1932

Abstract

Most seismicity in Latin America is controlled by the subduction process. Different zones have hosted earthquakes of magnitudes larger than Mw 8.5 that repeat every several centuries. Events around Mw 8.0 are more frequent; since the beginning of the twentieth century, some collocated earthquakes have occurred with differences of decades, which allows for comparison of old and modern seismological records. The rupture zones that have hosted mega-earthquakes continue to produce smaller earthquakes after three centuries. Therefore, the process of unlocking in the Latin America subduction zone occurs by giant (≥Mw 9.0), mega- (9.0 > Mw ≥ 8.5), and large (8.5 > Mw ≥ 7.5) earthquakes, and interaction between these events is not yet fully understood. We have less understanding of the earthquakes that occurred in the oceanic plates, which have not been correctly recorded due to poor seismological instrumentation and lack of knowledge about subduction during the first half of the twentieth century in Latin America. Slow earthquakes have been observed in some zones of Latin America, several of them with recurrence periods of a few years, as well as tectonic (nonvolcanic) tremors and low-frequency and very low-frequency earthquakes. How do these slow slip manifestations relate to ordinary earthquakes? This question is still difficult to answer for Latin America given the lack of dense geodetic and seismic networks that allow identification of all the slow earthquakes that likely occur more frequently than currently reported.

  • ▪  Latin America subduction zones share similar seismic characteristics. They can host large-magnitude earthquakes and exhibit a variety of slow earthquakes.
  • ▪  Giant earthquakes, with a magnitude greater than 9, have occurred so far in Chile, and mega-earthquakes have occurred in several Latin American countries.
  • ▪  Additional slow earthquakes will be detected in Latin America as seismic and geodetic networks become denser.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040522-121945
2025-05-30
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/earth/53/1/annurev-earth-040522-121945.html?itemId=/content/journals/10.1146/annurev-earth-040522-121945&mimeType=html&fmt=ahah

Literature Cited

  1. Abad M, Izquierdo T, Cáceres M, Bernárdez E, Rodriguez-Vidal J. 2020.. Coastal boulder deposit as evidence of an ocean-wide prehistoric tsunami originated on the Atacama Desert coast (northern Chile). . Sedimentology 67:(3):150528
    [Crossref] [Google Scholar]
  2. Aiken C, Chao K, Gonzalez-Huizar H, Douilly R, Peng Z, et al. 2016.. Exploration of remote triggering: a survey of multiple fault structures in Haiti. . Earth Planet. Sci. Lett. 455::1424
    [Crossref] [Google Scholar]
  3. Aki K. 1984.. Asperities, barriers, characteristic earthquakes and strong motion prediction. . J. Geophys. Res. 89:(B7):586772
    [Crossref] [Google Scholar]
  4. Astiz L, Kanamori H. 1984.. An earthquake doublet in Ometepec, Guerrero, Mexico. . Phys. Earth Planet. Inter. 34:(1–2):2445
    [Crossref] [Google Scholar]
  5. Astiz L, Lay T, Kanamori H. 1988.. Large intermediate-depth earthquakes and the subduction process. . Phys. Earth Planet. Inter. 53:(1–2):80166
    [Crossref] [Google Scholar]
  6. Astroza M, Ruiz S, Astroza R. 2012.. Damage assessment and seismic intensity analysis of the 2010 (Mw 8.8) Maule earthquake. . Earthq. Spectra 28::14564
    [Crossref] [Google Scholar]
  7. Baba S, Obara K, Takemura S, Takeo A, Abers GA. 2021.. Shallow slow earthquake episodes near the trench axis off Costa Rica. . J. Geophys. Res. Solid Earth 126:(9):e2021JB021706
    [Crossref] [Google Scholar]
  8. Barrientos S, Pérez-Campos X. 2018.. Preface to the focus section on geophysical networks and related developments in Latin America. . Seismol. Res. Lett. 89:(2A):31517
    [Crossref] [Google Scholar]
  9. Barrientos S, Ward SN. 1990.. The 1960 Chile earthquake: inversion for slip distribution from surface deformation. . Geophys. J. Int. 103:(3):58998
    [Crossref] [Google Scholar]
  10. Beauval C, Yepes H, Bakun WH, Egred J, Alvarado A, Singaucho JC. 2010.. Locations and magnitudes of historical earthquakes in the Sierra of Ecuador (1587–1996). . Geophys. J. Int. 181:(3):161333
    [Google Scholar]
  11. Beck S, Barrientos S, Kausel E, Reyes M. 1998.. Source characteristics of historic earthquakes along the central Chile subduction Askew et Alzone. . J. S. Am. Earth Sci. 11:(2):11529
    [Crossref] [Google Scholar]
  12. Beck SL, Nishenko SP. 1990.. Variations in the mode of great earthquake rupture along the central Peru subduction zone. . Geophys. Res. Lett. 17:(11):196972
    [Crossref] [Google Scholar]
  13. Beck SL, Ruff LJ. 1989.. Great earthquakes and subduction along the Peru trench. . Phys. Earth Planet. Inter. 57:(3–4):199224
    [Crossref] [Google Scholar]
  14. Beroza GC, Ide S. 2011.. Slow earthquakes and nonvolcanic tremor. . Annu. Rev. Earth Planet. Sci. 39::27196
    [Crossref] [Google Scholar]
  15. Bilek SL, Lay T. 2018.. Subduction zone megathrust earthquakes. . Geosphere 14:(4):1468500
    [Crossref] [Google Scholar]
  16. Bondár I, Engdahl ER, Villaseñor A, Harris J, Storchak DA. 2015.. ISC-GEM: Global Instrumental Earthquake Catalogue (1900–2009): II. Location and seismicity patterns. . Phys. Earth Planet. Int. 239::213
    [Crossref] [Google Scholar]
  17. Brown JR, Beroza GC, Ide S, Ohta K, Shelly DR, et al. 2009.. Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones. . Geophys. Res. Lett. 36:(19):L19306
    [Crossref] [Google Scholar]
  18. Brudzinski MR, Hinojosa-Prieto HR, Schlanser KM, Cabral-Cano E, Arciniega-Ceballos A, et al. 2010.. Nonvolcanic tremor along the Oaxaca segment of the Middle America subduction zone. . J. Geophys. Res. 115:(B8):B00A23
    [Google Scholar]
  19. Brudzinski MR, Schlanser KM, Kelly NJ, DeMets C, Grand SP, et al. 2016.. Tectonic tremor and slow slip along the northwestern section of the Mexico subduction zone. . Earth Planet. Sci. Lett. 454::25971
    [Crossref] [Google Scholar]
  20. Caballero E, Chounet A, Duputel Z, Jara J, Twardzik C, Jolivet R. 2021.. Seismic and aseismic fault slip during the initiation phase of the 2017 MW = 6.9 Valparaíso earthquake. . Geophys. Res. Lett. 48:(6):e2020GL091916
    [Crossref] [Google Scholar]
  21. Carvajal M, Cisternas M, Catalán PA. 2017a.. Source of the 1730 Chilean earthquake from historical records: implications for the future tsunami hazard on the coast of Metropolitan Chile. . J. Geophys. Res. Solid Earth 122::364860
    [Crossref] [Google Scholar]
  22. Carvajal M, Cisternas M, Gubler A, Catalán PA, Winckler P, Wesson RL. 2017b.. Reexamination of the magnitudes for the 1906 and 1922 Chilean earthquakes using Japanese tsunami amplitudes: implications for source depth constraints. . J. Geophys. Res. Solid Earth 122::417
    [Crossref] [Google Scholar]
  23. Chael EP, Stewart GS. 1982.. Recent large earthquakes along the Middle American trench and their implications for the subduction process. . J. Geophys. Res. 87:(B1):32938
    [Crossref] [Google Scholar]
  24. Chao K, Peng Z, Frank WB, Prieto GA, Obara K. 2019.. Isolated triggered tremor spots in South America and implications for global tremor activity. . Geophys. Res. Lett. 90:(5):172639
    [Google Scholar]
  25. Cifuentes IL. 1989.. The 1960 Chilean earthquakes. . J. Geophys. Res. 94:(B1):66580
    [Crossref] [Google Scholar]
  26. Cisternas A. 2009.. Montessus de Ballore, a pioneer of seismology: the man and his work. . Phys. Earth Planet. Inter. 175:(1–2):37
    [Crossref] [Google Scholar]
  27. Cisternas M, Atwater BF, Torrejón F, Sawai Y, Machuca G, et al. 2005.. Predecessors of the giant 1960 Chile earthquake. . Nature 437:(7057):4047
    [Crossref] [Google Scholar]
  28. Cisternas M, Carvajal M, Wesson R, Ely LL, Gorigoitia N. 2017.. Exploring the historical earthquakes preceding the giant 1960 Chile earthquake in a time-dependent seismogenic zone. . Bull. Seismol. Soc. Am. 107:(6):266475
    [Crossref] [Google Scholar]
  29. Comte D, Pardo M. 1991.. Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps. . Nat. Hazards 4::2344
    [Crossref] [Google Scholar]
  30. Cotte N, Walpersdorf A, Kostoglodov V, Vergnolle M, Santiago JA, Campillo M. 2009.. Anticipating the next large silent earthquake in Mexico. . Eos Trans. Am. Geophys. Union 90:(21):18182
    [Crossref] [Google Scholar]
  31. Cruz-Atienza VM, Husker A, Legrand D, Caballero E, Kostoglodov V. 2015.. Nonvolcanic tremor locations and mechanisms in Guerrero, Mexico, from energy-based and particle motion polarization analysis. . J. Geophys. Res. Solid Earth 120::27589
    [Crossref] [Google Scholar]
  32. Cruz-Atienza VM, Tago J, Villafuerte C, Wei M, Garza-Girón R, et al. 2021.. Short-term interaction between silent and devastating earthquakes in Mexico. . Nat. Commun. 12:(1):2171
    [Crossref] [Google Scholar]
  33. Darwin C. 1851.. Geological Observations on Coral Reefs, Volcanic Islands and on South America: Being the Geology of the Voyage of the Beagle, Under the Command of Captain Fitzroy, R.N., During the Years 1832 to 1836. London:: Smith, Elder
    [Google Scholar]
  34. Dascher-Cousineau K, Bürgmann R. 2024.. Global subduction slow slip events and associated earthquakes. . Sci. Adv. 10:(35):eado2191
    [Crossref] [Google Scholar]
  35. Delouis B, Nocquet JM, Vallée M. 2010.. Slip distribution of the February 27, 2010 Mw = 8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. . Geophys. Res. Lett. 37:(17):L17305
    [Crossref] [Google Scholar]
  36. Di Giacomo D, Engdahl ER, Storchak DA. 2018.. The ISC-GEM Earthquake Catalogue (1904–2014): status after the Extension Project. . Earth Syst. Sci. Data 10::187799
    [Crossref] [Google Scholar]
  37. Dominguez LA, Taira TA, Cruz-Atienza VM, Iglesias A, Villafuerte C, et al. 2022.. Interplate slip rate variation between closely spaced earthquakes in southern Mexico: the 2012 Ometepec and 2018 Pinotepa Nacional thrust events. . J. Geophys. Res. Solid Earth 127::e2022JB024292
    [Crossref] [Google Scholar]
  38. Dorbath L, Cisternas A, Dorbath C. 1990.. Assessment of the size of large and great historical earthquakes in Peru. . Geophys. Res. Lett. 80:(3):55176
    [Google Scholar]
  39. Dura T, Cisternas M, Horton BP, Ely LL, Nelson AR, et al. 2015.. Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile. . Quat. Sci. Rev. 113::93111
    [Crossref] [Google Scholar]
  40. Easton G, González-Alfaro J, Villalobos A, Álvarez G, Melgar D, et al. 2022.. Complex rupture of the 2015 MW 8.3 Illapel earthquake and prehistoric events in the Central Chile tsunami gap. . Geophys. Res. Lett. 93:(3):147996
    [Google Scholar]
  41. Egred J. 2009.. Catalogo de terremotos del Ecuador 1541–2009. Inter. Rep. Inst. Geofis., Esc. Politec. Nac:.
    [Google Scholar]
  42. Eur. Space Agency. 2024.. Copernicus Global Digital Elevation Model. . OpenTopography. https://doi.org/10.5069/G9028PQB
    [Google Scholar]
  43. Fitzroy R. 1839.. Narrative of the Surveying Voyages of His Majesty's Ships Adventure and Beagle Between the Years 1826 and 1836 Describing Their Examination of the Southern Shores of South America, and the Beagle's Circumnavigation of the Globe, Vol. II: Proceedings of the Second Expedition, 1831–1836, Under the Command of Captain Robert Fitz Roy. London:: Henry Colburn
    [Google Scholar]
  44. Frank WB, Radiguet M, Rousset B, Shapiro NM, Husker AL, et al. 2015.. Uncovering the geodetic signature of silent slip through repeating earthquakes. . Geophys. Res. Lett. 42:(8):277479
    [Crossref] [Google Scholar]
  45. Frank WB, Shapiro NM, Kostoglodov V, Husker AL, Campillo M, et al. 2013.. Low-frequency earthquakes in the Mexican Sweet Spot. . Geophys. Res. Lett. 40:(11):266166
    [Crossref] [Google Scholar]
  46. Fry B, Chao K, Bannister S, Peng Z, Wallace L. 2011.. Deep tremor in New Zealand triggered by the 2010 Mw8.8 Chile earthquake. . Geophys. Res. Lett. 38:(15):L15306
    [Crossref] [Google Scholar]
  47. Gallego A, Russo RM, Comte D, Mocanu VI, Murdie RE. 2006.. Non-volcanic seismic tremor in the Chile triple junction region. . Eos. Trans. AGU 87:(52):T54A-02 ( Abstr. )
    [Google Scholar]
  48. Gallego A, Russo RM, Comte D, Mocanu VI, Murdie RE, Vandecar JC. 2010.. Seismic noise tomography in the Chile ridge subduction region. . Geophys. J. Int. 182:(3):147892
    [Crossref] [Google Scholar]
  49. Gallego A, Russo RM, Comte D, Mocanu V, Murdie RE, Vandecar JC. 2013.. Tidal modulation of continuous nonvolcanic seismic tremor in the Chile triple junction region. . Geochem. Geophys. Geosyst. 14:(4):85163
    [Crossref] [Google Scholar]
  50. Garrett E, Shennan I, Woodroffe SA, Cisternas M, Hocking EP, Gulliver P. 2015.. Reconstructing paleoseismic deformation, 2: 1000 years of great earthquakes at Chucalén, south central Chile. . Quat. Sci. Rev. 113::11222
    [Crossref] [Google Scholar]
  51. Giesecke A, Capera AAG, Leschiutta I, Migliorini E, Valverde LR. 2004.. The CERESIS earthquake catalogue and database of the Andean Region: background, characteristics and examples of use. . Ann. Geophys. 47::42135
    [Google Scholar]
  52. Giovanni MK, Beck SL, Wagner L. 2002.. The June 23, 2001 Peru earthquake and the southern Peru subduction zone. . Geophys. Res. Lett. 29:(21):14114-4
    [Crossref] [Google Scholar]
  53. Gomberg J, Cascadia 2007 Beyond Work. Group. 2010.. Slow-slip phenomena in Cascadia from 2007 and beyond: a review. . Bulletin 122:(7–8):96378
    [Google Scholar]
  54. González-Vidal D, Moreno C, Sippl JC, Baez F, Ortega-Culaciati D, et al. 2023.. Relation between oceanic plate structure, patterns of interplate locking and microseismicity in the 1922 Atacama seismic gap. . Geophys. Res. Lett. 50:(15):e2023GL103565
    [Crossref] [Google Scholar]
  55. Graham S, DeMets C, Cabral-Cano E, Kostoglodov V, Rousset B, et al. 2017.. Slow slip history for the Mexico subduction zone: 2005 through 2011. . In Geodynamics of the Latin American Pacific Margin, ed. WL Bandy, J Dañobeitia, C MorteraGutiérrez, Y Taran, R Bartolomé , pp. 344565. Cham, Switz:.: Birkhäuser
    [Google Scholar]
  56. Graham S, DeMets C, Cabral-Cano E, Kostoglodov V, Walpersdorf A, et al. 2014.. GPS constraints on the 2011–2012 Oaxaca slow slip event that preceded the 2012 March 20 Ometepec earthquake, southern Mexico. . Geophys. J. Int. 197:(3):1593607
    [Crossref] [Google Scholar]
  57. Green HW, Houston H. 1995.. The mechanics of deep earthquakes. . Annu. Rev. Earth Planet. Sci. 23::169214
    [Crossref] [Google Scholar]
  58. Greve F. 1964.. Historia de la Sismología en Chile. Santiago:: Univ. Chile
    [Google Scholar]
  59. Gutenberg B, Richter CF. 1954.. Seismicity of the Earth and Related Phenomena. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  60. Hacker BR, Peacock SM, Abers GA, Holloway SD. 2003.. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?. J. Geophys. Res. 108:(B1):2030
    [Google Scholar]
  61. Ho TC, Satake K, Watada S, Fujii Y. 2019.. Source estimate for the 1960 Chile earthquake from joint inversion of geodetic and transoceanic tsunami data. . J. Geophys. Res. Solid Earth 124::281228
    [Crossref] [Google Scholar]
  62. Hormazábal J, Moreno M, Ortega-Culaciati F, Báez JC, Peña C, et al. 2023.. Fast relocking and afterslip-seismicity evolution following the 2015 Mw 8.3 Illapel earthquake in Chile. . Sci. Rep. 13:(1):19511
    [Crossref] [Google Scholar]
  63. Hu J, Li ZW, Ding XL, Zhu JJ, Zhang L, Sun Q. 2014.. Resolving three-dimensional surface displacements from InSAR measurements: a review. . Earth-Sci. Rev. 133::117
    [Crossref] [Google Scholar]
  64. Husker A, Kostoglodov V, Cruz-Atienza VM, Legrand D, Shapiro NM, et al. 2012.. Temporal variations of non-volcanic tremor (NVT) locations in the Mexican subduction zone: finding the NVT sweet spot. . Geochem. Geophys. Geosyst. 13:(3):Q03011
    [Crossref] [Google Scholar]
  65. Husker A, Werner MJ, Bayona JA, Santoyo M, Corona-Fernandez RD. 2023.. A test of the earthquake gap hypothesis in Mexico: the case of the Guerrero gap. . Geophys. Res. Lett. 113:(1):46879
    [Google Scholar]
  66. Ide S. 2012.. Variety and spatial heterogeneity of tectonic tremor worldwide. . J. Geophys. Res. 117:(B3):B03302
    [Google Scholar]
  67. Ide S, Beroza GC. 2023.. Slow earthquake scaling reconsidered as a boundary between distinct modes of rupture propagation. . PNAS 120:(32):e2222102120
    [Crossref] [Google Scholar]
  68. Ide S, Imamura F, Yoshida Y, Abe K. 1993.. Source characteristics of the Nicaraguan tsunami earthquake of September 2, 1992. . Geophys. Res. Lett. 20:(9):86366
    [Crossref] [Google Scholar]
  69. Idehara K, Yabe S, Ide S. 2014.. Regional and global variations in the temporal clustering of tectonic tremor activity. . Earth Planets Space 66::66
    [Crossref] [Google Scholar]
  70. Iglesias A, Singh SK, Castro-Artola O, Pérez-Campos X, Corona-Fernandez RD, et al. 2022.. A source study of the Mw 7.0 Acapulco, Mexico, earthquake of 8 September 2021. . Seismol. Soc. Am. 93:(6):320518
    [Google Scholar]
  71. Iglesias A, Singh SK, Pacheco JF, Alcántara L, Ortiz M, Ordaz M. 2003.. Near-trench Mexican earthquakes have anomalously low peak accelerations. . Geophys. Res. Lett. 93:(2):95359
    [Google Scholar]
  72. Int. Seismol. Cent. 2024.. ISC Bulletin. . International Seismological Centre. https://doi.org/10.31905/D808B830
    [Google Scholar]
  73. Jara J, Jolivet R, Socquet A, Comte D, Norabuena E. 2024.. Detection of slow slip events along the southern Peru - northern Chile subduction zone. . Seismica 3:(1). https://doi.org/10.26443/seismica.v3i1.980
    [Crossref] [Google Scholar]
  74. Jiang Y, Wdowinski S, Dixon TH, Hackl M, Protti M, Gonzalez V. 2012.. Slow slip events in Costa Rica detected by continuous GPS observations, 2002–2011. . Geochem. Geophys. Geosyst. 13:(4):Q04006
    [Crossref] [Google Scholar]
  75. Jiménez C, Zamudio Y, Olcese D. 2023.. Numerical modelling of the 1970 intraslab Peru earthquake and tsunami (Mw 7.9). . J. Seismol. 27:(1):14354
    [Crossref] [Google Scholar]
  76. Kanamori H. 1972.. Mechanism of tsunami earthquakes. . Phys. Earth Planet. Inter. 6:(5):34659
    [Crossref] [Google Scholar]
  77. Kanamori H, Cipar JJ. 1974.. Focal process of the great Chilean earthquake May 22. , 1960.. Phys. Earth Planet. Inter. 9:(2):12836
    [Crossref] [Google Scholar]
  78. Kanamori H, Kikuchi M. 1993.. The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments. . Nature 361:(6414):71416
    [Crossref] [Google Scholar]
  79. Kanamori H, McNally KC. 1982.. Variable rupture mode of the subduction zone along the Ecuador-Colombia coast. . Geophys. Res. Lett. 72:(4):124153
    [Google Scholar]
  80. Kanamori H, Rivera L, Ye L, Lay T, Murotani S, Tsumura K. 2019.. New constraints on the 1922 Atacama, Chile, earthquake from historical seismograms. . Geophys. J. Int. 219:(1):64561
    [Crossref] [Google Scholar]
  81. Kaneko L, Ide S, Nakano M. 2018.. Slow earthquakes in the microseism frequency band (0.1–1.0 Hz) off Kii Peninsula, Japan. . Geophys. Res. Lett. 45:(6):261824
    [Crossref] [Google Scholar]
  82. Kato A, Obara K, Igarashi T, Tsuruoka H, Nakagawa S, Hirata N. 2012.. Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-Oki earthquake. . Science 335:(6069):7058
    [Crossref] [Google Scholar]
  83. Kelleher J. 1972.. Rupture zones of large South American earthquakes and some predictions. . J. Geophys. Res. 77:(11):2087103
    [Crossref] [Google Scholar]
  84. Kelleher J, Sykes L, Oliver J. 1973.. Possible criteria for predicting earthquake locations and their application to major plate boundaries of the Pacific and the Caribbean. . J. Geophys. Res. 78:(14):254785
    [Crossref] [Google Scholar]
  85. Kikuchi M, Kanamori H. 1994.. The mechanism of the deep Bolivia earthquake of June 9, 1994. . Geophys. Res. Lett. 21:(22):234144
    [Crossref] [Google Scholar]
  86. Klein E, Duputel Z, Zigone D, Vigny C, Boy JP, et al. 2018.. Deep transient slow slip detected by survey GPS in the region of Atacama, Chile. . Geophys. Res. Lett. 45:(22):1226373
    [Crossref] [Google Scholar]
  87. Klein E, Potin B, Pasten-Araya F, Tissandier R, Azua K, et al. 2021.. Interplay of seismic and a-seismic deformation during the 2020 sequence of Atacama, Chile. . Earth Planet. Sci. Lett. 570::117081
    [Crossref] [Google Scholar]
  88. Klein E, Vigny C, Duputel Z, Zigone D, Rivera L, et al. 2023.. Return of the Atacama deep slow slip event: the 5-year recurrence confirmed by continuous GPS. . Phys. Earth Planet. Inter. 334::106970
    [Crossref] [Google Scholar]
  89. Kostoglodov V, Husker A, Shapiro NM, Payero JS, Campillo M, et al. 2010.. The 2006 slow slip event and nonvolcanic tremor in the Mexican subduction zone. . Geophys. Res. Lett. 37:(24):L24301
    [Crossref] [Google Scholar]
  90. Kostoglodov V, Pacheco JF. 1999.. Cien Años de Sismicidad en México. Mexico City:: UNAM
    [Google Scholar]
  91. Kostoglodov V, Singh SK, Santiago JA, Franco SI, Larson KM, et al. 2003.. A large silent earthquake in the Guerrero seismic gap, Mexico. . Geophys. Res. Lett. 30:(15):1807
    [Crossref] [Google Scholar]
  92. Larson KM, Kostoglodov V, Miyazaki SI, Santiago JAS. 2007.. The 2006 aseismic slow slip event in Guerrero, Mexico: new results from GPS. . Geophys. Res. Lett. 34:(13):L13309
    [Crossref] [Google Scholar]
  93. Lay T, Kanamori H, Ammon CJ, Koper KD, Hutko AR, et al. 2012.. Depth-varying rupture properties of subduction zone megathrust faults. . J. Geophys. Res. 117:(B4):B04311
    [Google Scholar]
  94. Lay T, Nishenko SP. 2022.. Updated concepts of seismic gaps and asperities to assess great earthquake hazard along South America. . PNAS 119:(51):e2216843119
    [Crossref] [Google Scholar]
  95. Liu C, Lay T, Bai Y, He P, Xiong X. 2023.. Coseismic slip model of the 19 September 2022 Mw 7.6 Michoacán, Mexico, earthquake: a quasi-repeat of the 1973 Mw 7.6 rupture. . Seism. Rec. 3:(2):5768
    [Crossref] [Google Scholar]
  96. Lomnitz C. 1970.. Major earthquakes and tsunamis in Chile during the period 1535 to 1955. . Geol. Rundsch. 59::93860
    [Crossref] [Google Scholar]
  97. Lomnitz C. 2004.. Major earthquakes of Chile: a historical survey, 1535–1960. . Geophys. Res. Lett. 75:(3):36878
    [Google Scholar]
  98. Lovery B, Chlieh M, Norabuena E, Villegas-Lanza JC, Radiguet M, et al. 2024.. Heterogeneous locking and earthquake potential on the South Peru megathrust from dense GNSS network. . J. Geophys. Res. Solid Earth 129::e2023JB027114
    [Crossref] [Google Scholar]
  99. Lowry AR, Larson KM, Kostoglodov V, Bilham R. 2001.. Transient fault slip in Guerrero, southern Mexico. . Geophys. Res. Lett. 28:(19):375356
    [Crossref] [Google Scholar]
  100. Madariaga R, Métois M, Vigny C, Campos J. 2010.. Central Chile finally breaks. . Science 328:(5975):18182
    [Crossref] [Google Scholar]
  101. Malgrange M, Madariaga R. 1983.. Complex distribution of large thrust and normal fault earthquakes in the Chilean subduction zone. . Geophys. J. Int. 73:(2):489505
    [Crossref] [Google Scholar]
  102. MASE. 2007.. Meso America Subduction Experiment Dataset. . Caltech. doi:. https://web.gps.caltech.edu/∼clay/MexWeb/MexSubduction.html
    [Crossref] [Google Scholar]
  103. Maubant L, Pathier E, Daout S, Radiguet M, Doin MP, et al. 2020.. Independent component analysis and parametric approach for source separation in InSAR time series at regional scale: application to the 2017–2018 Slow Slip Event in Guerrero (Mexico). . J. Geophys. Res. Solid Earth 125:(3):e2019JB018187
    [Crossref] [Google Scholar]
  104. Maubant L, Radiguet M, Pathier E, Doin MP, Cotte N, et al. 2022.. Interseismic coupling along the Mexican subduction zone seen by InSAR and GNSS. . Earth Planet. Sci. Lett. 586::117534
    [Crossref] [Google Scholar]
  105. Maury J, Ide S, Cruz-Atienza VM, Kostoglodov V. 2018.. Spatiotemporal variations in slow earthquakes along the Mexican subduction zone. . J. Geophys. Res. Solid Earth 123::155975
    [Crossref] [Google Scholar]
  106. Maury J, Ide S, Cruz-Atienza VM, Kostoglodov V, González-Molina G, Pérez-Campos X. 2016.. Comparative study of tectonic tremor locations: characterization of slow earthquakes in Guerrero, Mexico. . J. Geophys. Res. Solid Earth 121::513651
    [Crossref] [Google Scholar]
  107. Melgar D, Fan W, Riquelme S, Geng J, Liang C, et al. 2016.. Slip segmentation and slow rupture to the trench during the 2015, Mw 8. 3 Illapel, Chile earthquake. . Geophys. Res. Lett. 43:(3):96166
    [Crossref] [Google Scholar]
  108. Melgar D, Ruiz-Angulo A, Pérez-Campos X, Crowell BW, Xu X, et al. 2021.. Energetic rupture and tsunamigenesis during the 2020 Mw 7.4 La Crucecita, Mexico earthquake. . Geophys. Res. Lett. 92:(1):14050
    [Google Scholar]
  109. Mendoza C, Dewey JW. 1984.. Seismicity associated with the great Colombia-Ecuador earthquakes of 1942, 1958, and 1979: implications for barrier models of earthquake rupture. . Geophys. Res. Lett. 74:(2):57793
    [Google Scholar]
  110. Meng L, Huang H, Xie Y, Bao H, Dominguez LA. 2019.. Nucleation and kinematic rupture of the 2017 Mw 8.2 Tehuantepec earthquake. . Geophys. Res. Lett. 46:(7):374554
    [Crossref] [Google Scholar]
  111. Métois M, Socquet A, Vigny C, Carrizo D, Peyrat S, et al. 2013.. Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. . Geophys. J. Int. 194:(3):128394
    [Crossref] [Google Scholar]
  112. Métois M, Vigny C, Socquet A. 2016.. Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38–18 S). . Pure Appl. Geophys. 173::143149
    [Crossref] [Google Scholar]
  113. Michel S, Jolivet R, Jara J, Rollins C. 2023.. Seismogenic potential of the subduction zone in northern Chile. . Bull. Seismol. Soc. Am. 113:(3):101324
    [Crossref] [Google Scholar]
  114. Migeon S, Garibaldi C, Ratzov G, Schmidt S, Collot JY, et al. 2017.. Earthquake-triggered deposits in the subduction trench of the north Ecuador/south Colombia margin and their implication for paleoseismology. . Mar. Geol. 384::4762
    [Crossref] [Google Scholar]
  115. Miyazawa M, Brodsky EE. 2008.. Deep low-frequency tremor that correlates with passing surface waves. . J. Geophys. Res. 113:(B1):B01307
    [Google Scholar]
  116. Miyazawa M, Santoyo MÁ. 2021.. Tectonic tremors in the Northern Mexican subduction zone remotely triggered by the 2017 Mw 8.2 Tehuantepec earthquake. . Earth Planets Space 73::6
    [Crossref] [Google Scholar]
  117. Montessus de Ballore F. 1912.. Historia Sismica de los Andes Meridionales. Santiago, Chile:: Cervantes
    [Google Scholar]
  118. Moreno M, Bolte J, Klotz J, Melnick D. 2009.. Impact of megathrust geometry on inversion of coseismic slip from geodetic data: application to the 1960 Chile earthquake. . Geophys. Res. Lett. 36:(16):L16310
    [Crossref] [Google Scholar]
  119. Moreno M, Melnick D, Rosenau M, Baez J, Klotz J, et al. 2012.. Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. . Earth Planet. Sci. Lett. 321::15265
    [Crossref] [Google Scholar]
  120. Moreno M, Rosenau M, Oncken O. 2010.. 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. . Nature 467:(7312):198202
    [Crossref] [Google Scholar]
  121. Nishenko SP, Singh SK. 1987.. The Acapulco-Ometepec, Mexico, earthquakes of 1907–1982: evidence for a variable recurrence history. . Geophys. Res. Lett. 77:(4):135967
    [Google Scholar]
  122. Nishikawa T, Ide S, Nishimura T. 2023.. A review on slow earthquakes in the Japan Trench. . Prog. Earth Planet. Sci. 10:(1):1
    [Crossref] [Google Scholar]
  123. Nocquet JM, Jarrin P, Vallée M, Mothes PA, Grandin R, et al. 2017.. Supercycle at the Ecuadorian subduction zone revealed after the 2016 Pedernales earthquake. . Nat. Geosci. 10:(2):14549
    [Crossref] [Google Scholar]
  124. Nocquet JM, Villegas-Lanza JC, Chlieh M, Mothes PA, Rolandone F, et al. 2014.. Motion of continental slivers and creeping subduction in the northern Andes. . Nat. Geosci. 7:(4):28791
    [Crossref] [Google Scholar]
  125. Núñez-Cornú FJ, Ortiz M, Sánchez JJ. 2008.. The great 1787 Mexican tsunami. . Nat. Hazards 47::56976
    [Crossref] [Google Scholar]
  126. Obara K, Kato A. 2016.. Connecting slow earthquakes to huge earthquakes. . Science 353:(6296):25357
    [Crossref] [Google Scholar]
  127. Ojeda J, Morales-Yáñez C, Ducret G, Ruiz S, Grandin R, et al. 2023.. Seismic and aseismic slip during the 2006 Copiapó swarm in North-Central Chile. . J. S. Am. Earth Sci. 123::104198
    [Crossref] [Google Scholar]
  128. Ojeda J, Ruiz S, del Campo F, Carvajal M. 2020.. The 21 May 1960 Mw 8.1 Concepción earthquake: a deep megathrust foreshock that started the 1960 central-south Chilean seismic sequence. . Geophys. Res. Lett. 91:(3):161727
    [Google Scholar]
  129. Okal EA. 1992.. Use of the mantle magnitude Mm for the reassessment of the moment of historical earthquakes: I: Shallow events. . Pure Appl. Geophys. 139::1757
    [Crossref] [Google Scholar]
  130. Okal EA. 2015.. Historical seismograms: preserving an endangered species. . GeoResJ 6::5364
    [Crossref] [Google Scholar]
  131. Okal EA, Borrero JC, Synolakis CE. 2006.. Evaluation of tsunami risk from regional earthquakes at Pisco, Peru. . Geophys. Res. Lett. 96:(5):163448
    [Google Scholar]
  132. Okal EA, Dengler L, Araya S, Borrero JC, Gomer BM, et al. 2002.. Field survey of the Camaná, Perú tsunami of 23 June 2001. . Geophys. Res. Lett. 73:(6):90720
    [Google Scholar]
  133. Okal EA, Geller RJ. 1979.. On the observability of isotropic seismic sources: the July 31, 1970 Colombian earthquake. . Phys. Earth Planet. Inter. 18:(3):17696
    [Crossref] [Google Scholar]
  134. Okuwaki R, Yagi Y. 2017.. Rupture process during the Mw 8.1 2017 Chiapas Mexico earthquake: shallow intraplate normal faulting by slab bending. . Geophys. Res. Lett. 44:(23):1181623
    [Crossref] [Google Scholar]
  135. Outerbridge KC, Dixon TH, Schwartz SY, Walter JI, Protti M, et al. 2010.. A tremor and slip event on the Cocos-Caribbean subduction zone as measured by a global positioning system (GPS) and seismic network on the Nicoya Peninsula, Costa Rica. . J. Geophys. Res. 115:(B10):B10408
    [Google Scholar]
  136. Pastén-Araya F, Potin B, Azua K, Saez M, Aden-Antoniów F, et al. 2022.. Along-dip segmentation of the slip behavior and rheology of the Copiapó ridge subducted in North-Central Chile. . Geophys. Res. Lett. 49:(4):e2021GL095471
    [Crossref] [Google Scholar]
  137. Payero JS, Kostoglodov V, Shapiro N, Mikumo T, Iglesias A, et al. 2008.. Nonvolcanic tremor observed in the Mexican subduction zone. . Geophys. Res. Lett. 35:(7):L07305
    [Crossref] [Google Scholar]
  138. Peng Z, Gonzalez-Huizar H, Chao K, Aiken C, Moreno B, Armstrong G. 2013.. Tectonic tremor beneath Cuba triggered by the Mw 8.8 Maule and Mw 9.0 Tohoku-Oki earthquakes. . Geophys. Res. Lett. 103:(1):595600
    [Google Scholar]
  139. Pérez-López R, Moragas-Segura N, Elez J, Silva PG, Giner-Robles JL, et al. 2024.. Teotihuacan ancient culture affected by megathrust earthquakes during the early Epiclassic Period (Mexico). . J. Archaeol. Sci. Rep. 55::104528
    [Google Scholar]
  140. Perfettini H, Avouac JP, Ruegg JC. 2005.. Geodetic displacements and aftershocks following the 2001 Mw = 8.4 Peru earthquake: implications for the mechanics of the earthquake cycle along subduction zones. . J. Geophys. Res. 110:(B9):B09404
    [Google Scholar]
  141. Perry M, Muller C, Protti M, Feng L, Hill EM. 2023.. Shallow slow slip events identified offshore the Osa Peninsula in southern Costa Rica from GNSS time series. . Geophys. Res. Lett. 50:(20):e2023GL104771
    [Crossref] [Google Scholar]
  142. Plafker G, Savage JC. 1970.. Mechanism of the Chilean earthquakes of May 21 and 22. , 1960.. Geol. Soc. Am. Bull. 81:(4):100130
    [Crossref] [Google Scholar]
  143. Plata-Martínez R, Ide S, Shinohara M, Garcia ES, Mizuno N, et al. 2021.. Shallow slow earthquakes to decipher future catastrophic earthquakes in the Guerrero seismic gap. . Nat. Commun. 12:(1):3976
    [Crossref] [Google Scholar]
  144. Potin B, Ruiz S, Aden‐Antoniow F, Madariaga R, Barrientos S. 2025.. A revised Chilean seismic catalog from 1982 to mid‐2020. . Seismol. Res. Lett. 96:(1):48498
    [Crossref] [Google Scholar]
  145. Protti M, González V, Kato T, Iinuma T, Miyazaki S, et al. 2004.. A creep event on the shallow interface of the Nicoya Peninsula, Costa Rica seismogenic zone. . AGU Fall Meet. Abstr. 2004::S41D-07
    [Google Scholar]
  146. Pulido N, Aguilar Z, Tavera H, Chlieh M, Calderón D, et al. 2015.. Scenario source models and strong ground motion for future mega-earthquakes: application to Lima, Central Peru. . Geophys. Res. Lett. 105:(1):36886
    [Google Scholar]
  147. Radiguet M, Perfettini H, Cotte N, Gualandi A, Valette B, et al. 2016.. Triggering of the 2014 Mw 7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico. . Nat. Geosci. 9:(11):82933
    [Crossref] [Google Scholar]
  148. Ramírez-Herrera MT, Corona N, Cerny J, Castillo-Aja R, Melgar D, et al. 2020.. Sand deposits reveal great earthquakes and tsunamis at Mexican Pacific Coast. . Sci. Rep. 10:(1):11452
    [Crossref] [Google Scholar]
  149. Ramírez-Herrera MT, Corona N, Černý J, Gaidzik K, Sugawara D, et al. 2024.. Tsunami deposits highlight high-magnitude earthquake potential in the Guerrero seismic gap Mexico. . Commun. Earth Environ. 5:(1):198
    [Crossref] [Google Scholar]
  150. Robinson DP, Das S, Watts AB. 2006.. Earthquake rupture stalled by a subducting fracture zone. . Science 312:(5777):12035
    [Crossref] [Google Scholar]
  151. Rodríguez-Pascua MA, Benavente Escobar C, Rosell Guevara L, Grützner C, Audin L, et al. 2020.. Did earthquakes strike Machu Picchu?. J. Seismol. 24::88395
    [Crossref] [Google Scholar]
  152. Ruegg JC, Olcay M, Lazo D. 2001.. Co-, post- and pre(?)-seismic displacements associated with the Mw 8.4 Southern Peru earthquake of 23 June 2001 from continuous GPS measurements. . Geophys. Res. Lett. 72:(6):67378
    [Google Scholar]
  153. Ruegg JC, Rudloff A, Vigny C, Madariaga R, De Chabalier JB, et al. 2009.. Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile. . Phys. Earth Planet. Inter. 175:(1–2):7885
    [Crossref] [Google Scholar]
  154. Ruiz S, Aden-Antoniow F, Baez JC, Otarola C, Potin B, et al. 2017.. Nucleation phase and dynamic inversion of the Mw 6.9 Valparaíso 2017 earthquake in Central Chile. . Geophys. Res. Lett. 44:(20):1029097
    [Crossref] [Google Scholar]
  155. Ruiz S, Klein E, Del Campo F, Rivera E, Poli P, et al. 2016.. The seismic sequence of the 16 September 2015 Mw 8.3 Illapel, Chile, earthquake. . Geophys. Res. Lett. 87:(4):78999
    [Google Scholar]
  156. Ruiz S, Madariaga R. 2018.. Historical and recent large megathrust earthquakes in Chile. . Tectonophysics 733::3756
    [Crossref] [Google Scholar]
  157. Ruiz S, Madariaga R, Astroza M, Saragoni GR, Lancieri M, et al. 2012.. Short-period rupture process of the 2010 Mw 8.8 Maule earthquake in Chile. . Earthq. Spectra 28:(S1):S118
    [Crossref] [Google Scholar]
  158. Ruiz S, Métois M, Fuenzalida A, Ruiz J, Leyton F, et al. 2014.. Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. . Science 345:(6201):116569
    [Crossref] [Google Scholar]
  159. Sáez M, Ruiz S, Ide S, Sugioka H. 2019.. Shallow nonvolcanic tremor activity and potential repeating earthquakes in the Chile triple junction: seismic evidence of the subduction of the active Nazca–Antarctic spreading center. . Seismol. Res. Lett. 90:(5):174047
    [Google Scholar]
  160. Salazar D, Easton G, Goff J, Guendon JL, González-Alfaro J, et al. 2022.. Did a 3800-year-old Mw∼9.5 earthquake trigger major social disruption in the Atacama Desert?. Sci. Adv. 8:(14):eabm2996
    [Crossref] [Google Scholar]
  161. Satake K, Shimazaki K, Tsuji Y, Ueda K. 1996.. Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700. . Nature 379:(6562):24649
    [Crossref] [Google Scholar]
  162. Sawires R, Santoyo MA, Peláez JA, Corona Fernández RD. 2019.. An updated and unified earthquake catalog from 1787 to 2018 for seismic hazard assessment studies in Mexico. . Sci. Data 6:(1):241
    [Crossref] [Google Scholar]
  163. Segall P, Davis JL. 1997.. GPS applications for geodynamics and earthquake studies. . Annu. Rev. Earth Planet. Sci. 25::30136
    [Crossref] [Google Scholar]
  164. Sennson JL, Beck SL. 1996.. Historical 1942 Ecuador and 1942 Peru subduction earthquakes and earthquake cycles along Colombia-Ecuador and Peru subduction segments. . Pure Appl. Geophys. 146::67101
    [Crossref] [Google Scholar]
  165. Shearer P, Bürgmann R. 2010.. Lessons learned from the 2004 Sumatra-Andaman megathrust rupture. . Annu. Rev. Earth Planet. Sci. 38::10331
    [Crossref] [Google Scholar]
  166. Silgado E. 1978.. Historia de los sismosmás notables ocurridos en el Perú (1513–1974). Bol. 3, Geodin. Ing. Geol., Lima, Perú:
    [Google Scholar]
  167. Singh SK, Corona-Fernandez RD, Santoyo , Iglesias A. 2024.. Repeating large earthquakes along the Mexican subduction zone. . Geophys. Res. Lett. 95:(1):45878
    [Google Scholar]
  168. Socquet A, Valdes JP, Jara J, Cotton F, Walpersdorf A, et al. 2017.. An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. . Geophys. Res. Lett. 44:(9):404653
    [Crossref] [Google Scholar]
  169. Suárez G. 2021.. Large earthquakes in the Tehuantepec subduction zone: evidence of a locked plate interface and large-scale deformation of the slab. . J. Seismol. 25:(2):44960
    [Crossref] [Google Scholar]
  170. Suárez G, Albini P. 2009.. Evidence for great tsunamigenic earthquakes (M 8.6) along the Mexican subduction zone. . Geophys. Res. Lett. 99:(2A):89296
    [Google Scholar]
  171. Suárez G, Ruiz-Barón D, Chico-Hernández C, Zúñiga FR. 2020.. Catalog of preinstrumental earthquakes in central Mexico: epicentral and magnitude estimations based on macroseismic data. . Geophys. Res. Lett. 110:(6):302136
    [Google Scholar]
  172. Suárez G, Santoyo MA, Hjorleifsdottir V, Iglesias A, Villafuerte C, Cruz-Atienza VM. 2019.. Large scale lithospheric detachment of the downgoing Cocos plate: the 8 September 2017 earthquake (Mw 8.2). . Earth Planet. Sci. Lett. 509::914
    [Crossref] [Google Scholar]
  173. Tajima F, McNally KC. 1983.. Seismic rupture patterns in Oaxaca, Mexico. . J. Geophys. Res. 88:(B5):426375
    [Crossref] [Google Scholar]
  174. Tang CC, Peng Z, Chao K, Chen CH, Lin CH. 2010.. Detecting low-frequency earthquakes within non-volcanic tremor in southern Taiwan triggered by the 2005 Mw8.6 Nias earthquake. . Geophys. Res. Lett. 37:(16):L16307
    [Crossref] [Google Scholar]
  175. Tavera H, Fernández E, Bernal I, Antayhua Y, Agüero C, et al. 2006.. The southern region of Peru earthquake of June 23rd, 2001. . J. Seismol. 10::17195
    [Crossref] [Google Scholar]
  176. Tilmann F, Zhang Y, Moreno M, Saul J, Eckelmann F, et al. 2016.. The 2015 Illapel earthquake, central Chile: a type case for a characteristic earthquake?. Geophys. Res. Lett. 43:(2):57483
    [Crossref] [Google Scholar]
  177. Tissandier R, Nocquet JM, Klein E, Vigny C, Ojeda J, Ruiz S. 2023.. Afterslip of the Mw 8.3 2015 Illapel earthquake imaged through a time-dependent inversion of continuous and survey GNSS data. . J. Geophys. Res. Solid Earth 128:(2):e2022JB024778
    [Crossref] [Google Scholar]
  178. Tozer B, Sandwell DT, Smith WHF, Olson C, Beale JR, Wessel P. 2019.. Global bathymetry and topography at 15 arc sec: SRTM15+. . Earth Space Sci. 6::184764
    [Crossref] [Google Scholar]
  179. Uchida N, Bürgmann R. 2021.. A decade of lessons learned from the 2011 Tohoku-Oki earthquake. . Rev. Geophys. 59:(2):e2020RG000713
    [Crossref] [Google Scholar]
  180. Udías A, Madariaga R, Buforn E, Muñoz D, Ros M. 2012.. The large Chilean historical earthquakes of 1647, 1657, 1730, and 1751 from contemporary documents. . Geophys. Res. Lett. 102:(4):163953
    [Google Scholar]
  181. Vaca S, Vallée M, Nocquet JM, Battaglia J, Régnier M. 2018.. Recurrent slow slip events as a barrier to the northward rupture propagation of the 2016 Pedernales earthquake (Central Ecuador). . Tectonophysics 724::8092
    [Crossref] [Google Scholar]
  182. Vallée M, Bouchon M, Schwartz SY. 2003.. The 13 January 2001 El Salvador earthquake: a multidata analysis. . J. Geophys. Res. 108:(B4):2203
    [Google Scholar]
  183. Vallée M, Nocquet JM, Battaglia J, Font Y, Segovia M, et al. 2013.. Intense interface seismicity triggered by a shallow slow slip event in the Central Ecuador subduction zone. . J. Geophys. Res. Solid Earth 118::296581
    [Crossref] [Google Scholar]
  184. Vallée M, Xie Y, Grandin R, Villegas-Lanza JC, Nocquet JM, et al. 2023.. Self-reactivated rupture during the 2019 Mw = 8 northern Peru intraslab earthquake. . Earth Planet. Sci. Lett. 601::117886
    [Crossref] [Google Scholar]
  185. Vergnolle M, Walpersdorf A, Kostoglodov V, Tregoning P, Santiago JA, et al. 2010.. Slow slip events in Mexico revised from the processing of 11 year GPS observations. . J. Geophys. Res. 115:(B8):B08403
    [Google Scholar]
  186. Vigny C, Klein E. 2022.. The 1877 megathrust earthquake of North Chile two times smaller than thought? A review of ancient articles. . J. S. Am. Earth Sci. 117::103878
    [Crossref] [Google Scholar]
  187. Vigny C, Klein E, Ojeda J. 2024.. In search for the lost truth about the 1922 & 1918 Atacama earthquakes in Chile. . J. S. Am. Earth Sci. 143::104983
    [Crossref] [Google Scholar]
  188. Vigny C, Socquet A, Peyrat S, Ruegg JC, Métois M, et al. 2011.. The 2010 Mw 8.8 Maule megathrust earthquake of central Chile, monitored by GPS. . Science 332:(6036):141721
    [Crossref] [Google Scholar]
  189. Villegas-Lanza JC, Chlieh M, Cavalié O, Tavera H, Baby P, et al. 2016.. Active tectonics of Peru: heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation. . J. Geophys. Res. Solid Earth 121::737194
    [Crossref] [Google Scholar]
  190. Voss N, Dixon TH, Liu Z, Malservisi R, Protti M, Schwartz S. 2018.. Do slow slip events trigger large and great megathrust earthquakes?. Sci. Adv. 4:(10):eaat8472
    [Crossref] [Google Scholar]
  191. Walpersdorf A, Cotte N, Kostoglodov V, Vergnolle M, Radiguet M, et al. 2011.. Two successive slow slip events evidenced in 2009–2010 by a dense GPS network in Guerrero, Mexico. . Geophys. Res. Lett. 38:(15):L15307
    [Crossref] [Google Scholar]
  192. Wallace LM. 2020.. Slow slip events in New Zealand. . Annu. Rev. Earth Planet. Sci. 48::175203
    [Crossref] [Google Scholar]
  193. Walter JI, Meng X, Peng Z, Schwartz SY, Newman AV, Protti M. 2015.. Far-field triggering of foreshocks near the nucleation zone of the 5 September 2012 (MW 7.6) Nicoya Peninsula, Costa Rica earthquake. . Earth Planet. Sci. Lett. 431::7586
    [Crossref] [Google Scholar]
  194. Walter JI, Schwartz SY, Protti JM, Gonzalez V. 2011.. Persistent tremor within the northern Costa Rica seismogenic zone. . Geophys. Res. Lett. 38:(1):L01307
    [Crossref] [Google Scholar]
  195. Walter JI, Schwartz SY, Protti M, Gonzalez V. 2013.. The synchronous occurrence of shallow tremor and very low frequency earthquakes offshore of the Nicoya Peninsula, Costa Rica. . Geophys. Res. Lett. 40:(8):151722
    [Crossref] [Google Scholar]
  196. Wessel P, Luis JF, Uieda LA, Scharroo R, Wobbe F, et al. 2019.. The generic mapping tools version 6. . Geochem. Geophys. Geosyst. 20:(11):555664
    [Crossref] [Google Scholar]
  197. White RA. 1984.. Catalog of historic seismicity in the vicinity of the Chixoy-Polochic and Motagua faults, Guatemala. Open-File Rep. 84-88 , US Geol. Surv., Menlo Park, CA:
    [Google Scholar]
  198. Wirth EA, Sahakian VJ, Wallace LM, Melnick D. 2022.. The occurrence and hazards of great subduction zone earthquakes. . Nat. Rev. Earth Environ. 3:(2):12540
    [Crossref] [Google Scholar]
  199. Xie S, Dixon TH, Malservisi R, Jiang Y, Protti M, Muller C. 2020.. Slow slip and inter-transient locking on the Nicoya megathrust in the late and early stages of an earthquake cycle. . J. Geophys. Res. Solid Earth 125::e2020JB020503
    [Crossref] [Google Scholar]
  200. Yabe S, Tanaka Y, Houston H, Ide S. 2015.. Tidal sensitivity of tectonic tremors in Nankai and Cascadia subduction zones. . J. Geophys. Res. Solid Earth 120:(11):7587605
    [Crossref] [Google Scholar]
  201. Yáñez-Cuadra V, Ortega-Culaciati F, Moreno M, Tassara A, Krumm-Nualart N, et al. 2022.. Interplate coupling and seismic potential in the Atacama seismic gap (Chile): dismissing a rigid Andean sliver. . Geophys. Res. Lett. 49:(11):e2022GL098257
    [Crossref] [Google Scholar]
  202. Yang T, Grand SP, Wilson D, Guzman-Speziale M, Gomez-Gonzalez JM, et al. 2009.. Seismic structure beneath the Rivera subduction zone from finite-frequency seismic tomography. . J. Geophys. Res. 114:(B1):B01302
    [Google Scholar]
  203. Ye L, Kanamori H, Avouac JP, Li L, Cheung KF, Lay T. 2016.. The 16 April 2016, MW7.8 (MS 7.5) Ecuador earthquake: a quasi-repeat of the 1942 MS7.5 earthquake and partial re-rupture of the 1906 MS8.6 Colombia-Ecuador earthquake. . Earth Planet. Sci. Lett. 454::24858
    [Crossref] [Google Scholar]
  204. Yoshimoto M, Kumagai H, Acero W, Ponce G, Vásconez F, et al. 2017.. Depth-dependent rupture mode along the Ecuador-Colombia subduction zone. . Geophys. Res. Lett. 44:(5):220310
    [Crossref] [Google Scholar]
  205. Yousfi Z, Radiguet M, Rousset B, Husker A, Kazachkina E, Kostoglodov V. 2023.. Intermittence of transient slow slip in the Mexican subduction zone. . Earth Planet. Sci. Lett. 620::118340
    [Crossref] [Google Scholar]
  206. Zhan Z. 2020.. Mechanisms and implications of deep earthquakes. . Annu. Rev. Earth Planet. Sci. 48::14774
    [Crossref] [Google Scholar]
  207. Zigone D, Rivet D, Radiguet M, Campillo M, Voisin C, et al. 2012.. Triggering of tremors and slow slip event in Guerrero, Mexico, by the 2010 Mw 8.8 Maule, Chile, earthquake. . J. Geophys. Res. 117:(B9):B09304
    [Google Scholar]
/content/journals/10.1146/annurev-earth-040522-121945
Loading
/content/journals/10.1146/annurev-earth-040522-121945
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error