1932

Abstract

The extensive chondrichthyan fossil record spans 400+ million years and has a global distribution. Paleontological studies provide a foundation of description and taxonomy to support deeper forays into ecology and evolution considering geographic, morphologic, and functional changes through time with nonanalog species and climate states. Although chondrichthyan teeth are most studied, analyses of dermal denticle metrics and soft tissue imprints are increasing. Recent methodological advances in morphology and geochemistry are elucidating fine-scale details, whereas large datasets and ecological modeling are broadening taxonomic, temporal, and geographic perspectives. The combination of ecological metrics and modeling with environmental reconstruction and climate simulations is opening new horizons to explore form and function, demographic dynamics, and food web structure in ancient marine ecosystems. Ultimately, the traits and taxa that endured or perished during the many catastrophic upheaval events in Earth's history contribute to conservation paleobiology, which is a much-needed perspective for extant chondrichthyans.

  • ▪  The longevity and abundance of the chondrichthyan fossil record elucidates facets of ecological, evolutionary, and environmental histories.
  • ▪  Though lacking postcranial, mineralized skeletons, dental enameloid and dermal denticles exquisitely preserve morphology and geochemistry.
  • ▪  Technical advances in imaging, geochemistry, and modeling clarify the linkages between form and function with respect to physiology, diet, and environment.
  • ▪  Conservation efforts can benefit from the temporal and spatial perspective of chondrichthyan persistence through past global change events.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040523-010455
2025-05-30
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/earth/53/1/annurev-earth-040523-010455.html?itemId=/content/journals/10.1146/annurev-earth-040523-010455&mimeType=html&fmt=ahah

Literature Cited

  1. Abler WL. 1992.. The serrated teeth of Tyrannosaurid dinosaurs, and biting structures in other animals. . Paleobiology 18:(2):16183
    [Crossref] [Google Scholar]
  2. Akhtar AA, Santi LM, Griffiths ML, Becker M, Eagle RA, et al. 2020.. A record of the δ44/40Ca and [Sr] of seawater over the last 100 million years from fossil elasmobranch tooth enamel. . Earth Planet. Sci. Lett. 543::116354
    [Crossref] [Google Scholar]
  3. Alfaro ME, Faircloth BC, Harrington RC, Sorenson L, Friedman M, et al. 2018.. Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary. . Nat. Ecol. Evol. 2:(4):68896
    [Crossref] [Google Scholar]
  4. Arnold SJ. 1983.. Morphology, performance and fitness. . Am. Zool. 23:(2):34761
    [Crossref] [Google Scholar]
  5. Assemat A, Adnet S, Bayez K, Hassler A, Arnaud-Godet F, et al. 2022.. Exploring diet shifts and ecology in modern sharks using calcium isotopes and trace metal records of their teeth. . J. Fish Biol. 2022:. https://doi.org/10.1111/jfb.15211
    [Google Scholar]
  6. Ballell A, Ferrón HG. 2021.. Biomechanical insights into the dentition of megatooth sharks (Lamniformes: Otodontidae). . Sci. Rep. 11:(1):1232
    [Crossref] [Google Scholar]
  7. Bazzi M, Campione NE, Ahlberg PE, Blom H, Kear BP. 2021a.. Tooth morphology elucidates shark evolution across the end-Cretaceous mass extinction. . PLOS Biol. 19:(8):e3001108
    [Crossref] [Google Scholar]
  8. Bazzi M, Campione NE, Kear BP, Pimiento C, Ahlberg PE. 2021b.. Feeding ecology has shaped the evolution of modern sharks. . Curr. Biol. 31:(23):513848.e4
    [Crossref] [Google Scholar]
  9. Bazzi M, Kear BP, Blom H, Ahlberg PE, Campione NE. 2018.. Static dental disparity and morphological turnover in sharks across the end-Cretaceous mass extinction. . Curr. Biol. 28:(16):260715.e3
    [Crossref] [Google Scholar]
  10. Belben RA, Underwood CJ, Johanson Z, Twitchett RJ. 2017.. Ecological impact of the end-Cretaceous extinction on lamniform sharks. . PLOS ONE 12:(6):e0178294
    [Crossref] [Google Scholar]
  11. Benson RBJ, Butler R, Close RA, Saupe E, Rabosky DL. 2021.. Biodiversity across space and time in the fossil record. . Curr. Biol. 31:(19):R122536
    [Crossref] [Google Scholar]
  12. Bergman JN, Lajeunesse MJ, Motta PJ. 2017.. Teeth penetration force of the tiger shark Galeocerdo cuvier and sandbar shark Carcharhinus plumbeus. . J. Fish Biol. 91:(2):46072
    [Crossref] [Google Scholar]
  13. Botella H, Valenzuela-Ríos JI, Martínez-Pérez C. 2009.. Tooth replacement rates in early chondrichthyans: a qualitative approach. . Lethaia 42:(3):36576
    [Crossref] [Google Scholar]
  14. Bourgon N, Jaouen K, Bacon A-M, Jochum KP, Dufour E, et al. 2020.. Zinc isotopes in Late Pleistocene fossil teeth from a Southeast Asian cave setting preserve paleodietary information. . PNAS 117:(9):467581
    [Crossref] [Google Scholar]
  15. Brée B, Condamine FL, Guinot G. 2022.. Combining palaeontological and neontological data shows a delayed diversification burst of carcharhiniform sharks likely mediated by environmental change. . Sci. Rep. 12:(1):21906
    [Crossref] [Google Scholar]
  16. Burke KD, Williams JW, Chandler MA, Haywood AM, Lunt DJ, Otto-Bliesner BL. 2018.. Pliocene and Eocene provide best analogs for near-future climates. . PNAS 115:(52):1328893
    [Crossref] [Google Scholar]
  17. Cappetta H. 1987.. Handbook of Paleoichthyology, Vol. 3B: Chondrichthyes II: Mesozoic and Cenozoic Elasmobranchii. Munich:: Verlag
    [Google Scholar]
  18. Cappetta H. 2012.. Handbook of Paleoichthyology, Vol. 3E: Chondrichthyes: Mesozoic and Cenozoic Elasmobranchii: Teeth. Munich:: Verlag
    [Google Scholar]
  19. Carrillo-Briceño JD, Carrillo JD, Aguilera OA, Sanchez-Villagra MR. 2018.. Shark and ray diversity in the Tropical America (Neotropics)—an examination of environmental and historical factors affecting diversity. . PeerJ 6::e5313
    [Crossref] [Google Scholar]
  20. Chen C, Wang Z, Saito M, Tohei T, Takano Y, Ikuhara Y. 2014.. Fluorine in shark teeth: its direct atomic-resolution imaging and strengthening function. . Angew. Chem. 126:(6):156973
    [Crossref] [Google Scholar]
  21. Chung MT, Trueman CN, Godiksen JA, Grønkjær P. 2019.. Otolith δ13C values as a metabolic proxy: approaches and mechanical underpinnings. . Mar. Freshw. Res. 70:(12):174756
    [Crossref] [Google Scholar]
  22. Clementz MT. 2012.. New insight from old bones: stable isotope analysis of fossil mammals. . J. Mammal. 93:(2):36880
    [Crossref] [Google Scholar]
  23. Clementz MT, Holden P, Koch PL. 2003.. Are calcium isotopes a reliable monitor of trophic level in marine settings?. Int. J. Osteoarchaeol. 13:(1–2):2936
    [Crossref] [Google Scholar]
  24. Coates MI, Finarelli JA, Sansom IJ, Andreev PS, Criswell KE, et al. 2018.. An early chondrichthyan and the evolutionary assembly of a shark body plan. . Proc. R. Soc. B 285:(1870):20172418
    [Crossref] [Google Scholar]
  25. Coates MI, Tietjen K, Olsen AM, Finarelli JA. 2019.. High-performance suction feeding in an early elasmobranch. . Sci. Adv. 5:(9):eaax2742
    [Crossref] [Google Scholar]
  26. Codron D, Clauss M, Codron J, Tütken T. 2018.. Within trophic level shifts in collagen-carbonate stable carbon isotope spacing are propagated by diet and digestive physiology in large mammal herbivores. . Ecol. Evol. 8:(8):398395
    [Crossref] [Google Scholar]
  27. Cohen KE, Weller HI, Summers AP. 2020.. Not your father's homodonty—stress, tooth shape, and the functional homodont. . J. Anat. 237:(5):83748
    [Crossref] [Google Scholar]
  28. Comans CM, Smart SM, Kast ER, Lu Y, Lüdecke T, et al. 2024.. Enameloid-bound δ15N reveals large trophic separation among Late Cretaceous sharks in the northern Gulf of Mexico. . Geobiology 22:(1):e12585
    [Crossref] [Google Scholar]
  29. Condamine FL, Romieu J, Guinot G. 2019.. Climate cooling and clade competition likely drove the decline of lamniform sharks. . PNAS 116:(41):2058490
    [Crossref] [Google Scholar]
  30. Conrad R. 2005.. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. . Organ. Geochem. 36:(5):73952
    [Crossref] [Google Scholar]
  31. Cooper JA, Griffin JN, Kindlimann R, Pimiento C. 2023.. Are shark teeth proxies for functional traits? A framework to infer ecology from the fossil record. . J. Fish Biol. 103:(4):798814
    [Crossref] [Google Scholar]
  32. Corn KA, Farina SC, Brash J, Summers AP. 2016.. Modelling tooth-prey interactions in sharks: the importance of dynamic testing. . R. Soc. Open Sci. 3:(8):160141
    [Crossref] [Google Scholar]
  33. Cortes E. 1999.. Standardized diet compositions and trophic levels of sharks. . ICES J. Mar. Sci. 56:(5):70717
    [Crossref] [Google Scholar]
  34. Danovaro R, Snelgrove PVR, Tyler P. 2014.. Challenging the paradigms of deep-sea ecology. . Trends Ecol. Evol. 29:(8):46575
    [Crossref] [Google Scholar]
  35. Davidson AD, Shoemaker KT, Weinstein B, Costa GC, Brooks TM, et al. 2017.. Geography of current and future global mammal extinction risk. . PLOS ONE 12:(11):e0186934
    [Crossref] [Google Scholar]
  36. Davidson LNK, Dulvy NK. 2017.. Global marine protected areas to prevent extinctions. . Nat. Ecol. Evol. 1:(2):0040
    [Crossref] [Google Scholar]
  37. Dearden RP, Herrel A, Pradel A. 2023.. Evidence for high-performance suction feeding in the Pennsylvanian stem-group holocephalan Iniopera. . PNAS 120:(4):e2207854119
    [Crossref] [Google Scholar]
  38. Di Lorenzo M, Calò A, Di Franco A, Milisenda G, Aglieri G, et al. 2022.. Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. . Nat. Commun. 13:(1):4381
    [Crossref] [Google Scholar]
  39. Didier DA. 2004.. Phylogeny and classification of extant Holocephali. . In Biology of Sharks and Their Relatives, ed. JC Carrier, JA Musick, MR Heithaus , pp. 11538. Boca Raton, FL:: CRC Press
    [Google Scholar]
  40. Dietl GP, Flessa KW. 2011.. Conservation paleobiology: putting the dead to work. . Trends Ecol. Evol. 26:(1):3037
    [Crossref] [Google Scholar]
  41. Dietl GP, Flessa KW, eds. 2009.. Conservation Paleobiology: Using the Past to Manage for the Future, Vol. 15. [no place]:: Paleontol. Soc.
    [Google Scholar]
  42. Dietl GP, Kidwell SM, Brenner M, Burney DA, Flessa KW, et al. 2015.. Conservation paleobiology: leveraging knowledge of the past to inform conservation and restoration. . Annu. Rev. Earth Planet. Sci. 43::79103
    [Crossref] [Google Scholar]
  43. Dillon EM, Lafferty KD, McCauley DJ, Bradley D, Norris RD, et al. 2020.. Dermal denticle assemblages in coral reef sediments correlate with conventional shark surveys. . Methods Ecol. Evol. 11:(3):36275
    [Crossref] [Google Scholar]
  44. Dillon EM, McCauley DJ, Morales-Saldaña JM, Leonard ND, Zhao J, O'Dea A. 2021.. Fossil dermal denticles reveal the preexploitation baseline of a Caribbean coral reef shark community. . PNAS 118:(29):e2017735118
    [Crossref] [Google Scholar]
  45. Dillon EM, Norris RD, O'Dea A. 2017.. Dermal denticles as a tool to reconstruct shark communities. . Mar. Ecol. Prog. Ser. 566::11734
    [Crossref] [Google Scholar]
  46. Dillon EM, Pier JQ, Smith JA, Raja NB, Dimitrijević D, et al. 2022.. What is conservation paleobiology? Tracking 20 years of research and development. . Front. Ecol. Evol. 10::1031483
    [Crossref] [Google Scholar]
  47. Dillon EM, Pimiento C. 2024.. Aligning paleobiological research with conservation priorities using elasmobranchs as a model. . Paleobiology 2024::120
    [Google Scholar]
  48. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. 2014.. Defaunation in the Anthropocene. . Science 345:(6195):4016
    [Crossref] [Google Scholar]
  49. Dulvy NK, Fowler SL, Musick JA, Cavanagh RD, Kyne PM, et al. 2014.. Extinction risk and conservation of the world's sharks and rays. . eLife 3::e00590
    [Crossref] [Google Scholar]
  50. Dulvy NK, Pacoureau N, Rigby CL, Pollom RA, Jabado RW, et al. 2021.. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. . Curr. Biol. 31:(21):477387.e8
    [Crossref] [Google Scholar]
  51. Dwyer RG, Krueck NC, Udyawer V, Heupel MR, Chapman D, et al. 2020.. Individual and population benefits of marine reserves for reef sharks. . Curr. Biol. 30:(3):48089.e5
    [Crossref] [Google Scholar]
  52. Ehret DJ, Hubbell G, MacFadden BJ. 2009.. Exceptional preservation of the white shark Carcharodon (Lamniformes, Lamnidae) from the early Pliocene of Peru. . J. Vertebr. Paleontol. 29:(1):113
    [Crossref] [Google Scholar]
  53. Eiler JM. 2011.. Paleoclimate reconstruction using carbonate clumped isotope thermometry. . Quat. Sci. Rev. 30:(25):357588
    [Crossref] [Google Scholar]
  54. Estes JA, Heithaus M, McCauley DJ, Rasher DB, Worm B. 2016.. Megafaunal impacts on structure and function of ocean ecosystems. . Annu. Rev. Environ. Resour. 41::83116
    [Crossref] [Google Scholar]
  55. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, et al. 2011.. Trophic downgrading of planet Earth. . Science 333:(6040):3016
    [Crossref] [Google Scholar]
  56. Evans AR, Pineda-Munoz S. 2018.. Inferring mammal dietary ecology from dental morphology. . In Methods in Paleoecology, ed. DA Croft, DF Su, SW Simpson , pp. 3751. Cham, Switz:.: Springer
    [Google Scholar]
  57. Ferretti F, Worm B, Britten GL, Heithaus MR, Lotze HK. 2010.. Patterns and ecosystem consequences of shark declines in the ocean. . Ecol. Lett. 13:(8):105571
    [Crossref] [Google Scholar]
  58. Ferrón HG. 2023.. Illuminating the evolution of bioluminescence in sharks. . Palaeontology 66:(1):e12641
    [Crossref] [Google Scholar]
  59. Field IC, Meekan MG, Buckworth RC, Bradshaw CJA. 2009.. Susceptibility of sharks, rays and chimaeras to global extinction. . In Advances in Marine Biology, Vol. 56, ed. DW Sims , pp. 275363. Oxford, UK:: Academic
    [Google Scholar]
  60. Finnegan S, Anderson SC, Harnik PG, Simpson C, Tittensor DP, et al. 2015.. Paleontological baselines for evaluating extinction risk in the modern oceans. . Science 348:(6234):56770
    [Crossref] [Google Scholar]
  61. Finnegan S, Harnik PG, Lockwood R, Lotze HK, McClenachan L, Kahanamoku SS. 2024.. Using the fossil record to understand extinction risk and inform marine conservation in a changing world. . Annu. Rev. Mar. Sci. 16::30733
    [Crossref] [Google Scholar]
  62. Fischer J, Voigt SS, Schneider JW, Buchwitz M, Voigt SS. 2011.. A selachian freshwater fauna from the Triassic of Kyrgyzstan and its implication for Mesozoic shark nurseries. . J. Vertebr. Paleontol. 31:(5):93753
    [Crossref] [Google Scholar]
  63. Frazzetta TH. 1988.. The mechanics of cutting and the form of shark teeth (Chondrichthyes, Elasmobranchii). . Zoomorphology 108:(2):93107
    [Crossref] [Google Scholar]
  64. Frey L, Coates MI, Tietjen K, Rücklin M, Klug C. 2020.. A symmoriiform from the Late Devonian of Morocco demonstrates a derived jaw function in ancient chondrichthyans. . Commun. Biol. 3:(1):681
    [Crossref] [Google Scholar]
  65. Fricke R, Eschmeyer WN, Van der Laan R. 2024.. Eschmeyer's Catalog of Fishes: Genera, Species, References. San Francisco:, Calif. Acad. Sci. https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp
    [Google Scholar]
  66. Gardiner BG, Schaeffer B. 1989.. Interrelationships of lower actinopterygian fishes. . Zool. J. Linnean Soc. 97:(2):13587
    [Crossref] [Google Scholar]
  67. Gardiner BG, Schaeffer B, Masserie JA. 2005.. A review of the lower actinopterygian phylogeny. . Zool. J. Linnean Soc. 144:(4):51125
    [Crossref] [Google Scholar]
  68. Gilson S-P, Gates St-Pierre C, Lominy M, Lessa A. 2021.. Shark teeth used as tools: an experimental archaeology study. . J. Archaeol. Sci. 35::102733
    [Google Scholar]
  69. Gilson S-P, Lessa A. 2021.. Capture, processing and utilization of sharks in archaeological context: its importance among fisher-hunter-gatherers from southern Brazil. . J. Archaeol. Sci. 35::102693
    [Google Scholar]
  70. Ginter M, Hampe O, Duffin CJ. 2010.. Handbook of Paleoichthyology: Teeth. München, Germ:.: F. Pfeil
    [Google Scholar]
  71. Griffiths ML, Eagle RA, Kim SL, Flores RJ, Becker MA, et al. 2023.. Endothermic physiology of extinct megatooth sharks. . PNAS 120:(27):e2218153120
    [Crossref] [Google Scholar]
  72. Groff DV, McDonough MacKenzie C, Pier JQ, Shaffer AB, Dietl GP. 2023.. Knowing but not doing: quantifying the research-implementation gap in conservation paleobiology. . Front. Ecol. Evol. 11::1058992
    [Crossref] [Google Scholar]
  73. Grogan ED, Lund R, Greenfest-Allen E. 2012.. The origin and relationships of early Chondrichthyans. . In Biology of Sharks and Their Relatives, ed. JC Carrier, JA Musick, MR Heithaus , pp. 329. Boca Raton, FL:: CRC Press. , 2nd ed..
    [Google Scholar]
  74. Grossman EL, Joachimski MM. 2020.. Oxygen isotope stratigraphy. . In Geologic Time Scale 2020, ed. FM Gradstein, JG Ogg, MD Schmitz, G Ogg , pp. 279307. Amsterdam:: Elsevier
    [Google Scholar]
  75. Guinot G, Adnet S, Cavin L, Cappetta H. 2013.. Cretaceous stem chondrichthyans survived the end-Permian mass extinction. . Nat. Commun. 4:(1):2669
    [Crossref] [Google Scholar]
  76. Guinot G, Condamine FL. 2023.. Global impact and selectivity of the Cretaceous-Paleogene mass extinction among sharks, skates, and rays. . Science 379:(6634):8026
    [Crossref] [Google Scholar]
  77. Harnik PG, Lotze HK, Anderson SC, Finkel ZV, Finnegan S, et al. 2012.. Extinctions in ancient and modern seas. . Trends Ecol. Evol. 27:(11):60817
    [Crossref] [Google Scholar]
  78. Heinicke M, Naylor G, Hedges S. 2009.. Cartilaginous fishes (Chondrichthyes). . Timetree Life 9::32027
    [Crossref] [Google Scholar]
  79. IUCN (Int. Union Conserv. Nat.). 2009.. Heterodontus francisci. IUCN Red List of Threatened Species. Version 2024-2
    [Google Scholar]
  80. IUCN (Int. Union Conserv. Nat.). 2014.. Heterodontus francisci. IUCN Red List of Threatened Species 2015, e.T39333A80671300
    [Google Scholar]
  81. IUCN (Int. Union Conserv. Nat.). 2019.. Squalus acanthias. IUCN Red List of Threatened Species. Version 2024-2
    [Google Scholar]
  82. IUCN (Int. Union Conserv. Nat.) SSC Shark Spec. Group. 2018.. Rhinoptera bonasus. IUCN Red List of Threatened Species. Version 2024-2
    [Google Scholar]
  83. IUCN (Int. Union Conserv. Nat.) SSC Shark Spec. Group 2020a.. Carcharhinus leucas. IUCN Red List of Threatened Species. Version 2024-2
    [Google Scholar]
  84. IUCN (Int. Union Conserv. Nat.) SSC Shark Spec. Group 2020b.. Ginglymostoma cirratum. IUCN Red List of Threatened Species. Version 2024-2
    [Google Scholar]
  85. Jablonski D. 2001.. Lessons from the past: evolutionary impacts of mass extinctions. . PNAS 98:(10):539398
    [Crossref] [Google Scholar]
  86. Jaouen K, Beasley M, Schoeninger M, Hublin J-J, Richards MP. 2016.. Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi Fora, Kenya). . Sci. Rep. 6:(1):26281
    [Crossref] [Google Scholar]
  87. Jaouen K, Pons ML, Balter V. 2013.. Iron, copper and zinc isotopic fractionation up mammal trophic chains. . Earth Planet. Sci. Lett. 374::16472
    [Crossref] [Google Scholar]
  88. Johannes RE, Freeman MMR, Hamilton RJ. 2000.. Ignore fishers’ knowledge and miss the boat. . Fish Fish. 1:(3):25771
    [Google Scholar]
  89. Junqueira TP, Vriens B, Leybourne MI, Harrison AL, Sullivan KV, et al. 2024.. Applications of zinc stable isotope analysis in environmental and biological systems: a review. . Geochem. Explor. Environ. Anal. 24::geochem2024-003
    [Crossref] [Google Scholar]
  90. Karnes ME, Chan RL, Kuntz JP, Griffiths ML, Shimada K, et al. 2024.. Enigmatic carbonate isotope values in shark teeth: evidence for environmental and dietary controls. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 635::111943
    [Crossref] [Google Scholar]
  91. Kast ER, Griffiths ML, Kim SL, Rao ZC, Shimada K, et al. 2022.. Cenozoic megatooth sharks occupied extremely high trophic positions. . Sci. Adv. 8:(25):718
    [Crossref] [Google Scholar]
  92. Kidwell SM, Flessa KW. 1995.. The quality of the fossil record: populations, species, and communities. . Annu. Rev. Ecol. Syst. 26::26999
    [Crossref] [Google Scholar]
  93. Kiessling W, Raja NB, Roden VJ, Turvey ST, Saupe EE. 2019.. Addressing priority questions of conservation science with palaeontological data. . Phil. Trans. R. Soc. B 374:(1788):20190222
    [Crossref] [Google Scholar]
  94. Kiessling W, Smith JA, Raja NB. 2023.. Improving the relevance of paleontology to climate change policy. . PNAS 120:(7):e2201926119
    [Crossref] [Google Scholar]
  95. Kim SL, Eberle JJ, Bell DM, Fox DA, Padilla A. 2014.. Evidence from shark teeth for a brackish Arctic Ocean in the Eocene greenhouse. . Geology 42:(8):69598
    [Crossref] [Google Scholar]
  96. Kim SL, Martínez del Rio C, Casper D, Koch PL. 2012.. Isotopic incorporation rates for shark tissues from a long-term captive feeding study. . J. Exp. Biol. 215:(14):2495500
    [Crossref] [Google Scholar]
  97. Kim SL, Yeakel JD, Balk MA, Eberle JJ, Zeichner S, et al. 2022.. Decoding the dynamics of dental distributions: insights from shark demography and dispersal. . Proc. R. Soc. B 289::20220808
    [Crossref] [Google Scholar]
  98. Kim SL, Zeichner SS, Colman AS, Scher HD, Kriwet J, et al. 2020.. Probing the ecology and climate of the Eocene Southern Ocean with sand tiger sharks Striatolamia macrota. . Paleoceanogr. Paleoclimatol. 35:(12):e2020PA003997
    [Crossref] [Google Scholar]
  99. Koch PL. 2008.. Isotopic study of the biology of modern and fossil vertebrates. . In Stable Isotopes in Ecology and Environmental Science, ed. R Michener, K Lajtha , pp. 99154. Malden, MA:: Blackwell. , 2nd ed..
    [Google Scholar]
  100. Kocsis L, Vennemann TW, Fontignie D. 2007.. Migration of sharks into freshwater systems during the Miocene and implications for Alpine paleoelevation. . Geology 35:(5):45154
    [Crossref] [Google Scholar]
  101. Kocsis L, Vennemann TW, Hegner E, Fontignie D, Tütken T. 2009.. Constraints on Miocene oceanography and climate in the Western and Central Paratethys: O-, Sr-, and Nd-isotope compositions of marine fish and mammal remains. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 271:(1–2):11729
    [Crossref] [Google Scholar]
  102. Kohn MJ, Cerling TE. 2002.. Stable isotope compositions of biological apatite. . Rev. Mineral. Geochem. 48::45588
    [Crossref] [Google Scholar]
  103. Kriwet J, Benton MJ. 2004.. Neoselachian (Chondrichthyes, Elasmobranchii) diversity across the Cretaceous–Tertiary boundary. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 214:(3):18194
    [Crossref] [Google Scholar]
  104. Kriwet J, Kiessling W, Klug S. 2009.. Diversification trajectories and evolutionary life-history traits in early sharks and batoids. . Proc. R. Soc. B 276:(1658):94551
    [Crossref] [Google Scholar]
  105. Larocca Conte G, Aleksinski A, Liao A, Kriwet J, Mörs T, et al. 2024a.. Eocene shark teeth from peninsular Antarctica: windows to habitat use and paleoceanography. . Paleoceanogr. Paleoclimatol. 39:(11):e2024PA004965
    [Crossref] [Google Scholar]
  106. Larocca Conte G, Lopes LE, Mine AH, Trayler RB, Kim SL. 2024b.. SPORA, a new silver phosphate precipitation protocol for oxygen isotope analysis of small, organic-rich bioapatite samples. . Chem. Geol. 651::122000
    [Crossref] [Google Scholar]
  107. Lauder GV. 2015.. Fish locomotion: recent advances and new directions. . Annu. Rev. Mar. Sci. 7::52145
    [Crossref] [Google Scholar]
  108. Li H, Kipp MA, Kim SL, Kast ER, Eberle JJ, Tissot FLH. 2024.. Exploring uranium isotopes in shark teeth as a paleo-redox proxy. . Geochim. Cosmochim. Acta 365::15873
    [Crossref] [Google Scholar]
  109. Lindberg DR. 1991.. Marine biotic interchange between the northern and southern hemispheres. . Paleobiology 17:(3):30824
    [Crossref] [Google Scholar]
  110. Lourtie A, Duchatelet L, Straube N, Puozzo N, Grace MA, et al. 2022.. Placoid scales in bioluminescent sharks: scaling their evolution using morphology and elemental composition. . Front. Mar. Sci. 9::908237
    [Crossref] [Google Scholar]
  111. Lowery D, Godfrey SJ, Eshelman R. 2011.. Integrated geology, paleontology, and archaeology: Native American use of fossil shark teeth in the Chesapeake Bay region. . Archaeol. East. N. Am. 39::93108
    [Google Scholar]
  112. Lund R, Greenfest-Allen E, Grogan ED. 2015.. Ecomorphology of the Mississippian fishes of the Bear Gulch Limestone (Heath formation, Montana, USA). . Environ. Biol. Fishes 98:(2):73954
    [Crossref] [Google Scholar]
  113. MacKeracher T, Diedrich A, Simpfendorfer CA. 2019.. Sharks, rays and marine protected areas: a critical evaluation of current perspectives. . Fish Fish. 20:(2):25567
    [Crossref] [Google Scholar]
  114. Maisey JG. 1989.. Visceral skeleton and musculature of a Late Devonian shark. . J. Vertebr. Paleontol. 9:(2):17490
    [Crossref] [Google Scholar]
  115. Maisey JG. 2012.. What is an ‘elasmobranch’? The impact of palaeontology in understanding elasmobranch phylogeny and evolution. . J. Fish Biol. 80:(5):91851
    [Crossref] [Google Scholar]
  116. Maisey JG, Anderson ME. 2001.. A primitive chondrichthyan braincase from the Early Devonian of South Africa. . J. Vertebr. Paleontol. 21:(4):70213
    [Crossref] [Google Scholar]
  117. Marramà G, Carnevale G, Engelbrecht A, Claeson KM, Zorzin R, et al. 2018.. A synoptic review of the Eocene (Ypresian) cartilaginous fishes (Chondrichthyes: Holocephali, Elasmobranchii) of the Bolca Konservat-Lagerstätte, Italy. . PalZ 92:(2):283313
    [Crossref] [Google Scholar]
  118. Martin JE, Tacail T, Adnet S, Girard C, Balter V. 2015.. Calcium isotopes reveal the trophic position of extant and fossil elasmobranchs. . Chem. Geol. 415::11825
    [Crossref] [Google Scholar]
  119. Martin U, Mallefet J. 2023.. The diet of deep-water sharks. . Deep Sea Res. I Oceanogr. Res. Pap. 192::103898
    [Crossref] [Google Scholar]
  120. McClenachan L, Ferretti F, Baum JK. 2012.. From archives to conservation: why historical data are needed to set baselines for marine animals and ecosystems. . Conserv. Lett. 5:(5):34959
    [Crossref] [Google Scholar]
  121. McCormack J, Griffiths ML, Kim SL, Shimada K, Karnes M, et al. 2022.. Trophic position of Otodus megalodon and great white sharks through time revealed by zinc isotopes. . Nat. Commun. 13:(1):2980
    [Crossref] [Google Scholar]
  122. McCormack J, Karnes M, Haulsee D, Fox D, Kim SL. 2023.. Shark teeth zinc isotope values document intrapopulation foraging differences related to ontogeny and sex. . Commun. Biol. 6:(1):711
    [Crossref] [Google Scholar]
  123. Meibom A, Yurimoto H, Cuif J-P, Domart-Coulon I, Houlbreque F, et al. 2006.. Vital effects in coral skeletal composition display strict three-dimensional control. . Geophys. Res. Lett. 33:(11):L11608
    [Crossref] [Google Scholar]
  124. Monarrez PM, Heim NA, Payne JL. 2021.. Mass extinctions alter extinction and origination dynamics with respect to body size. . Proc. R. Soc. B 288:(1960):20211681
    [Crossref] [Google Scholar]
  125. Morato T, Watson R, Pitcher TJ, Pauly D. 2006.. Fishing down the deep. . Fish Fish. 7:(1):2434
    [Crossref] [Google Scholar]
  126. Motta PJ, Huber DR. 2012.. Prey capture behavior and feeding mechanics of Elasmobranchs. . In Biology of Sharks and Their Relatives, ed. JC Carrier, JA Musick, MR Heithaus , pp. 153210. Boca Raton, FL:: CRC Press. , 2nd ed..
    [Google Scholar]
  127. Naylor GJP, Caira JN, Jensen K, Rosana KAM, White WT, Last PR. 2012.. A DNA sequence–based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. . Bull. Am. Mus. Nat. Hist. 367::1262
    [Crossref] [Google Scholar]
  128. Nelson JS, Grande T, Wilson MVH. 2016.. Fishes of the World, pp. 4094. Hoboken, NJ:: Wiley & Sons. , 5th ed..
    [Google Scholar]
  129. Newsome SD, Etnier MA, Gifford-Gonzalez D, Phillips DL, Van Tuinen M, et al. 2007.. The shifting baseline of northern fur seal ecology in the northeast Pacific Ocean. . PNAS 104:(23):970914
    [Crossref] [Google Scholar]
  130. O'Dea A, Lepore M, Altieri AH, Chan M, Morales-Saldaña JM, et al. 2020.. Defining variation in pre-human ecosystems can guide conservation: an example from a Caribbean coral reef. . Sci. Rep. 10:(1):2922
    [Crossref] [Google Scholar]
  131. Pacoureau N, Rigby CL, Kyne PM, Sherley RB, Winker H, et al. 2021.. Half a century of global decline in oceanic sharks and rays. . Nature 589:(7843):56771
    [Crossref] [Google Scholar]
  132. Paillard A, Shimada K, Pimiento C. 2021.. The fossil record of extant elasmobranchs. . J. Fish Biol. 98:(2):44555
    [Crossref] [Google Scholar]
  133. Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F. 1998.. Fishing down marine food webs. . Science 279:(5352):86063
    [Crossref] [Google Scholar]
  134. Pimiento C, Albouy C, Silvestro D, Mouton TL, Velez L, et al. 2023.. Functional diversity of sharks and rays is highly vulnerable and supported by unique species and locations worldwide. . Nat. Commun. 14::7691
    [Crossref] [Google Scholar]
  135. Pimiento C, Antonelli A. 2022.. Integrating deep-time palaeontology in conservation prioritisation. . Front. Ecol. Evol. 10::959364
    [Crossref] [Google Scholar]
  136. Pimiento C, Balk MA. 2015.. Body-size trends of the extinct giant shark Carcharocles megalodon: a deep-time perspective on marine apex predators. . Paleobiology 41:(3):47990
    [Crossref] [Google Scholar]
  137. Pimiento C, Ehret DJ, MacFadden BJ, Hubbell G. 2010.. Ancient nursery area for the extinct giant shark megalodon from the Miocene of Panama. . PLOS ONE 5:(5):e10552
    [Crossref] [Google Scholar]
  138. Pimiento C, Griffin JN, Clements CF, Silvestro D, Varela S, et al. 2017.. The Pliocene marine megafauna extinction and its impact on functional diversity. . Nat. Ecol. Evol. 1:(8):11006
    [Crossref] [Google Scholar]
  139. Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA. 2013.. Marine taxa track local climate velocities. . Science 341:(6151):123942
    [Crossref] [Google Scholar]
  140. Ramsay JB, Wilga CD, Tapanila L, Pruitt J, Pradel A, et al. 2015.. Eating with a saw for a jaw: functional morphology of the jaws and tooth-whorl in Helicoprion davisii. . J. Morphol. 276:(1):4764
    [Crossref] [Google Scholar]
  141. Reif W-E. 1978.. Types of morphogenesis of the dermal skeleton in fossil sharks. . Paläontol. Z. 52:(1–2):11028
    [Crossref] [Google Scholar]
  142. Robbins WD, Hisano M, Connolly SR, Choat JH. 2006.. Ongoing collapse of coral-reef shark populations. . Curr. Biol. 16:(23):231419
    [Crossref] [Google Scholar]
  143. Rodríguez-Tovar FJ, Lowery CM, Bralower TJ, Gulick SPS, Jones HL. 2020.. Rapid macrobenthic diversification and stabilization after the end-Cretaceous mass extinction event. . Geology 48:(11):104852
    [Crossref] [Google Scholar]
  144. Schnetz L, Butler RJ, Coates MI, Sansom IJ. 2024.. The skeletal completeness of the Palaeozoic chondrichthyan fossil record. . R. Soc. Open Sci. 11:(1):231451
    [Crossref] [Google Scholar]
  145. Sherman CS, Simpfendorfer CA, Pacoureau N, Matsushiba JH, Yan HF, et al. 2023.. Half a century of rising extinction risk of coral reef sharks and rays. . Nat. Commun. 14::15
    [Crossref] [Google Scholar]
  146. Sibert E, Norris R, Cuevas J, Graves L. 2016.. Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change. . Proc. R. Soc. B 283:(1831):20160189
    [Crossref] [Google Scholar]
  147. Sibert EC, Norris RD. 2015.. New age of fishes initiated by the Cretaceous−Paleogene mass extinction. . PNAS 112:(28):853742
    [Crossref] [Google Scholar]
  148. Sibert EC, Rubin LD. 2021.. An early Miocene extinction in pelagic sharks. . Science 372:(6546):11057
    [Crossref] [Google Scholar]
  149. Simpfendorfer CA, Kyne PM. 2009.. Limited potential to recover from overfishing raises concerns for deep-sea sharks, rays and chimaeras. . Environ. Conserv. 36:(2):97103
    [Crossref] [Google Scholar]
  150. Skulan J, DePaolo DJ, Owens TL. 1997.. Biological control of calcium isotopic abundances in the global calcium cycle. . Geochim. Cosmochim. Acta 61:(12):250510
    [Crossref] [Google Scholar]
  151. Smith AC, Leng MJ, Swann GEA, Barker PA, Mackay AW, et al. 2016.. An experiment to assess the effects of diatom dissolution on oxygen isotope ratios. . Rapid Commun. Mass Spectrom. 30:(2):293300
    [Crossref] [Google Scholar]
  152. Smith FA, Elliott Smith EA, Villaseñor A, Tomé CP, Lyons SK, Newsome SD. 2022.. Late Pleistocene megafauna extinction leads to missing pieces of ecological space in a North American mammal community. . PNAS 119:(39):e2115015119
    [Crossref] [Google Scholar]
  153. Smith FA, Elliott Smith RE, Lyons SK, Payne JL. 2018.. Body size downgrading of mammals over the late Quaternary. . Science 360:(6386):31013
    [Crossref] [Google Scholar]
  154. Sorenson L, Santini F, Alfaro ME. 2014.. The effect of habitat on modern shark diversification. . J. Evol. Biol. 27:(8):153648
    [Crossref] [Google Scholar]
  155. Stahl BJ, Parris DC. 2004.. The complete dentition of Edaphodon mirificus (Chondrichthyes: Holocephali) from a single individual. . J. Paleontol. 78:(2):38892
    [Crossref] [Google Scholar]
  156. Stein RW, Mull CG, Kuhn TS, Aschliman NC, Davidson LNK, et al. 2018.. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. . Nat. Ecol. Evol. 2:(2):28898
    [Crossref] [Google Scholar]
  157. Stevens J. 2000.. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. . ICES J. Mar. Sci. 57:(3):47694
    [Crossref] [Google Scholar]
  158. Stiles E, Wilf P, Iglesias A, Gandolfo MA, Cúneo NR. 2020.. Cretaceous–Paleogene plant extinction and recovery in Patagonia. . Paleobiology 46:(4):44569
    [Crossref] [Google Scholar]
  159. Turner S. 2004.. Early vertebrates: analysis from microfossil evidence. . Recent Adv. Origin Early Radiat. Vertebr. 65::6794
    [Google Scholar]
  160. Tütken T, Vennemann TW, Pfretzschner H-U. 2011.. Nd and Sr isotope compositions in modern and fossil bones—proxies for vertebrate provenance and taphonomy. . Geochim. Cosmochim. Acta 75:(20):595170
    [Crossref] [Google Scholar]
  161. Tütken T, Weber M, Zohar I, Helmy H, Bourgon N, et al. 2020.. Strontium and oxygen isotope analyses reveal Late Cretaceous shark teeth in Iron Age strata in the Southern Levant. . Front. Ecol. Evol. 8::570032
    [Crossref] [Google Scholar]
  162. Underwood CJ. 2006.. Diversification of the Neoselachii (Chondrichthyes) during the Jurassic and Cretaceous. . Paleobiology 32:(2):21535
    [Crossref] [Google Scholar]
  163. van Zinnicq Bergmann MPM, Guttridge TL, Smukall MJ, Adams VM, Bond ME, et al. 2022.. Using movement models and systematic conservation planning to inform marine protected area design for a multi-species predator community. . Biol. Conserv. 266::109469
    [Crossref] [Google Scholar]
  164. VanderWright WJ, Dudgeon CL, Erdmann MV, Sianipar A, Dulvy NK. 2021.. Extinction risk and the small population paradigm in the micro-endemic radiation of epaulette sharks. . In Imperiled: The Encyclopedia of Conservation, ed. DA DellaSala, MI Goldstein , pp. 75262. Amsterdam:: Elsevier
    [Google Scholar]
  165. Vellekoop J, Van Tilborgh KH, Van Knippenberg P, Jagt JWM, Stassen P, et al. 2020.. Type-Maastrichtian gastropod faunas show rapid ecosystem recovery following the Cretaceous–Palaeogene boundary catastrophe. . Palaeontology 63:(2):34967
    [Crossref] [Google Scholar]
  166. Vennemann TW, Hegner E. 1998.. Oxygen, strontium, and neodymium isotope composition of fossil shark teeth as a proxy for the palaeoceanography and palaeoclimatology of the Miocene northern Alpine Paratethys. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 142:(3–4):10721
    [Crossref] [Google Scholar]
  167. Vennemann TW, Hegner E, Cliff G, Benz GW. 2001.. Isotopic composition of recent shark teeth as a proxy for environmental conditions. . Geochim. Cosmochim. Acta 65:(10):158399
    [Crossref] [Google Scholar]
  168. Vermeij GJ. 1991.. Anatomy of an invasion: the trans-Arctic interchange. . Paleobiology 17:(3):281307
    [Crossref] [Google Scholar]
  169. Vermeij GJ. 2015.. Gastropod skeletal defences: land, freshwater, and sea compared. . Vita Malacol. 13::125
    [Google Scholar]
  170. Vullo R, Villalobos-Segura E, Amadori M, Kriwet J, Frey E, et al. 2024.. Exceptionally preserved shark fossils from Mexico elucidate the long-standing enigma of the Cretaceous elasmobranch Ptychodus. . Proc. R. Soc. B 291:(2021):20240262
    [Crossref] [Google Scholar]
  171. Wainwright PC. 1996.. Ecological explanation through functional morphology: the feeding biology of sunfishes. . Ecology 77:(5):133643
    [Crossref] [Google Scholar]
  172. Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C, et al. 2016.. The Anthropocene is functionally and stratigraphically distinct from the Holocene. . Science 351:(6269):aad2622
    [Crossref] [Google Scholar]
  173. Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, et al. 2016.. Climate-driven regime shift of a temperate marine ecosystem. . Science 353:(6295):16972
    [Crossref] [Google Scholar]
  174. Whitenack LB, Kim SL, Sibert EC. 2022.. Bridging the gap between Chondrichthyan paleobiology and biology. . In Biology of Sharks and Their Relatives, ed. JC Carrier, CA Simpfendorfer, MR Heithaus, KE Yopak , pp. 129. Boca Raton, FL:: CRC Press. , 3rd ed..
    [Google Scholar]
  175. Whitenack LB, Motta PJ. 2010.. Performance of shark teeth during puncture and draw: implications for the mechanics of cutting. . Biol. J. Linnean Soc. 100:(2):27186
    [Crossref] [Google Scholar]
  176. Whitenack LB, Simkins DC, Motta PJ. 2011.. Biology meets engineering: the structural mechanics of fossil and extant shark teeth. . J. Morphol. 272:(2):16979
    [Crossref] [Google Scholar]
  177. Williams ME. 1990.. Feeding behavior in Cleveland Shale fishes. . In Evolutionary Paleobiology of Behavior and Coevolution, ed. AJ Boucot , pp. 27387. Amsterdam:: Elsevier
    [Google Scholar]
  178. Williams ME. 1998.. A new specimen of Tamiobatis vetustus (Chondrichthyes, Ctenacanthoidea) from the Late Devonian Cleveland Shale of Ohio. . J. Vertebr. Paleontol. 18:(2):25160
    [Crossref] [Google Scholar]
  179. Williams ME. 2001.. Tooth retention in cladodont sharks: with a comparison between primitive grasping and swallowing, and modern cutting and gouging feeding mechanisms. . J. Vertebr. Paleontol. 21:(2):21426
    [Crossref] [Google Scholar]
  180. Wroe S, Huber DR, Lowry M, McHenry C, Moreno K, et al. 2008.. Three-dimensional computer analysis of white shark jaw mechanics: How hard can a great white bite?. J. Zool. 276:(4):33642
    [Crossref] [Google Scholar]
  181. Zacke A, Voigt S, Joachimski MM, Gale AS, Ward DJ, Tütken T. 2009.. Surface-water freshening and high-latitude river discharge in the Eocene North Sea. . J. Geol. Soc. 166:(5):96980
    [Crossref] [Google Scholar]
  182. Zeichner SS, Colman AS, Koch PL, Polo-Silva C, Galván-Magaña F, Kim SL. 2017.. Discrimination factors and incorporation rates for organic matrix in shark teeth based on a captive feeding study. . Physiol. Biochem. Zool. 90:(2):25772
    [Crossref] [Google Scholar]
  183. Zhao X, Zheng D, Xie G, Jenkyns HC, Guan C, et al. 2020.. Recovery of lacustrine ecosystems after the end-Permian mass extinction. . Geology 48:(6):60913
    [Crossref] [Google Scholar]
  184. Zhu J, Poulsen CJ, Otto-Bliesner BL, Liu Z, Brady EC, Noone DC. 2020.. Simulation of early Eocene water isotopes using an Earth system model and its implication for past climate reconstruction. . Earth Planet. Sci. Lett. 537::116164
    [Crossref] [Google Scholar]
  185. Zuo W, Smith FA, Charnov EL. 2013.. A life-history approach to the late Pleistocene megafaunal extinction. . Am. Nat. 182:(4):52431
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-040523-010455
Loading
/content/journals/10.1146/annurev-earth-040523-010455
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error