▪  Observations, lab experiments, and theory indicate that melt ascends through the mantle at speeds ∼30 m/year by reactively channelized porous flow.
  • ▪  Variations in sea level and glacial ice loading can cause significant changes in melt supply to submarine and subaerial volcanoes.
  • ▪  Fluid-driven fracture is important in the lithosphere and, perhaps, in the mantle wedge of subduction zones, but remains a challenge to model.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-083704
2022-05-31
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/earth/50/1/annurev-earth-032320-083704.html?itemId=/content/journals/10.1146/annurev-earth-032320-083704&mimeType=html&fmt=ahah

Literature Cited

  1. Aharonov E, Whitehead JA, Kelemen PB, Spiegelman M. 1995. Channeling instability of upwelling melt in the mantle. J. Geophys. Res. 100:B1020433–50
    [Google Scholar]
  2. Annen C, Blundy J, Sparks R. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47:505–39
    [Google Scholar]
  3. Austin NJ, Evans B. 2007. Paleowattmeters: a scaling relation for dynamically recrystallized grain size. Geology 35:343–46
    [Google Scholar]
  4. Bachmann O, Huber C. 2019. The inner workings of crustal distillation columns; the physical mechanisms and rates controlling phase separation in silicic magma reservoirs. J. Petrol. 60:3–18
    [Google Scholar]
  5. Baltzell C, Parmentier EM, Liang Y, Tirupathi S. 2015. A high-order numerical study of reactive dissolution in an upwelling heterogeneous mantle: 2. Effect of shear deformation. Geochem. Geophys. Geosyst. 16:3855–69
    [Google Scholar]
  6. Bercovici D, Ricard Y. 2012. Mechanisms for the generation of plate tectonics by two-phase grain-damage and pinning. Phys. Earth Planet. Inter. 202–203:27–55
    [Google Scholar]
  7. Bercovici D, Ricard Y, Schubert G 2001. A two-phase model for compaction and damage: 1. General theory. J. Geophys. Res. 106:B58887–906
    [Google Scholar]
  8. Bo T, Katz RF, Shorttle O, Rudge JF. 2018. The melting column as a filter of mantle trace-element heterogeneity. Geochem. Geophys. Geosyst. 19:4694–721
    [Google Scholar]
  9. Boulahanis B, Carbotte SM, Huybers PJ, Nedimović MR, Aghaei O et al. 2020. Do sea level variations influence mid-ocean ridge magma supply? A test using crustal thickness and bathymetry data from the East Pacific Rise. Earth Planet. Sci. Lett. 535:116121
    [Google Scholar]
  10. Braun MG, Kelemen PB. 2002. Dunite distribution in the Oman ophiolite: implications for melt flux through porous dunite conduits. Geochem. Geophys. Geosyst. 3:8603
    [Google Scholar]
  11. Breithaupt T, Hansen LN, Toppaladoddi S, Katz RF 2021. The role of grain-environment heterogeneity in normal grain growth: a stochastic approach. Acta Mater. 209:116699
    [Google Scholar]
  12. Butler SL. 2009. The effects of buoyancy on shear-induced melt bands in a compacting porous medium. Phys. Earth Planet. Inter. 173:51–59
    [Google Scholar]
  13. Butler SL. 2012. Numerical models of shear-induced melt band formation with anisotropic matrix viscosity. Phys. Earth Planet. Inter. 200:28–36
    [Google Scholar]
  14. Butler SL. 2017. Shear-induced porosity bands in a compacting porous medium with damage rheology. Phys. Earth Planet. Inter. 264:7–17
    [Google Scholar]
  15. Cagnioncle AM, Parmentier E, Elkins-Tanton L. 2007. Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries. J. Geophys. Res. 112:B9B09402
    [Google Scholar]
  16. Cashman KV, Sparks RSJ, Blundy JD. 2017. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355:6331eaag3055
    [Google Scholar]
  17. Cerpa NG, Rees Jones DW, Katz RF 2019a. Consequences of glacial cycles for magmatism and carbon transport at mid-ocean ridges. Earth Planet. Sci. Lett. 528:115845
    [Google Scholar]
  18. Cerpa NG, Wada I, Wilson CR. 2017. Fluid migration in the mantle wedge: influence of mineral grain size and mantle compaction. J. Geophys. Res. Solid Earth 122:6247–68
    [Google Scholar]
  19. Cerpa NG, Wada I, Wilson CR. 2019b. Effects of fluid influx, fluid viscosity, and fluid density on fluid migration in the mantle wedge and their implications for hydrous melting. Geosphere 15:1–23
    [Google Scholar]
  20. Collier ML, Kelemen PB. 2010. The case for reactive crystallization at mid-ocean ridges. J. Petrol. 51:1913–40
    [Google Scholar]
  21. Connolly JAD, Podladchikov YY. 1998. Compaction-driven fluid flow in viscoelastic rock. Geodin. Acta 11:55–84
    [Google Scholar]
  22. Connolly JAD, Podladchikov YY. 2007. Decompaction weakening and channeling instability in ductile porous media: implications for asthenospheric melt segregation. J. Geophys. Res. 112:B10B10205
    [Google Scholar]
  23. Connolly JAD, Schmidt MW, Solferino G, Bagdassarov N. 2009. Permeability of asthenospheric mantle and melt extraction rates at mid-ocean ridges. Nature 462:209–12
    [Google Scholar]
  24. Cooper RF. 1990. Differential stress-induced melt migration: an experimental approach. J. Geophys. Res. 95:B56979–92
    [Google Scholar]
  25. Cooper RF, Kohlstedt DL. 1984. Solution-precipitation enhanced diffusional creep of partially molten olivine-basalt aggregates during hot-pressing. Tectonophysics 107:207–33
    [Google Scholar]
  26. Cooper RF, Kohlstedt DL. 1986. Rheology and structure of olivine-basalt partial melts. J. Geophys. Res. 91:B99315–23
    [Google Scholar]
  27. Costa KM, McManus JF, Middleton JL, Langmuir CH, Huybers P et al. 2017. Hydrothermal deposition on the Juan de Fuca Ridge over multiple glacial-interglacial cycles. Earth Planet. Sci. Lett. 479:120–32
    [Google Scholar]
  28. Crowley JW, Katz RF, Huybers P, Langmuir CH, Park SH. 2014. Glacial cycles drive variations in the production of oceanic crust. Science 347:1237–40
    [Google Scholar]
  29. Davies JH. 1999. The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism. Nature 398:142–45
    [Google Scholar]
  30. Eason DE, Sinton JM, Grönvold K, Kurz MD. 2015. Effects of deglaciation on the petrology and eruptive history of the Western Volcanic Zone, Iceland. Bull. Volcanol. 77:47
    [Google Scholar]
  31. Eksinchol I, Rudge JF, Maclennan J. 2019. Rate of melt ascent beneath Iceland from the magmatic response to deglaciation. Geochem. Geophys. Geosyst. 20:2585–605
    [Google Scholar]
  32. Elkins LJ, Bourdon B, Lambart S. 2019. Testing pyroxenite versus peridotite sources for marine basalts using U-series isotopes. Lithos 332:226–44
    [Google Scholar]
  33. Elliott T, Spiegelman MW 2003. Melt migration in oceanic crustal production: a U-series perspective. Treatise on Geochemistry KK Turekian, HD Holland 465–510 Amsterdam: Elsevier
    [Google Scholar]
  34. England PC, Katz RF. 2010. Melting above the anhydrous solidus controls the location of volcanic arcs. Nature 467:700–3
    [Google Scholar]
  35. Faul UH, Jackson I. 2007. Diffusion creep of dry, melt-free olivine. J. Geophys. Res. 112:B4B04204
    [Google Scholar]
  36. Fowler AC. 1984. On the transport of moisture in polythermal glaciers. Geophys. Astrophys. Fluid Dyn. 28:99–140
    [Google Scholar]
  37. Gebhardt D, Butler S. 2016. Linear analysis of melt band formation in a mid-ocean ridge corner flow. Geophys. Res. Lett. 43:3700–7
    [Google Scholar]
  38. Ghods A, Arkani-Hamed J. 2000. Melt migration beneath mid-ocean ridges. Geophys. J. Int. 140:687–97
    [Google Scholar]
  39. Goff JA. 2015. Comment on “Glacial cycles drive variations in the production of oceanic crust. .” Science 349:1065
    [Google Scholar]
  40. Ha G, Montési LG, Zhu W. 2020. Melt focusing along permeability barriers at subduction zones and the location of volcanic arcs. Geochem. Geophys. Geosyst. 21:e2020GC009253
    [Google Scholar]
  41. Hansen LN, Warren JM. 2015. Quantifying the effect of pyroxene on deformation of peridotite in a natural shear zone. J. Geophys. Res. Solid Earth 120:2717–38
    [Google Scholar]
  42. Havlin C, Parmentier E, Hirth G 2013. Dike propagation driven by melt accumulation at the lithosphere–asthenosphere boundary. Earth Planet. Sci. Lett. 376:20–28
    [Google Scholar]
  43. Hesse MA, Schiemenz AR, Liang Y, Parmentier EM. 2011. Compaction-dissolution waves in an upwelling mantle column. Geophys. J. Int. 187:1057–75
    [Google Scholar]
  44. Hewitt IJ. 2010. Modelling melting rates in upwelling mantle. Earth Planet. Sci. Lett. 300:264–74
    [Google Scholar]
  45. Hewitt IJ, Fowler AC. 2008. Partial melting in an upwelling mantle column. Proc. R. Soc. A 464:2467–91
    [Google Scholar]
  46. Hildreth W, Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol. 98:455–89
    [Google Scholar]
  47. Hirschmann MM, Stolper EM. 1996. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib. Mineral. Petrol. 124:185–208
    [Google Scholar]
  48. Holness M, Siklos S. 2000. The rates and extent of textural equilibration in high-temperature fluid-bearing systems. Chem. Geol. 162:137–53
    [Google Scholar]
  49. Holtzman B, Groebner N, Zimmerman M, Ginsberg S, Kohlstedt D 2003. Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4:8607
    [Google Scholar]
  50. Huybers P, Langmuir C. 2009. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth Planet. Sci. Lett. 286:3–4479–91
    [Google Scholar]
  51. Huybers P, Langmuir C, Katz RF, Ferguson D, Proistosescu C, Carbotte S 2016. Comment on “Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply. .” Science 352:1405
    [Google Scholar]
  52. Ito G, Mahoney J. 2005. Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts. Earth Planet. Sci. Lett. 230:29–46
    [Google Scholar]
  53. Jackson M, Blundy J, Sparks R. 2018. Chemical differentiation, cold storage and remobilization of magma in the Earth's crust. Nature 564:405–9
    [Google Scholar]
  54. Jordan JS, Hesse MA. 2015. Reactive transport in a partially molten system with binary solid solution. Geochem. Geophys. Geosyst. 16:4153–77
    [Google Scholar]
  55. Jull M, Kelemen P, Sims K. 2002. Consequences of diffuse and channelled porous melt migration on uranium series disequilibria. Geochim. Cosmochim. Acta 66:234133–48
    [Google Scholar]
  56. Jull M, McKenzie D. 1996. The effect of deglaciation on mantle melting beneath Iceland. J. Geophys. Res. 101:B1021815–28
    [Google Scholar]
  57. Katz RF. 2008. Magma dynamics with the enthalpy method: benchmark solutions and magmatic focusing at mid-ocean ridges. J. Petrol. 49:122099–121
    [Google Scholar]
  58. Katz RF. 2022. The Dynamics of Partially Molten Rock Princeton, NJ: Princeton Univ. Press.
  59. Katz RF, Rudge JF. 2011. The energetics of melting fertile heterogeneities within the depleted mantle. Geochem. Geophys. Geosyst. 12:Q0AC16
    [Google Scholar]
  60. Katz RF, Spiegelman M, Holtzman B. 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442:676–79
    [Google Scholar]
  61. Katz RF, Weatherley S. 2012. Consequences of mantle heterogeneity for melt extraction at mid-ocean ridges. Earth Planet. Sci. Lett. 335–336:226–37
    [Google Scholar]
  62. Kelemen PB. 1990. Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J. Petrol. 31:51–98
    [Google Scholar]
  63. Kelemen PB, Braun M, Hirth G. 2000. Spatial distribution of melt conduits in the mantle beneath oceanic spreading ridges: observations from the Ingalls and Oman ophiolites. Geochem. Geophys. Geosyst. 1:1005
    [Google Scholar]
  64. Kelemen PB, Dick HJB, Quick JE 1992. Formation of hartzburgite by pervasive melt rock reaction in the upper mantle. Nature 358:635–41
    [Google Scholar]
  65. Kelemen PB, Hirth G, Shimizu N, Spiegelman M, Dick H. 1997. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philos. Trans. R. Soc. A 355:283–318
    [Google Scholar]
  66. Kelemen PB, Rilling JL, Parmentier EM, Mehl L, Hacker BR 2003. Thermal structure due to solid-state flow in the mantle wedge beneath arcs. Geophys. Monogr. Ser. 138:293–311
    [Google Scholar]
  67. Kelemen PB, Whitehead JA, Aharonov E, Jordahl KA 1995. Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle. J. Geophys. Res. 100:B1475–96
    [Google Scholar]
  68. Keller T, Katz RF. 2016. The role of volatiles in reactive melt transport in the asthenosphere. J. Petrol. 57:1073–108
    [Google Scholar]
  69. Keller T, Katz RF, Hirschmann MM. 2017. Volatiles beneath mid-ocean ridges: deep melting, channelised transport, focusing, and metasomatism. Earth Planet. Sci. Lett. 464:55–68
    [Google Scholar]
  70. Keller T, May DA, Kaus BJP 2013. Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust. Geophys. J. Int. 195:1406–42
    [Google Scholar]
  71. Keller T, Suckale J. 2019. A continuum model of multi-phase reactive transport in igneous systems. Geophys. J. Int. 219:185–222
    [Google Scholar]
  72. Kogiso T, Hirschmann MM. 2006. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth Planet. Sci. Lett. 249:188–99
    [Google Scholar]
  73. Kogiso T, Hirschmann MM, Pertermann M. 2004a. High-pressure partial melting of mafic lithologies in the mantle. J. Petrol. 45:2407–22
    [Google Scholar]
  74. Kogiso T, Hirschmann MM, Reiners P. 2004b. Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochim. Cosmochim. Acta 68:345–60
    [Google Scholar]
  75. Köhler P, Munhoven G. 2020. Late Pleistocene carbon cycle revisited by considering solid Earth processes. Paleoceanogr. Paleoclimatol. 35:12e2020PA004020
    [Google Scholar]
  76. Kohlstedt DL, Hansen LN 2015. Constitutive equations, rheological behavior, and viscosity of rocks. Treatise on Geophysics G Schubert 441–72 Oxford, UK: Elsevier. , 2nd ed..
    [Google Scholar]
  77. Kohlstedt DL, Holtzman BK. 2009. Shearing melt out of the Earth: an experimentalist's perspective on the influence of deformation on melt extraction. Annu. Rev. Earth Planet. Sci. 37:561–93
    [Google Scholar]
  78. Kohlstedt DL, Zimmerman ME. 1996. Rheology of partially molten mantle rocks. Annu. Rev. Earth Planet. Sci. 24:41–62
    [Google Scholar]
  79. Li Y, Weng A, Xu W, Zou Z, Tang Y et al. 2021. Translithospheric magma plumbing system of intraplate volcanoes as revealed by electrical resistivity imaging. Geology 49:111337–42
    [Google Scholar]
  80. Liang Y, Schiemenz A, Hesse M, Parmentier E, Hesthaven J 2010. High-porosity channels for melt migration in the mantle: Top is the dunite and bottom is the harzburgite and lherzolite. Geophys. Res. Lett. 37:L15306
    [Google Scholar]
  81. Liu B, Liang Y. 2019. Importance of permeability and deep channel network on the distribution of melt, fractionation of REE in abyssal peridotites, and U-series disequilibria in basalts beneath mid-ocean ridges: a numerical study using a 2D double-porosity model. Earth Planet. Sci. Lett. 528:115788
    [Google Scholar]
  82. Longhi J. 2002. Some phase equilibrium systematics of lherzolite melting: I. Geochem. Geophys. Geosyst. 3:1–33
    [Google Scholar]
  83. Lund DC, Asimow PD. 2011. Does sea level influence mid-ocean ridge magmatism on Milankovitch timescales?. Geochem. Geophys. Geosyst. 12:Q12009
    [Google Scholar]
  84. Lund DC, Asimow PD, Farley KA, Rooney TO, Seeley E et al. 2016. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations. Science 351:478–82
    [Google Scholar]
  85. Lundstrom C, Gill J, Williams Q 2000. A geochemically consistent hypothesis for MORB generation. Chem. Geol. 162:105–26
    [Google Scholar]
  86. Maclennan J, Jull M, McKenzie D, Slater L, Grönvold K 2002. The link between volcanism and deglaciation in Iceland. Geochem. Geophys. Geosyst. 3:111–25
    [Google Scholar]
  87. Macpherson CG, Dreher ST, Thirlwall MF. 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet. Sci. Lett. 243:581–93
    [Google Scholar]
  88. Marschall HR, Schumacher JC. 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nat. Geosci. 5:862–67
    [Google Scholar]
  89. McCarthy C, Takei Y. 2011. Anelasticity and viscosity of partially molten rock analogue: toward seismic detection of small quantities of melt. Geophys. Res. Lett. 38:L18306
    [Google Scholar]
  90. McKenzie D. 1984. The generation and compaction of partially molten rock. J. Petrol. 25:713–65
    [Google Scholar]
  91. McKenzie D. 2000. Constraints on melt generation and transport from U-series activity ratios. Chem. Geol. 162:81–94
    [Google Scholar]
  92. Mei S, Bai W, Hiraga T, Kohlstedt D. 2002. Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous conditions. Earth Planet. Sci. Lett. 201:491–507
    [Google Scholar]
  93. Middleton JL, Langmuir CH, Mukhopadhyay S, McManus JF, Mitrovica JX. 2016. Hydrothermal iron flux variability following rapid sea level changes. Geophys. Res. Lett. 43:3848–56
    [Google Scholar]
  94. Miller KJ, Montési LGJ, Zhu W. 2015. Estimates of olivine–basaltic melt electrical conductivity using a digital rock physics approach. Earth Planet. Sci. Lett. 432:332–41
    [Google Scholar]
  95. Miller KJ, Zhu W, Montési LGJ, Gaetani GA. 2014. Experimental quantification of permeability of partially molten mantle rock. Earth Planet. Sci. Lett. 388:273–82
    [Google Scholar]
  96. Miller KJ, Zhu W, Montési LGJ, Gaetani GA, Le Roux V, Xiao X 2016. Experimental evidence for melt partitioning between olivine and orthopyroxene in partially molten harzburgite. J. Geophys. Res. Solid Earth 121:5776–93
    [Google Scholar]
  97. Morgan Z, Liang Y 2003. An experimental and numerical study of the kinetics of harzburgite reactive dissolution with applications to dunite dike formation. Earth Planet. Sci. Lett. 214:59–74
    [Google Scholar]
  98. Morgan Z, Liang Y 2005. An experimental study of the kinetics of lherzolite reactive dissolution with applications to melt channel formation. Contrib. Mineral. Petrol. 150:369–85
    [Google Scholar]
  99. Olive JA, Behn M, Ito G, Buck W, Escartín J, Howell S 2015. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply. Science 350:310–13
    [Google Scholar]
  100. Oliveira B, Afonso JC, Tilhac R. 2020. A disequilibrium reactive transport model for mantle magmatism. J. Petrol. 61:9egaa067
    [Google Scholar]
  101. Pec M, Holtzman BK, Zimmerman M, Kohlstedt DL. 2015. Reaction infiltration instabilities in experiments on partially molten mantle rocks. Geology 43:575–78
    [Google Scholar]
  102. Pec M, Holtzman BK, Zimmerman ME, Kohlstedt DL. 2017. Reaction infiltration instabilities in mantle rocks: an experimental investigation. J. Petrol. 58:979–1003
    [Google Scholar]
  103. Pec M, Holtzman BK, Zimmerman ME, Kohlstedt DL. 2020. Influence of lithology on reactive melt flow channelization. Geochem. Geophys. Geosyst. 21:e2020GC008937
    [Google Scholar]
  104. Pertermann M, Hirschmann M. 2003a. Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa. J. Petrol. 44:2173–201
    [Google Scholar]
  105. Pertermann M, Hirschmann M. 2003b. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J. Geophys. Res. 108:B22125
    [Google Scholar]
  106. Pilet S, Baker MB, Stolper EM. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science 320:916–19
    [Google Scholar]
  107. Python M, Ceuleneer G. 2003. Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite. Geochem. Geophys. Geosyst. 4:8612
    [Google Scholar]
  108. Qi C, Kohlstedt D, Katz R, Takei Y. 2015. An experimental test of the viscous anisotropy hypothesis for partially molten rocks. PNAS 112:4112616–20
    [Google Scholar]
  109. Räss L, Simon NS, Podladchikov YY. 2018. Spontaneous formation of fluid escape pipes from subsurface reservoirs. Sci. Rep. 8:11116
    [Google Scholar]
  110. Rawson H, Keller T, Fontijn K, Pyle DM, Mather TA et al. 2016. Compositional variability in mafic arc magmas over short spatial and temporal scales: evidence for the signature of mantle reactive melt channels. Earth Planet. Sci. Lett. 456:66–77
    [Google Scholar]
  111. Rees Jones DW, Katz RF 2018. Reaction-infiltration instability in a compacting porous medium. J. Fluid Mech. 852:5–36
    [Google Scholar]
  112. Rees Jones DW, Katz RF, Tian M, Rudge JF 2018. Thermal impact of magmatism in subduction zones. Earth Planet. Sci. Lett. 481:73–79
    [Google Scholar]
  113. Rees Jones DW, Rudge JF 2020. Fast magma ascent, revised estimates from the deglaciation of Iceland. Earth Planet. Sci. Lett. 542:116324
    [Google Scholar]
  114. Rees Jones DW, Zhang H, Katz RF 2021. Magmatic channelization by reactive and shear-driven instabilities at mid-ocean ridges: a combined analysis. Geophys. J. Int. 226:582–609
    [Google Scholar]
  115. Renner J, Viskupic K, Hirth G, Evans B. 2003. Melt extraction from partially molten peridotites. Geochem. Geophys. Geosyst. 4:8606
    [Google Scholar]
  116. Rivalta E, Taisne B, Bunger A, Katz R. 2015. A review of mechanical models of dike propagation: schools of thought, results and future directions. Tectonophysics 638:1–42
    [Google Scholar]
  117. Rochat L, Pilet S, Müntener O, Duretz T, Baumgartner L et al. 2017. Garnet xenocryst from petit-spot lavas as an indicator for off-axis mantle refertilization at intermediate spreading ridges. Geology 45:1091–94
    [Google Scholar]
  118. Rubin KH, van der Zander I, Smith MC, Bergmanis EC 2005. Minimum speed limit for ocean ridge magmatism from 210Pb–226Ra–230Th disequilibria. Nature 437:534–38
    [Google Scholar]
  119. Rudge JF. 2018a. Textural equilibrium melt geometries around tetrakaidecahedral grains. Proc. R. Soc. A 474:20170639
    [Google Scholar]
  120. Rudge JF. 2018b. The viscosities of partially molten materials undergoing diffusion creep. J. Geophys. Res. Solid Earth 123:10534–62
    [Google Scholar]
  121. Rudge JF, Bercovici D. 2015. Melt-band instabilities with two-phase damage. Geophys. J. Int. 201:640–51
    [Google Scholar]
  122. Rudge JF, Bercovici D, Spiegelman M. 2011. Disequilibrium melting of a two phase multicomponent mantle. Geophys. J. Int. 184:699–718
    [Google Scholar]
  123. Rychert CA, Harmon N, Constable S, Wang S 2020. The nature of the lithosphere-asthenosphere boundary. J. Geophys. Res. Solid Earth 125:e2018JB016463
    [Google Scholar]
  124. Schiemenz A, Liang Y, Parmentier EM. 2011. A high-order numerical study of reactive dissolution in an upwelling heterogeneous mantle—I. Channelization, channel lithology and channel geometry. Geophys. J. Int. 186:641–64
    [Google Scholar]
  125. Schmeling H, Kruse JP, Richard G. 2012. Effective shear and bulk viscosity of partially molten rock based on elastic moduli theory of a fluid filled poroelastic medium. Geophys. J. Int. 190:1571–78
    [Google Scholar]
  126. Scott DR, Stevenson DJ. 1986. Magma ascent by porous flow. J. Geophys. Res. 91:B99283–96
    [Google Scholar]
  127. Scott T, Kohlstedt D. 2006. The effect of large melt fraction on the deformation behavior of peridotite. Earth Planet. Sci. Lett. 246:177–87
    [Google Scholar]
  128. Shorttle O, Maclennan J, Lambart S. 2014. Quantifying lithological variability in the mantle. Earth Planet. Sci. Lett. 395:24–40
    [Google Scholar]
  129. Sim SJ, Spiegelman M, Stegman DR, Wilson C. 2020. The influence of spreading rate and permeability on melt focusing beneath mid-ocean ridges. Phys. Earth Planet. Inter. 304:106486
    [Google Scholar]
  130. Simpson G, Spiegelman M, Weinstein M. 2010a. A multiscale model of partial melts: 1. Effective equations. J. Geophys. Res. 115:B4B04410
    [Google Scholar]
  131. Simpson G, Spiegelman M, Weinstein M. 2010b. A multiscale model of partial melts: 2. Numerical results. J. Geophys. Res. 115:B4B04411
    [Google Scholar]
  132. Sinton J, Grönvold K, Sæmundsson K 2005. Postglacial eruptive history of the western volcanic zone, Iceland. Geochem. Geophys. Geosyst. 6:Q12009
    [Google Scholar]
  133. Sleep NH. 1984. Tapping of magmas from ubiquitous mantle heterogeneities: an alternative to mantle plumes?. J. Geophys. Res. 89:B1210029–41
    [Google Scholar]
  134. Sleep NH. 1988. Tapping of melt by veins and dikes. J. Geophys. Res. 93:B910255–72
    [Google Scholar]
  135. Spiegelman M. 2003. Linear analysis of melt band formation by simple shear. Geochem. Geophys. Geosyst. 4:8615
    [Google Scholar]
  136. Spiegelman M, Elliott T. 1993. Consequences of melt transport for uranium series disequilibrium in young lavas. Earth Planet. Sci. Lett. 118:1–20
    [Google Scholar]
  137. Spiegelman M, Kelemen P. 2003. Extreme chemical variability as a consequence of channelized melt transport. Geochem. Geophys. Geosyst. 4:1055
    [Google Scholar]
  138. Spiegelman M, Kelemen P, Aharonov E. 2001. Causes and consequences of flow organization during melt transport: the reaction infiltration instability in compactible media. J. Geophys. Res. 106:B22061–77
    [Google Scholar]
  139. Šrámek O, Ricard Y, Bercovici D 2007. Simultaneous melting and compaction in deformable two-phase media. Geophys. J. Int. 168:964–82
    [Google Scholar]
  140. Stevenson DJ. 1989. Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophys. Res. Lett. 16:1067–70
    [Google Scholar]
  141. Stevenson DJ, Scott DR. 1991. Mechanics of fluid-rock systems. Annu. Rev. Fluid Mech. 23:305–39
    [Google Scholar]
  142. Stracke A. 2021. A process-oriented approach to mantle geochemistry. Chem. Geol. 579:120350
    [Google Scholar]
  143. Stracke A, Bourdon B, McKenzie D. 2006. Melt extraction in the Earth's mantle: constraints from U–Th–Pa–Ra studies in oceanic basalts. Earth Planet. Sci. Lett. 244:97–112
    [Google Scholar]
  144. Takei Y. 2005. Deformation-induced grain boundary wetting and its effects on the acoustic and rheological properties of partially molten rock analogue. J. Geophys. Res. 110:B12B12203
    [Google Scholar]
  145. Takei Y. 2017. Effects of partial melting on seismic velocity and attenuation: a new insight from experiments. Annu. Rev. Earth Planet. Sci. 45:447–70
    [Google Scholar]
  146. Takei Y, Holtzman B. 2009a. Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model. J. Geophys. Res. 114:B6B06205
    [Google Scholar]
  147. Takei Y, Holtzman B. 2009b. Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 2. Compositional model for small melt fractions. J. Geophys. Res. 114:B6B06206
    [Google Scholar]
  148. Takei Y, Holtzman B. 2009c. Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 3. Causes and consequences of viscous anisotropy. J. Geophys. Res. 114:B6B06207
    [Google Scholar]
  149. Takei Y, Katz RF. 2015. Consequences of viscous anisotropy in a deforming, two-phase aggregate. Why is porosity-band angle lowered by viscous anisotropy?. J. Fluid Mech. 784:199–224
    [Google Scholar]
  150. Tirone M, Sessing J. 2017. Petrological geodynamics of mantle melting I. AlphaMELTS + multiphase flow: dynamic equilibrium melting, method and results. Front. Earth Sci. 5:81
    [Google Scholar]
  151. Tolstoy M. 2015. Mid-ocean ridge eruptions as a climate valve. Geophys. Res. Lett. 42:51346–51
    [Google Scholar]
  152. Turner S, Bourdon B 2011. Melt transport from the mantle to the crust–uranium-series isotopes. Timescales of Magmatic Processes: From Core to Atmosphere A Dosseto, SP Turner, JA Van Orman 102–15 Chichester, UK: Wiley-Blackwell
    [Google Scholar]
  153. Turner S, Evans P, Hawkesworth C. 2001. Ultrafast source-to-surface movement of melt at island arcs from 226Ra-230Th systematics. Science 292:1363–66
    [Google Scholar]
  154. Turner S, Reagan M, Vigier N, Bourdon B. 2012. Origins of 210Pb-226Ra disequilibria in basalts: new insights from the 1978 Asal Rift eruption. Geochem. Geophys. Geosyst. 13:Q07002
    [Google Scholar]
  155. Tweed LEL. 2021. Coupling the thermodynamics, kinetics and geodynamics of multiphase reactive transport in Earth's interior PhD Thesis Columbia Univ. New York:
  156. Van Orman JA, Saal AE, Bourdon B, Hauri EH. 2006. Diffusive fractionation of U-series radionuclides during mantle melting and shallow-level melt–cumulate interaction. Geochim. Cosmochim. Acta 70:4797–812
    [Google Scholar]
  157. von Bargen N, Waff HS. 1986. Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J. Geophys. Res. 91:B99261–76
    [Google Scholar]
  158. Wang S, Constable S, Rychert CA, Harmon N. 2020. A lithosphere-asthenosphere boundary and partial melt estimated using marine magnetotelluric data at the central Middle Atlantic Ridge. Geochem. Geophys. Geosyst. 21:e2020GC009177
    [Google Scholar]
  159. Wark DA, Watson E. 1998. Grain-scale permeabilities of texturally equilibrated, monomineralic rocks. Earth Planet. Sci. Lett. 164:591–605
    [Google Scholar]
  160. Weatherley SM, Katz RF. 2012. Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle. Geochem. Geophys. Geosyst. 13:Q0AC18
    [Google Scholar]
  161. White LT, Rawlinson N, Lister GS, Waldhauser F, Hejrani B et al. 2019. Earth's deepest earthquake swarms track fluid ascent beneath nascent arc volcanoes. Earth Planet. Sci. Lett. 521:25–36
    [Google Scholar]
  162. Wilson CR, Spiegelman M, van Keken PE, Hacker BR. 2014. Fluid flow in subduction zones: the role of solid rheology and compaction pressure. Earth Planet. Sci. Lett. 401:261–74
    [Google Scholar]
  163. Yamauchi H, Takei Y. 2016. Polycrystal anelasticity at near-solidus temperatures. J. Geophys. Res. Solid Earth 121:7790–820
    [Google Scholar]
  164. Yarushina VM, Podladchikov YY. 2015. (De)compaction of porous viscoelastoplastic media: model formulation. J. Geophys. Res. Solid Earth 120:4146–70
    [Google Scholar]
  165. Yarushina VM, Podladchikov YY, Connolly JAD. 2015. De)compaction of porous viscoelastoplastic media: solitary porosity waves. J. Geophys. Res. Solid Earth 120:4843–62
    [Google Scholar]
  166. Yarushina VM, Podladchikov YY, Wang LH. 2020. Model for (de)compaction and porosity waves in porous rocks under shear stresses. J. Geophys. Res. Solid Earth 125:e2020JB019683
    [Google Scholar]
  167. Zhang N, Behn MD, Parmentier EM, Kincaid C. 2020. Melt segregation and depletion during ascent of buoyant diapirs in subduction zones. J. Geophys. Res. Solid Earth 125:e2019JB018203
    [Google Scholar]
  168. Zhu W, Hirth G. 2003. A network model for permeability in partially molten rocks. Earth Planet. Sci. Lett. 212:407–16
    [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-083704
Loading
/content/journals/10.1146/annurev-earth-032320-083704
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error