1932

Abstract

The notion of climate sensitivity has become synonymous with equilibrium climate sensitivity (ECS), or the equilibrium response of the Earth system to a doubling of CO. But there is a hierarchy of measures of climate sensitivity, which can be arranged in order of increasing complexity and societal relevance and which mirror the historical development of climate modeling. Elements of this hierarchy include the well-known ECS and transient climate response and the lesser-known transient climate response to cumulative emissions and zero emissions commitment. This article describes this hierarchy of climate sensitivities and associated modeling approaches. Key concepts reviewed along the way include climate forcing and feedback, ocean heat uptake, and the airborne fraction of cumulative emissions. We employ simplified theoretical models throughout to encapsulate well-understood aspects of these quantities and to highlight gaps in our understanding and areas for future progress.

  • ▪  There is a hierarchy of measures of climate sensitivity, which exhibit a range of complexity and societal relevance.
  • ▪  Equilibrium climate sensitivity is only one of these measures, and our understanding of it may have reached a plateau.
  • ▪  The more complex measures introduce new quantities, such as ocean heat uptake coefficient and airborne fraction, which deserve increased attention.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040523-014302
2025-05-30
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/earth/53/1/annurev-earth-040523-014302.html?itemId=/content/journals/10.1146/annurev-earth-040523-014302&mimeType=html&fmt=ahah

Literature Cited

  1. Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, et al. 2009.. Warming caused by cumulative carbon emissions towards the trillionth tonne. . Nature 458:(7242):116366
    [Crossref] [Google Scholar]
  2. Allen MR, Friedlingstein P, Girardin CA, Jenkins S, Malhi Y, et al. 2022.. Net zero: science, origins, and implications. . Annu. Rev. Environ. Resourc. 47::84987
    [Crossref] [Google Scholar]
  3. Allen MR, Stocker TF. 2014.. Impact of delay in reducing carbon dioxide emissions. . Nat. Clim. Change 4:(1):2326
    [Crossref] [Google Scholar]
  4. Andrews T, Bodas-Salcedo A, Gregory JM, Dong Y, Armour KC, et al. 2022.. On the effect of historical SST patterns on radiative feedback. . J. Geophys. Res. Atmos. 127:(18):e2022JD036675
    [Crossref] [Google Scholar]
  5. Andrews T, Gregory JM, Forster PM, Webb MJ. 2012a.. Cloud adjustment and its role in CO2 radiative forcing and climate sensitivity: a review. . Surv. Geophys. 33::61935
    [Crossref] [Google Scholar]
  6. Andrews T, Gregory JM, Webb MJ. 2015.. The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. . J. Clim. 28:(4):163048
    [Crossref] [Google Scholar]
  7. Andrews T, Gregory JM, Webb MJ, Taylor KE. 2012b.. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. . Geophys. Res. Lett. 39:(9):L09712
    [Crossref] [Google Scholar]
  8. Archer D, Brovkin V. 2008.. The millennial atmospheric lifetime of anthropogenic CO2. . Clim. Change 90:(3):28397
    [Crossref] [Google Scholar]
  9. Armour KC, Bitz CM, Roe GH. 2013.. Time-varying climate sensitivity from regional feedbacks. . J. Clim. 26:(13):451834
    [Crossref] [Google Scholar]
  10. Armour KC, Proistosescu C, Dong Y, Hahn LC, Blanchard-Wrigglesworth E, et al. 2024.. Sea-surface temperature pattern effects have slowed global warming and biased warming-based constraints on climate sensitivity. . PNAS 121:(12):e2312093121
    [Crossref] [Google Scholar]
  11. Arora VK, Katavouta A, Williams RG, Jones CD, Brovkin V, et al. 2020.. Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models. . Biogeosciences 17:(16):4173222
    [Crossref] [Google Scholar]
  12. Arrhenius S. 1896.. On the influence of carbonic acid in the air upon the temperature of the ground. . Philos. Mag. J. Sci. 41::23776
    [Crossref] [Google Scholar]
  13. Bellouin N, Quaas J, Gryspeerdt E, Kinne S, Stier P, et al. 2020.. Bounding global aerosol radiative forcing of climate change. . Rev. Geophys. 58:(1):e2019RG000660
    [Crossref] [Google Scholar]
  14. Caldwell PM, Zelinka MD, Taylor KE, Marvel K. 2016.. Quantifying the sources of intermodel spread in equilibrium climate sensitivity. . J. Clim. 29:(2):51324
    [Crossref] [Google Scholar]
  15. Callendar GS. 1938.. The artificial production of carbon dioxide and its influence on temperature. . Q. J. R. Meteorol. Soc. 64:(275):22340
    [Crossref] [Google Scholar]
  16. Canadell J, Monteiro P, Costa M, da Cunha LC, Cox P, et al. 2021.. Global carbon and other biogeochemical cycles and feedbacks. In Climate Change 2021: The Physical Science Basis. . Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Basis, ed. V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan et al. , pp. 673816. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  17. Ceppi P, Brient F, Zelinka MD, Hartmann DL. 2017.. Cloud feedback mechanisms and their representation in global climate models. Wiley Interdiscip. . Rev. Clim. Change 8:(4):e465
    [Google Scholar]
  18. Ceppi P, Gregory JM. 2017.. Relationship of tropospheric stability to climate sensitivity and Earth's observed radiation budget. . PNAS 114:(50):1312631
    [Crossref] [Google Scholar]
  19. Ceppi P, Nowack P. 2021.. Observational evidence that cloud feedback amplifies global warming. . PNAS 118:(30):e2026290118
    [Crossref] [Google Scholar]
  20. Cess RD, Potter GL, Blanchet JP, Boer GJ, Ghan SJ, et al. 1989.. Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. . Science 245:(4917):51316
    [Crossref] [Google Scholar]
  21. Charney J, Arakawa A, Baker DJ, Bolin B, Dickinson RE, et al. 1979.. Carbon dioxide and climate: a scientific assessment. Tech. rep., Natl. Acad. Sci., Washington, DC:
    [Google Scholar]
  22. Colman R, Soden BJ. 2021.. Water vapor and lapse rate feedbacks in the climate system. . Rev. Mod. Phys. 93:(4):045002
    [Crossref] [Google Scholar]
  23. Cowtan K, Hausfather Z, Hawkins E, Jacobs P, Mann ME, et al. 2015.. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. . Geophys. Res. Lett. 42:(15):652634
    [Crossref] [Google Scholar]
  24. Cronin TW, Dutta I. 2023.. How well do we understand the Planck feedback?. J. Adv. Model. Earth Syst. 15:(7):e2023MS003729
    [Crossref] [Google Scholar]
  25. Danabasoglu G, Gent PR. 2009.. Equilibrium climate sensitivity: Is it accurate to use a slab ocean model?. J. Clim. 22:(9):249499
    [Crossref] [Google Scholar]
  26. Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, et al. 2011.. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. . J. Clim. 24:(13):3484519
    [Crossref] [Google Scholar]
  27. Dunne JP, Horowitz LW, Adcroft AJ, Ginoux P, Held IM, et al. 2020a.. The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics. . J. Adv. Model. Earth Syst. 12:(11):e2019MS002015
    [Crossref] [Google Scholar]
  28. Dunne JP, Winton M, Bacmeister J, Danabasoglu G, Gettelman A, et al. 2020b.. Comparison of equilibrium climate sensitivity estimates from slab ocean, 150-year, and longer simulations. . Geophys. Res. Lett. 47:(16):e2020GL088852
    [Crossref] [Google Scholar]
  29. Ehlert D, Zickfeld K. 2017.. What determines the warming commitment after take back cessation of CO2 emissions?. Environ. Res. Lett. 12:(1):015002
    [Crossref] [Google Scholar]
  30. Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, et al. 2016.. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. . Geosci. Model Dev. 9:(5):193758
    [Crossref] [Google Scholar]
  31. Feng J, Paynter D, Menzel R. 2023.. How a stable greenhouse effect on Earth is maintained under global warming. . J. Geophys. Res. Atmos. 128:(9):e2022JD038124
    [Crossref] [Google Scholar]
  32. Forster PM. 2016.. Inference of climate sensitivity from analysis of Earth's energy budget. . Annu. Rev. Earth Planet. Sci. 44::85106
    [Crossref] [Google Scholar]
  33. Forster PM, Storelvmo T, Armour KC, Collins W, Dufresne JL, et al. 2021.. The Earth's energy budget, climate feedbacks, and climate sensitivity. . In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan et al. , pp. 9231054. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  34. Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Hauck J, et al. 2020.. Global carbon budget 2020. . Earth Syst. Sci. Data 12:(4):3269340
    [Crossref] [Google Scholar]
  35. Frölicher TL, Winton M, Sarmiento JL. 2014.. Continued global warming after CO2 emissions stoppage. . Nat. Clim. Change 4:(1):4044
    [Crossref] [Google Scholar]
  36. Geoffroy O, Saint-Martin D, Bellon G, Voldoire A, Olivié DJ, Tytéca S. 2013a.. Transient climate response in a two-layer energy-balance model. Part II: Representation of the efficacy of deep-ocean heat uptake and validation for CMIP5 AOGCMs. . J. Clim. 26:(6):185976
    [Crossref] [Google Scholar]
  37. Geoffroy O, Saint-Martin D, Olivié DJ, Voldoire A, Bellon G, Tytéca S. 2013b.. Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments. . J. Clim. 26:(6):184157
    [Crossref] [Google Scholar]
  38. Gettelman A, Hannay C, Bacmeister JT, Neale RB, Pendergrass AG, et al. 2019.. High climate sensitivity in the Community Earth System Model Version 2 (CESM2). . Geophys. Res. Lett. 46:(14):832937
    [Crossref] [Google Scholar]
  39. Gettelman A, Kay JE, Shell KM. 2012.. The evolution of climate sensitivity and climate feedbacks in the community atmosphere model. . J. Clim. 25:(5):145369
    [Crossref] [Google Scholar]
  40. Gillett NP, Arora VK, Matthews D, Allen MR. 2013.. Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. . J. Clim. 26:(18):684458
    [Crossref] [Google Scholar]
  41. Gillett NP, Arora VK, Zickfeld K, Marshall SJ, Merryfield WJ. 2011.. Ongoing climate change following a complete cessation of carbon dioxide emissions. . Nat. Geosci. 4:(2):8387
    [Crossref] [Google Scholar]
  42. Goodwin P, Williams RG, Follows MJ, Dutkiewicz S. 2007.. Ocean-atmosphere partitioning of anthropogenic carbon dioxide on centennial timescales. . Glob. Biogeochem. Cycles 21:(1):GB1014
    [Crossref] [Google Scholar]
  43. Goodwin P, Williams RG, Ridgwell A. 2015.. Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake. . Nat. Geosci. 8:(1):2934
    [Crossref] [Google Scholar]
  44. Gregory JM, Andrews T. 2016.. Variation in climate sensitivity and feedback parameters during the historical period. . Geophys. Res. Lett. 43:(8):391120
    [Crossref] [Google Scholar]
  45. Gregory JM, Andrews T, Good P. 2015.. The inconstancy of the transient climate response parameter under increasing CO2. . Philos. Trans. R. Soc. A 373:(2054):20140417
    [Crossref] [Google Scholar]
  46. Gregory JM, Bloch-Johnson J, Couldrey MP, Exarchou E, Griffies SM, et al. 2024.. A new conceptual model of global ocean heat uptake. . Clim. Dyn. 62:(3):1669713
    [Crossref] [Google Scholar]
  47. Gregory JM, Forster PM. 2008.. Transient climate response estimated from radiative forcing and observed temperature change. . J. Geophys. Res. 113:(D23):D23105
    [Google Scholar]
  48. Gregory JM, Ingram WJ, Palmer MA, Jones GS, Stott PA, et al. 2004.. A new method for diagnosing radiative forcing and climate sensitivity. . Geophys. Res. Lett. 31:(3):25
    [Crossref] [Google Scholar]
  49. Gregory JM, Jones CD, Cadule P, Friedlingstein P. 2009.. Quantifying carbon cycle feedbacks. . J. Clim. 22:(19):523250
    [Crossref] [Google Scholar]
  50. Grose MR, Gregory J, Colman R, Andrews T. 2018.. What climate sensitivity index is most useful for projections?. Geophys. Res. Lett. 45:(3):155966
    [Crossref] [Google Scholar]
  51. Hansen J, Lacis AA, Rind DH, Russell GL, Stone P, et al. 1984.. Climate sensitivity: analysis of feedback mechanisms. . Clim. Process. Clim. Sensit. 29::13063
    [Crossref] [Google Scholar]
  52. Hansen J, Sato M, Ruedy R. 1997.. Radiative forcing and climate response. . J. Geophys. Res. 102:(D6):683164
    [Crossref] [Google Scholar]
  53. Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, et al. 2005.. Efficacy of climate forcings. . J. Geophys. Res. 110:(D18):D18104
    [Google Scholar]
  54. Hartmann DL, Larson K. 2002.. An important constraint on tropical cloud - climate feedback. . Geophys. Res. Lett. 29:(20):1951
    [Crossref] [Google Scholar]
  55. Harvey LDD. 2018.. Global Warming: The Hard Science. Boca Raton, FL:: Routledge
    [Google Scholar]
  56. He H, Kramer RJ, Soden BJ, Jeevanjee N. 2023.. State dependence of CO2 forcing and its implications for climate sensitivity. . Science 382:(6674):105156
    [Crossref] [Google Scholar]
  57. Held IM, Guo H, Adcroft A, Dunne JP, Horowitz LW, et al. 2019.. Structure and performance of GFDL's CM4.0 climate model. . J. Adv. Model. Earth Syst. 11:(11):3691727
    [Crossref] [Google Scholar]
  58. Held IM, Shell KM. 2012.. Using relative humidity as a state variable in climate feedback analysis. . J. Clim. 25:(8):257882
    [Crossref] [Google Scholar]
  59. Held IM, Winton M, Takahashi K, Delworth T, Zeng F, Vallis GK. 2010.. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. . J. Clim. 23:(9):241827
    [Crossref] [Google Scholar]
  60. Herrington T, Zickfeld K. 2014.. Path independence of climate and carbon cycle response over a broad range of cumulative carbon emissions. . Earth Syst. Dyn. 5:(2):40922
    [Crossref] [Google Scholar]
  61. Hoffert MI, Callegari AJ, Hsieh CT. 1980.. The role of deep sea heat storage in the secular response to climatic forcing. . J. Geophys. Res. 85:(C11):666779
    [Crossref] [Google Scholar]
  62. Houghton JT, Meira Filho L, Bruce J, Lee H, Callander B, et al., eds. 1994.. Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC 1992 IS92 Emission Scenarios. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  63. Hulburt EO. 1931.. The temperature of the lower atmosphere of the Earth. . Phys. Rev. 38:(10):187690
    [Crossref] [Google Scholar]
  64. Ingram WJ. 2010.. A very simple model for the water vapour feedback on climate change. Q. . J. R. Meteorol. Soc. 136:(646):3040
    [Crossref] [Google Scholar]
  65. Ingram WJ. 2013.. A new way of quantifying GCM water vapour feedback. . Clim. Dyn. 40:(3–4):91324
    [Crossref] [Google Scholar]
  66. Jeevanjee N. 2023.. Climate sensitivity from radiative-convective equilibrium: a chalkboard approach. . Am. J. Phys. 91:(9):73145
    [Crossref] [Google Scholar]
  67. Jeevanjee N, Held I, Ramaswamy V. 2022.. Manabe's radiative-convective equilibrium. . Bull. Am. Meteorol. Soc. 103:(11):E253343
    [Crossref] [Google Scholar]
  68. Jeevanjee N, Koll DDB, Lutsko NJ. 2021a.. ``Simpson's Law'' and the spectral cancellation of climate feedbacks. . Geophys. Res. Lett. 48:(14):e2021GL093699
    [Crossref] [Google Scholar]
  69. Jeevanjee N, Seeley JT, Paynter D, Fueglistaler S. 2021b.. An analytical model for spatially varying clear-sky CO2 forcing. . J. Clim. 34:(23):946380
    [Google Scholar]
  70. Jones CD, Friedlingstein P. 2020.. Quantifying process-level uncertainty contributions to TCRE and carbon budgets for meeting Paris Agreement climate targets. . Environ. Res. Lett. 15:(7):074019
    [Crossref] [Google Scholar]
  71. Kamae Y, Watanabe M, Ogura T, Yoshimori M, Shiogama H. 2015.. Rapid adjustments of cloud and hydrological cycle to increasing CO2: a review. . Curr. Clim. Change Rep. 1::10313
    [Crossref] [Google Scholar]
  72. Klein SA, Hall A, Norris JR, Pincus R. 2017.. Low-cloud feedbacks from cloud-controlling factors: a review. . Surv. Geophys. 38:(6):130729
    [Crossref] [Google Scholar]
  73. Knutti R, Hegerl GC. 2008.. The equilibrium sensitivity of the Earth's temperature to radiation changes. . Nat. Geosci. 1::73543
    [Crossref] [Google Scholar]
  74. Knutti R, Rugenstein M. 2015.. Feedbacks, climate sensitivity and the limits of linear models. . Philos. Trans. R. Soc. A 373:(2054):20150146
    [Crossref] [Google Scholar]
  75. Koll DDB, Cronin TW. 2018.. Earth's outgoing longwave radiation linear due to H2O greenhouse effect. . PNAS 115:(41):1029398
    [Crossref] [Google Scholar]
  76. Koll DDB, Jeevanjee N, Lutsko NJ. 2023.. An analytic model for the clear-sky longwave feedback. . J. Atmos. Sci. 80:(8):192351
    [Crossref] [Google Scholar]
  77. Krasting JP, Dunne JP, Shevliakova E, Stouffer RJ. 2014.. Trajectory sensitivity of the transient climate response to cumulative carbon emissions. . Geophys. Res. Lett. 41::252027
    [Crossref] [Google Scholar]
  78. Krasting JP, Stouffer RJ, Griffies SM, Hallberg RW, Malyshev SL, et al. 2018.. Role of ocean model formulation in climate response uncertainty. . J. Clim. 31:(22):931333
    [Crossref] [Google Scholar]
  79. Kuhlbrodt T, Gregory JM. 2012.. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. . Geophys. Res. Lett. 39:(17):L18608
    [Google Scholar]
  80. Lee S, L'Heureux M, Wittenberg AT, Seager R, O'Gorman PA, Johnson NC. 2022.. On the future zonal contrasts of equatorial Pacific climate: perspectives from observations, simulations, and theories. . NPJ Clim. Atmos. Sci. 5::82
    [Crossref] [Google Scholar]
  81. Li C, von Storch JS, Marotzke J. 2013.. Deep-ocean heat uptake and equilibrium climate response. . Clim. Dyn. 40:(5–6):107186
    [Crossref] [Google Scholar]
  82. Liu M, Soden BJ, Vecchi GA, Wang C. 2023.. The spread of ocean heat uptake efficiency traced to ocean salinity. . Geophys. Res. Lett. 50:(4):e2022GL100171
    [Crossref] [Google Scholar]
  83. Lunt DJ, Haywood AM, Schmidt GA, Salzmann U, Valdes PJ, Dowsett HJ. 2010.. Earth system sensitivity inferred from Pliocene modelling and data. . Nat. Geosci. 3:(1):6064
    [Crossref] [Google Scholar]
  84. MacDougall AH. 2016.. The transient response to cumulative CO2 emissions: a review. . Curr. Clim. Change Rep. 2:(1):3947
    [Crossref] [Google Scholar]
  85. MacDougall AH. 2017.. The oceanic origin of path-independent carbon budgets. . Sci. Rep. 7:(1):10373
    [Crossref] [Google Scholar]
  86. MacDougall AH, Friedlingstein P. 2015.. The origin and limits of the near proportionality between climate warming and cumulative CO2 emissions. . J. Clim. 28:(10):421730
    [Crossref] [Google Scholar]
  87. MacDougall AH, Frölicher TL, Jones CD, Rogelj J, Matthews HD, et al. 2020.. Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2. . Biogeosciences 17:(11):29873016
    [Crossref] [Google Scholar]
  88. Manabe S, Stouffer RJ. 1980.. Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. . J. Geophys. Res. 85:(C10):552954
    [Crossref] [Google Scholar]
  89. Manabe S, Stouffer RJ, Spelman MJ, Bryan K. 1991.. Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I. Annual mean response. . J. Clim. 4:(8):785818
    [Crossref] [Google Scholar]
  90. Manabe S, Wetherald RT. 1967.. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. . J. Atmos. Sci. 24:(3):24159
    [Crossref] [Google Scholar]
  91. Manabe S, Wetherald RT. 1975.. The effects of doubling the CO2 concentration on the climate of a general circulation model. . J. Atmos. Sci. 32:(1):315
    [Crossref] [Google Scholar]
  92. Marshall DP, Zanna L. 2014.. A conceptual model of ocean heat uptake under climate change. . J. Clim. 27:(22):844465
    [Crossref] [Google Scholar]
  93. Matthews HD, Caldeira K. 2008.. Stabilizing climate requires near-zero emissions. . Geophys. Res. Lett. 35:(4):L04705
    [Crossref] [Google Scholar]
  94. Matthews HD, Gillett NP, Stott PA, Zickfeld K. 2009.. The proportionality of global warming to cumulative carbon emissions. . Nature 459:(7248):82932
    [Crossref] [Google Scholar]
  95. Matthews HD, Solomon S, Pierrehumbert RT. 2012.. Cumulative carbon as a policy framework for achieving climate stabilization. . Philos. Trans. R. Soc. A 370:(1974):436579
    [Crossref] [Google Scholar]
  96. Matthews HD, Tokarska KB, Nicholls ZR, Rogelj J, Canadell JG, et al. 2020.. Opportunities and challenges in using remaining carbon budgets to guide climate policy. . Nat. Geosci. 13:(12):76979
    [Crossref] [Google Scholar]
  97. McFarlane NA, Boer GJ, Blanchet JP, Lazare M. 1992.. The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. . J. Clim. 5:(10):101344
    [Crossref] [Google Scholar]
  98. McKim B, Bony S, Dufresne JL. 2024.. Weak anvil cloud area feedback suggested by physical and observational constraints. . Nat. Geosci. 17:(5):39297
    [Crossref] [Google Scholar]
  99. Meehl GA, Covey C, McAvaney B, Latif M, Stouffer RJ. 2005.. Overview of the Coupled Model Intercomparison Project. . Bull. Am. Meteorol. Soc. 86:(1):8993
    [Crossref] [Google Scholar]
  100. Meehl GA, Senior CA, Eyring V, Flato G, Lamarque JF, et al. 2020.. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. . Sci. Adv. 6:(26):eaba1981
    [Crossref] [Google Scholar]
  101. Mitchell J, Manabe S, Meleshko V, Tokioka T. 1990.. Equilibrium climate change and its implications for the future. . In Climate Change: The IPCC Scientific Assessment, ed. JT Houghton, GJ Jenkins, JJ Ephraums , pp. 13172. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  102. Myers TA, Scott RC, Zelinka MD, Klein SA, Norris JR, Caldwell PM. 2021.. Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. . Nat. Clim. Change 11:(6):5017
    [Crossref] [Google Scholar]
  103. Myhre G, Byrom RE, Andrews T, Forster PM, Smith CJ. 2024.. Efficacy of climate forcings in transient CMIP6 simulations. . Front. Clim. 6:(1):1397358
    [Crossref] [Google Scholar]
  104. Newsom E, Zanna L, Gregory J. 2023.. Background pycnocline depth constrains future ocean heat uptake efficiency. . Geophys. Res. Lett. 50::e2023GL105673
    [Crossref] [Google Scholar]
  105. Nijsse F, Cox P, Williamson M. 2020.. An emergent constraint on transient climate response from simulated historical warming in CMIP6 models. . Earth Syst. Dyn. 11:(3):73750
    [Crossref] [Google Scholar]
  106. O'Neill BC, Tebaldi C, Van Vuuren DP, Eyring V, Friedlingstein P, et al. 2016.. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. . Geosci. Model Dev. 9:(9):346182
    [Crossref] [Google Scholar]
  107. Otto A, Otto FE, Boucher O, Church J, Hegerl G, et al. 2013.. Energy budget constraints on climate response. . Nat. Geosci. 6:(6):41516
    [Crossref] [Google Scholar]
  108. Palazzo Corner S, Siegert M, Ceppi P, Fox-Kemper B, Frölicher TL, et al. 2023.. The Zero Emissions Commitment and climate stabilization. . Front. Sci. 1::1170744
    [Crossref] [Google Scholar]
  109. Paynter D, Frölicher TL, Horowitz LW, Silvers LG. 2018.. Equilibrium climate sensitivity obtained from multimillennial runs of two GFDL climate models. . J. Geophys. Res. Atmos. 123:(4):192141
    [Crossref] [Google Scholar]
  110. Plass GN. 1956.. The influence of the 15μ carbon-dioxide band on the atmospheric infra-red cooling rate. . Q. J. R. Meteorol. Soc. 82:(353):31024
    [Crossref] [Google Scholar]
  111. Previdi M, Liepert BG, Peteet D, Hansen J, Beerling DJ, et al. 2013.. Climate sensitivity in the Anthropocene. . Q. J. R. Meteorol. Soc. 139:(674):112131
    [Crossref] [Google Scholar]
  112. Ramaswamy V, Collins W, Haywood J, Lean J, Mahowald N, et al. 2019.. Radiative forcing of climate: the historical evolution of the radiative forcing concept, the forcing agents and their quantification, and applications. . Meteorol. Monogr. 59::14.1.101
    [Crossref] [Google Scholar]
  113. Randall DA, Wood R, Bony S, Colman R, Fichefet T, et al. 2007.. Climate models and their evaluation. . In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S Solomon, D Qin, M Manning, M Marquis, K Averyt, et al. , pp. 589662. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  114. Raper SC, Gregory JM, Stouffer RJ. 2002.. The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. . J. Clim. 15:(3):12430
    [Crossref] [Google Scholar]
  115. Raupach MR. 2013.. The exponential eigenmodes of the carbon-climate system, and their implications for ratios of responses to forcings. . Earth Syst. Dyn. 4:(1):3149
    [Crossref] [Google Scholar]
  116. Richardson TB, Forster PM, Smith CJ, Maycock AC, Wood T, et al. 2019.. Efficacy of climate forcings in PDRMIP models. . J. Geophys. Res. Atmos. 124:(23):1282444
    [Crossref] [Google Scholar]
  117. Roe G. 2009.. Feedbacks, timescales, and seeing red. . Annu. Rev. Earth Planet. Sci. 37::93115
    [Crossref] [Google Scholar]
  118. Roemer FE, Buehler SA, Brath M, Kluft L, John VO. 2023.. Direct observation of Earth's spectral long-wave feedback parameter. . Nat. Geosci. 16:(5):41621
    [Crossref] [Google Scholar]
  119. Rogelj J, Forster PM, Kriegler E, Smith CJ, Séférian R. 2019.. Estimating and tracking the remaining carbon budget for stringent climate targets. . Nature 571:(7765):33542
    [Crossref] [Google Scholar]
  120. Romps DM, Seeley JT, Edman JP. 2022.. Why the forcing from carbon dioxide scales as the logarithm of its concentration. . J. Clim. 35:(13):402747
    [Crossref] [Google Scholar]
  121. Rose BEJ, Rayborn L. 2016.. The effects of ocean heat uptake on transient climate sensitivity. . Curr. Clim. Change Rep. 2::190201
    [Crossref] [Google Scholar]
  122. Rugenstein M, Armour KC. 2021.. Three flavors of radiative feedbacks and their implications for estimating equilibrium climate sensitivity. . Geophys. Res. Lett. 48:(15):e2021GL092983
    [Crossref] [Google Scholar]
  123. Rugenstein M, Bloch-Johnson J, Gregory J, Andrews T, Mauritsen T, et al. 2020.. Equilibrium climate sensitivity estimated by equilibrating climate models. . Geophys. Res. Lett. 47:(4):e2019GL083898
    [Crossref] [Google Scholar]
  124. Rugenstein M, Zelinka M, Karnauskas K, Ceppi P, Andrews T. 2023.. Patterns of surface warming matter for climate sensitivity. . Eos 104:. https://doi.org/10.1029/2023EO230411
    [Crossref] [Google Scholar]
  125. Seeley JT. 2018.. Convection, radiation, and climate: fundamental mechanisms and impacts of a changing atmosphere. PhD thesis , Univ. Calif., Berkeley:
    [Google Scholar]
  126. Seneviratne SI, Donat MG, Pitman AJ, Knutti R, Wilby RL. 2016.. Allowable CO2 emissions based on regional and impact-related climate targets. . Nature 529:(7587):47783
    [Crossref] [Google Scholar]
  127. Seshadri AK. 2017.. Origin of path independence between cumulative CO2 emissions and global warming. . Clim. Dyn. 49:(9–10):3383401
    [Crossref] [Google Scholar]
  128. Sherwood SC, Bony S, Boucher O, Bretherton CS, Forster PM, et al. 2015.. Adjustments in the forcing-feedback framework for understanding climate change. . Bull. Am. Meteorol. Soc. 96:(2):21728
    [Crossref] [Google Scholar]
  129. Sherwood SC, Webb MJ, Annan JD, Armour KC, Forster PM, et al. 2020.. An assessment of Earth's climate sensitivity using multiple lines of evidence. . Rev. Geophys. 58:(4):e2019RG000678
    [Crossref] [Google Scholar]
  130. Siebesma AP, Bony S, Jakob C, Stevens B, eds. 2020.. Clouds and Climate: Climate Science's Greatest Challenge. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  131. Smith CJ, Kramer RJ, Myhre G, Alterskjr K, Collins W, et al. 2020.. Effective radiative forcing and adjustments in CMIP6 models. . Atmos. Chem. Phys. 20:(16):9591618
    [Crossref] [Google Scholar]
  132. Soden BJ, Broccoli AJ, Hemler RS. 2004.. On the use of cloud forcing to estimate cloud feedback. . J. Clim. 17:(19):366165
    [Crossref] [Google Scholar]
  133. Solomon S, Plattner GK, Knutti R, Friedlingstein P. 2009.. Irreversible climate change due to carbon dioxide emissions. . PNAS 106:(6):17049
    [Crossref] [Google Scholar]
  134. Stevens B, Kluft L. 2023.. A colorful look at climate sensitivity. . Atmos. Chem. Phys. 23::1467389
    [Crossref] [Google Scholar]
  135. Stevens B, Sherwood SC, Bony S, Webb MJ. 2016.. Prospects for narrowing bounds on Earth's equilibrium climate sensitivity. . Earth's Future 4:(11):51222
    [Crossref] [Google Scholar]
  136. Stouffer RJ, Manabe S. 1999.. Response of a coupled ocean-atmosphere model to increasing atmospheric carbon dioxide: sensitivity to the rate of increase. . J. Clim. 12:(8):222437
    [Crossref] [Google Scholar]
  137. Stouffer RJ, Manabe S. 2017.. Assessing temperature pattern projections made in 1989. . Nat. Clim. Change 7:(3):16365
    [Crossref] [Google Scholar]
  138. Sutton RT, Dong B, Gregory JM. 2007.. Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. . Geophys. Res. Lett. 34:(2):26
    [Crossref] [Google Scholar]
  139. Szopa S, Naik V, Adhikary B, Artaxo P, Berntsen T, et al. 2021.. Short-lived climate forcers. . In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan et al. , pp. 817921. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  140. Tarshish N, Jeevanjee N, Fung I. 2023.. Emissions cessation yields multi-century cooling. . Res. Square. https://doi.org/10.21203/rs.3.rs-3607244/v1
    [Google Scholar]
  141. Taylor KE, Stouffer RJ, Meehl GA. 2012.. An overview of CMIP5 and the experiment design. . Bull. Am. Meteorol. Soc. 93:(4):48598
    [Crossref] [Google Scholar]
  142. Thompson DWJ, Bony S, Li Y. 2017.. Thermodynamic constraint on the depth of the global tropospheric circulation. . PNAS 114:(31):818186
    [Crossref] [Google Scholar]
  143. Washington WM, Meehl GA. 1989.. Climate sensitivity due to increased CO2: experiments with a coupled atmosphere and ocean general circulation model. . Clim. Dyn. 4:(1):138
    [Crossref] [Google Scholar]
  144. Watanabe M, Kang SM, Collins M, Hwang YT, McGregor S, Stuecker MF. 2024.. Possible shift in controls of the tropical Pacific surface warming pattern. . Nature 630::31524
    [Crossref] [Google Scholar]
  145. Wigley TML, Schlesinger ME. 1985.. Analytical solution for the effect of increasing CO2 on global mean temperature. . Nature 315:(6021):64952
    [Crossref] [Google Scholar]
  146. Williams RG, Goodwin P, Roussenov VM, Bopp L. 2016.. A framework to understand the transient climate response to emissions. . Environ. Res. Lett. 11:(1):015003
    [Crossref] [Google Scholar]
  147. Wills RC, Dong Y, Proistosecu C, Armour KC, Battisti DS. 2022.. Systematic climate model biases in the large-scale patterns of recent sea-surface temperature and sea-level pressure change. . Geophys. Res. Lett. 49:(17):e2022GL100011
    [Crossref] [Google Scholar]
  148. Wilson DJ, Gea-Banacloche J. 2012.. Simple model to estimate the contribution of atmospheric CO2 to the Earth's greenhouse effect. . Am. J. Phys. 80:(4):30615
    [Crossref] [Google Scholar]
  149. Winton M, Adcroft A, Dunne JP, Held IM, Shevliakova E, et al. 2020.. Climate sensitivity of GFDL's CM4.0. . J. Adv. Model. Earth Syst. 12:(1):e2019MS001838
    [Crossref] [Google Scholar]
  150. Winton M, Takahashi K, Held IM. 2010.. Importance of ocean heat uptake efficacy to transient climate change. . J. Clim. 23:(9):233344
    [Crossref] [Google Scholar]
  151. Wordsworth RD, Seeley JT, Shine KP. 2024.. Fermi resonance and the quantum mechanical basis of global warming. . Planet. Sci. J. 5:(3):67
    [Crossref] [Google Scholar]
  152. Yoshimori M, Lambert FH, Webb MJ, Andrews T. 2020.. Fixed anvil temperature feedback: positive, zero, or negative?. J. Clim. 33:(7):271939
    [Crossref] [Google Scholar]
  153. Zelinka MD, Randall DA, Webb MJ, Klein SA. 2017.. Clearing clouds of uncertainty. . Nat. Clim. Change 7:(10):67478
    [Crossref] [Google Scholar]
  154. Zhang Y, Jeevanjee N, Fueglistaler S. 2020.. Linearity of outgoing longwave radiation: from an atmospheric column to global climate models. . Geophys. Res. Lett. 47:(17):e2020GL089235
    [Crossref] [Google Scholar]
  155. Zhao M, Golaz JC, Held IM, Guo H, Balaji V, et al. 2018.. The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies. . J. Adv. Model. Earth Syst. 10:(3):73569
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-040523-014302
Loading
/content/journals/10.1146/annurev-earth-040523-014302
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error